On the Trend in Below-Cloud Solar Irradiance in The Netherlands versus That in Aerosol Sulfate Concentration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cloud Chamber
2.2. Historic Sulfate Measurements
3. Results and Discussion
3.1. Cloud Chamber Study
3.2. Sulfate Mass Concentration and CDNC Trends
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Cloud Base and Cloud Chamber CDNC Measurements
Altitude | N (# cm−3) | LWC (mg m−3) | Deff (μm) | ||||
---|---|---|---|---|---|---|---|
Average | STD | Average | STD | Average | STD | Average | STD |
862 | 11 | 210 | 60 | 170 | 60 | 6.6 | 1.5 |
895 | 3 | 110 | 35 | 250 | 50 | 18.8 | 1.3 |
895 | 3 | 90 | 20 | 250 | 50 | 19.4 | 1.0 |
942 | 26 | 145 | 70 | 420 | 165 | 19.9 | 0.6 |
970 | 5 | 120 | 30 | 530 | 60 | 22.1 | 0.9 |
1020 | 20 | 115 | 30 | 730 | 110 | 24.4 | 0.7 |
1025 | 5 | 120 | 40 | 650 | 145 | 23.5 | 0.9 |
References
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Climate Change 2013. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Kim, A.-H.; Yum, S.S.; Chang, D.Y.; Park, M. Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem. Geosci. Model Dev. 2021, 14, 259–273. [Google Scholar] [CrossRef]
- Yoon, Y.J.; Ceburnis, D.; Cavalli, F.; Jourdan, O.; Putaud, J.P.; Facchini, M.C.; Decesari, S.; Fuzzi, S.; Sellegri, K.; Jennings, S.G.; et al. Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols. J. Geophys. Res. Earth Surf. 2007, 112, D04206. [Google Scholar] [CrossRef]
- Hidy, G.M.; Mueller, P.K.; Tong, E.Y. Spatial and temporal distributions of airborne sulfate in parts of the United States. Atmos. Environ. 1978, 12, 735–752. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Engardt, M.; Simpson, D.; Schwikowski, M.; Granat, L. Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations. Tellus B Chem. Phys. Meteorol. 2017, 69, 1328945. [Google Scholar] [CrossRef] [Green Version]
- Vestreng, V.; Myhre, G.; Fagerli, H.; Reis, S.; Tarrasón, L. Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos. Chem. Phys. 2007, 7, 3663–3681. [Google Scholar] [CrossRef] [Green Version]
- Schmalensee, R.; Stavins, R.N. The SO2 Allowance Trading System: The Ironic History of a Grand Policy Experiment. J. Econ. Perspect. 2013, 27, 103–122. [Google Scholar] [CrossRef] [Green Version]
- Boers, R.; Brandsma, T.; Siebesma, A.P. Impact of aerosols and clouds on decadal trends in all-sky solar radiation over The Netherlands (1966–2015). Atmos. Chem. Phys. 2017, 17, 8081–8100. [Google Scholar] [CrossRef] [Green Version]
- Hand, J.L.; Copeland, S.A.; Day, D.E.; Dillner, A.M.; Idresand, H.; Malm, W.C.; McDade, C.E.; Moore, C.T., Jr.; Pitchford, M.L.; Schichtel, B.A.; et al. IMPROVE (Interagency Monitoring of Protected Visual Environments): Spatial and Seasonal Patterns and Temporal Variability of Haze and Its Constituents in the United States; Report V, CIRA Report; Cooperative Institute for Research in the Atmosphere: Fort Collins, CO, USA, 2011; ISSN 0737-5352-87. Available online: https://vista.cira.colostate.edu/improve/Publications/Reports/2011/2011.htm (accessed on 1 July 2012).
- Malm, W.C. Characteristics and origins of haze in the continental United States. Earth-Sci. Rev. 1992, 33, 1–36. [Google Scholar] [CrossRef]
- Twomey, S. Atmospheric Aerosols; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands; Oxford, UK; New York, NY, USA, 1978. [Google Scholar]
- Lohmann, U. Aerosol Effects on Clouds and Climate. Space Sci. Rev. 2006, 125, 129–137. [Google Scholar] [CrossRef]
- Wood, R. Stratocumulus Clouds. Mon. Weather Rev. 2012, 140, 2373–2423. [Google Scholar] [CrossRef]
- Berner, A.H.; Bretherton, C.S.; Wood, R. Large eddy simulation of ship tracks in the collapsed marine boundary layer: A case study from the Monterey area ship track experiment. Atmos. Chem. Phys. 2015, 15, 5851–5871. [Google Scholar] [CrossRef] [Green Version]
- Duynkerke, P.G.; Driedonks, A.G.M. Turbulent Structure of a Shear-Driven Stratus-Topped Atmospheric Boundary Layer: A Comparison of Model Results with Observations. J. Atmos. Sci. 1988, 45, 2343–2351. [Google Scholar] [CrossRef]
- Sanchez, K.J.; Russell, L.M.; Modini, R.L.; Frossard, A.A.; Ahlm, L.; Corrigan, C.E.; Roberts, G.C.; Hawkins, L.N.; Schroder, J.C.; Bertram, A.K.; et al. Meteorological and aerosol effects on marine cloud microphysical properties. J. Geophys. Res. Atmos. 2016, 121, 4142–4161. [Google Scholar] [CrossRef] [Green Version]
- Platnick, S.; Twomey, S. Determining the susceptibility of cloud albedo to changes in droplet concentration with the advanced very high-resolution radiometer. J. Appl. Meteorol. 1994, 33, 334–347. [Google Scholar] [CrossRef]
- Velds, C.A. Solar Irradiance in The Netherlands (in Dutch); Koninklijk Nederlands Meteorologisch Instituut: De Bilt, The Netherlands, 1992; ISBN 90-5210-140-X. Available online: https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubDIV/Zonnestraling_in_Nederland.pdf (accessed on 1 September 2022).
- De Martino, G.; van Ulft, B.; ten Brink, H.; Schaap, M.; van Meijgaard, E.; Boers, R. An Aerosol-Cloud Module for Inclusion in the KNMI Regional Climate Model RACMO2; Scientific Report, WR 2008-05; KNMI: De Bilt, The Netherlands, 2008. [Google Scholar]
- MacDonald, A.B.; Mardi, A.H.; Dadashazar, H.; Aghdam, M.A.; Crosbie, E.; Jonsson, H.H.; Flagan, R.C.; Seinfeld, J.H.; Sorooshian, A. On the relationship between cloud water composition and cloud droplet number concentration. Atmos. Chem. Phys. 2020, 20, 7645–7665. [Google Scholar] [CrossRef] [PubMed]
- Boucher, O.; Lohmann, U. The sulfate-CCN-cloud albedo effect. Tellus B Chem. Phys. Meteorol. 1995, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Leaitch, W.R.; Banic, C.M.; Isaac, G.A.; Couture, M.D.; Liu, P.S.K.; Gultepe, I.; Li, S.-M.; Kleinman, L.; Daum, P.H.; MacPherson, J.I. Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: Factors controlling cloud droplet number concentrations. J. Geophys. Res. Earth Surf. 1996, 101, 29123–29135. [Google Scholar] [CrossRef]
- Martin, G.M.; Johnson, D.W.; Spice, A. The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds. J. Atmos. Sci. 1994, 51, 1823–1842. [Google Scholar] [CrossRef]
- Crumeyrolle, S.; Mensah, A.; Khlystov, A.; Kos, G.; Brink, H.T. On the importance of nitrate for the droplet concentration in stratocumulus in the North-Sea region. Atmos. Environ. 2021, 252, 118278. [Google Scholar] [CrossRef]
- ten Brink, H.; Otjes, R.; Jongejan, P.; Slanina, S. An instrument for semi-continuous monitoring of the size-distribution of nitrate, ammonium, sulphate and chloride in aerosol. Atmos. Environ. 2007, 41, 2768–2779. [Google Scholar] [CrossRef] [Green Version]
- Brink, H.T.; Henzing, B.; Otjes, R.; Weijers, E. Visibility in The Netherlands during New Year’s fireworks: The role of soot and salty aerosol products. Atmos. Environ. 2018, 173, 289–294. [Google Scholar] [CrossRef]
- Rumsey, I.C.; Cowen, K.A.; Walker, J.T.; Kelly, T.J.; Hanft, E.A.; Mishoe, K.; Rogers, C.; Proost, R.; Beachley, G.M.; Lear, G.; et al. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): A semi-continuous method for soluble compounds. Atmos. Chem. Phys. 2014, 14, 5639–5658. [Google Scholar] [CrossRef] [Green Version]
- Weijers, E.P.; Kos, G.P.A.; Blom, M.J.; Otjes, R.P.; Schaap, M.; van der Swaluw, E. Measurements of Secondary Inorganic Aerosols in The Netherlands; ECN-report ECN-E--12-003; National Institute for Public Health and the Environment: Utrecht, The Netherlands, 2012. [Google Scholar]
- Tsyro, S.; Gauss, M.; Hjellbrekke, A.-G.; Aas, W. PM10, PM2.5 and Individual Aerosol Components, Supplementary Material to EMEP Status Report 1/2019; The Norwegian Meteorological Institute: Oslo, Norway, 2019; Available online: www.emep.int (accessed on 1 September 2022).
- Twomey, S. Pollution and the planetary albedo. Atmos. Environ. 1974, 8, 1251–1256. [Google Scholar] [CrossRef]
- Arends, B.; Baard, J.; Brink, H.T. Trends in summer sulphate in Europe. Atmos. Environ. 1997, 31, 4063–4072. [Google Scholar] [CrossRef]
- Schaap, M.; van Loon, M.; Brink, H.M.T.; Dentener, F.J.; Builtjes, P.J.H. Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmos. Chem. Phys. 2004, 4, 857–874. [Google Scholar] [CrossRef] [Green Version]
- Salmon, L.; Atkins, D.; Fisher, E.; Healy, C.; Law, D. Retrospective trend analysis of the content of U.K. air particulate material 1957–1974. Sci. Total Environ. 1978, 9, 161–199. [Google Scholar] [CrossRef]
- Schwartz, S.E.; Slingo, A. Enhanced shortwave cloud radiative forcing due to anthropogenic aerosols. In Clouds, Chemistry and Climate—Proceedings of NATO Advanced Research Workshop; Crutzen, P., Ramanathan, V., Eds.; Springer: Heidelberg, Germany, 1996; pp. 191–236. Available online: http://www.homepages.ed.ac.uk/shs/Climatechange/Data%20sources/Schwarz%20and%20Slingo.pdf (accessed on 1 September 2022).
- Twomey, S. The Influence of Pollution on the Shortwave Albedo of Clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef]
- Shine, K.P.; Derwent, R.G.; Wuebbles, D.J.; Morcrette, J.-J. Radiative Forcing of Climate. In Climate Change: The IPCC Scientific Assessment; Houghton, J.T., Jenkins, G.J., Ephraums, J.J., Eds.; Cambridge University Press: New York, NY, USA, 1990; pp. 41–68. [Google Scholar]
- Khlystov, A.Y.; Kos, G.P.; Even, A.; ten Brink, H. Micro-Physical Properties of Stratocumulus Clouds during the CLARA Campaign, Chapter 3 of the Final Report. 1999. Available online: https://www.researchgate.net/publication/234922811 (accessed on 1 September 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crumeyrolle, S.; Khlystov, A.; Ten Brink, H. On the Trend in Below-Cloud Solar Irradiance in The Netherlands versus That in Aerosol Sulfate Concentration. Atmosphere 2022, 13, 2037. https://doi.org/10.3390/atmos13122037
Crumeyrolle S, Khlystov A, Ten Brink H. On the Trend in Below-Cloud Solar Irradiance in The Netherlands versus That in Aerosol Sulfate Concentration. Atmosphere. 2022; 13(12):2037. https://doi.org/10.3390/atmos13122037
Chicago/Turabian StyleCrumeyrolle, Suzanne, Andrey Khlystov, and Harry Ten Brink. 2022. "On the Trend in Below-Cloud Solar Irradiance in The Netherlands versus That in Aerosol Sulfate Concentration" Atmosphere 13, no. 12: 2037. https://doi.org/10.3390/atmos13122037
APA StyleCrumeyrolle, S., Khlystov, A., & Ten Brink, H. (2022). On the Trend in Below-Cloud Solar Irradiance in The Netherlands versus That in Aerosol Sulfate Concentration. Atmosphere, 13(12), 2037. https://doi.org/10.3390/atmos13122037