Hail: Mechanisms, Monitoring, Forecasting, Damages, Financial Compensation Systems, and Prevention
Abstract
:1. Introduction
2. Mechanisms of Hail Formation
3. Hail Observation
4. Hail Prediction
5. Hail Damage and Risk Map
6. Hail Damage Compensation Systems
7. Hail Disaster Management
8. Summary and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, W.; Ma, S.; Rong, B. A New Design of Rain and Hail Prevention Rocket Launch System. Instrum. Equip. 2019, 7, 1–7. Available online: https://www.hanspub.org/journal/PaperInformation.aspx?paperID=28624 (accessed on 31 December 2021).
- Bal, S.K.; Saha, S.; Fand, B.B.; Singh, N.P.; Rane, J.; Minhas, P.S. Hailstorms: Causes, Damage and Post-hail Management in Agriculture. Technical Bulletin No. 5; National Institute of Abiotic Stress Management: Pune, India, 2014.
- Botzen, W.; Bouwer, L.; van den Bergh, J. Climate change and hailstorm damage: Empirical evidence and implications for agriculture and insurance. Resour. Energy Econ. 2010, 32, 341–362. [Google Scholar] [CrossRef]
- Brooks, H. Severe thunderstorms and climate change. Atmos. Res. 2013, 123, 129–138. [Google Scholar] [CrossRef]
- Lee, S.; Kim, W.J.; Kang, I.K. An implementation of an unmanned automation system for protection of crops from hail damage. J. Korean Inst. Inf. Technol. 2010, 8, 7–14. (In Korean) [Google Scholar]
- Raupach, T.H.; Martius, O.; Allen, J.T.; Kunz, M.; Lasher-Trapp, S.; Mohr, S.; Rasmussen, K.L.; Trapp, R.J.; Zhang, Q. The effects of climate change on hailstorms. Nat. Rev. Earth Environ. 2021, 2, 213–226. [Google Scholar] [CrossRef]
- Taszarek, M.; Allen, J.T.; Púčik, T.; Hoogewind, K.A.; Brooks, H.E. Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes. J. Clim. 2020, 33, 10263–10286. [Google Scholar] [CrossRef]
- Wouters, L.; Boon, M.; van Putten, D.; Veen, B.V.; Koks, E.; de Moel, H. A Hail Climatology of the Netherlands; IVM Institute for Environmental Studies: Amsterdam, The Netherlands, 2019; 35p. [Google Scholar]
- Trapp, R.J.; Hoogewind, K.A.; Lasher-Trapp, S. Future Changes in Hail Occurrence in the United States Determined through Convection-Permitting Dynamical Downscaling. J. Clim. 2019, 32, 5493–5509. [Google Scholar] [CrossRef]
- Anderson, G.D. The first weather satellite picture. Weather 2010, 65, 87. [Google Scholar] [CrossRef]
- Chen, H.; Lim, S.; Chandrasekar, V.; Jang, B.J. Urban hydrological applications of dual-polarization X-band radar: Case study in Korea. J. Hydrol. Eng. 2017, 22, E5016001. [Google Scholar] [CrossRef]
- Knight, C.A.; Knight, N.C. Hailstorms. In Severe Convective Storms; American Meteorological Society: Boston, MA, USA, 2001; pp. 223–254. [Google Scholar]
- Coffer, B.E.; Parker, M.D.; Thompson, R.L.; Smith, B.T.; Jewell, R.E. Using near-ground storm relative helicity in supercell tornado forecasting. Wea. Forecast. 2019, 34, 1417–1435. [Google Scholar] [CrossRef]
- Choi, D. Army Helicopters Damaged after Heavy Winds, Rain and Hail Pelt Base in South Korea. Stars and Stripes. 2021. Available online: https://www.stripes.com/branches/army/2021-10-04/damaged-helicopters-us-army-south-korea-storm-3120234.html (accessed on 31 December 2021).
- Lim, J.H.; Kim, E.; Lee, B.; Kim, S.; Jang, K. An analysis of the hail damages to Korean forests in 2017 by meteorology, species and topography. Korean J. Agric. For. Meteorol. 2017, 19, 280–292, (In Korean with English Abstract). [Google Scholar]
- Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C. Climate Change 2014: Impacts, Adaptation and Vulnerability; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- Punge, H.; Kunz, M. Hail observations and hailstorm characteristics in Europe: A review. Atmos. Res. 2016, 176–177, 159–184. [Google Scholar] [CrossRef]
- Eccel, E.; Cau, P.; Riemann-Campe, K.; Biasioli, F. Quantitative hail monitoring in an alpine area: 35-year climatology and links with atmospheric variables. Int. J. Climatol. 2012, 32, 503–517. [Google Scholar] [CrossRef]
- Prein, A.F.; Holland, G.J. Global estimates of damaging hail hazard. Weather Clim. Extrem. 2018, 22, 10–23. [Google Scholar] [CrossRef]
- Rana, V.S.; Sharma, S.; Rana, N.; Sharma, U.; Patiyal, V.; Banita; Prasad, H. Management of hailstorms under a changing climate in agriculture: A review. Environ. Chem. Lett. 2022, 20, 3971–3991. [Google Scholar] [CrossRef]
- Allen, J.T.; Giammanco, I.M.; Kumjian, M.R.; Punge, H.J.; Zhang, Q.; Groenemeijer, P.; Kunz, M.; Ortega, K. Understanding Hail in the Earth System. Rev. Geophys. 2020, 58, e2019RG000665. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Cloud Dynamics; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation: Reprinted 1980; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- American Meteorological Society. Hail. Glossary of Meteorology. 2017. Available online: http://glossary.ametsoc.org/wiki/hail (accessed on 10 June 2021).
- Knight, C.A.; Ehhalt, D.H.; Roper, N.; Knight, N.C. Radial and tangential variation of deuterium in hailstones. J. Atmos. Sci. 1975, 32, 1990–2000. [Google Scholar] [CrossRef]
- Nelson, S.P. The influence of storm flow structure on hail growth. J. Atmos. Sci. 1983, 40, 1965–1983. [Google Scholar] [CrossRef]
- Ziegler, C.L.; Ray, P.S.; Knight, N.C. Hail growth in an Oklahoma multicell storm. J. Atmos. Sci. 1983, 40, 1768–1791. [Google Scholar] [CrossRef]
- Dennis, E.J.; Kumjian, M.R. The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci. 2017, 74, 641–663. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Zhou, L.; An, Y. Chemical composition of a hailstone: Evidence for tracking hailstone trajectory in deep convection. Sci. Bull. 2020, 65, 1337–1339. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Leung, L.R.; Rosenfeld, D.; Chen, Q.; Li, Z.; Zhang, J.; Yan, H. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA 2013, 110, E4581–E4590. [Google Scholar] [CrossRef] [PubMed]
- Lamb, D.; Verlinde, J. Physics and Chemistry of Clouds; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Friedrich, K.; Wallace, R.; Meier, B.; Rydell, N.; Deierling, W.; Kalina, E.; Motta, B.; Schlatter, P.; Schlatter, T.; Doesken, N. CHAT: The Colorado Hail Accumulation from Thunderstorms Project. Bull. Am. Meteorol. Soc. 2019, 100, 459–471. [Google Scholar] [CrossRef]
- Feldmann, M.; Hering, A.; Gabella, M.; Berne, A. Hailstorms and rainstorms versus supercells—A regional analysis of convective storm types in the Alpine region. NPJ Clim. Atmos. Sci. 2023, 6, 19. [Google Scholar] [CrossRef]
- Brandes, E.A.; Vivekanandan, J.; Tuttle, J.D.; Kessinger, C.J. Hail production in a northeastern Colorado thunderstorm. In Proceedings of the 27th Conference on Radar Meteorology, Vail, CO, USA, 9–13 October 1995; pp. 527–529. [Google Scholar]
- Browning, K.A. The structure and mechanisms of hailstorms. In Review of Hail Science and Hail Suppression; American Meteorological Society: Boston, MA, USA, 1977; Monograph 38; pp. 1–48. [Google Scholar]
- Dessens, J.; Sánchez, J.L.; Berthet, C.; Hermida, L.; Merino, A. Hail prevention by ground-based silver iodide generators: Results of historical and modern field projects. Atmos. Res. 2016, 170, 98–111. [Google Scholar] [CrossRef]
- Hughes, P.; Wood, R. Hail: The white plague. Weatherwise 1993, 46, 16–21. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Lombardo, K. A hail growth trajectory model for exploring the environmental controls on hail size: Model physics and idealized tests. J. Atmos. Sci. 2020, 77, 2765–2791. [Google Scholar] [CrossRef]
- Yin, L.; Ping, F.; Xu, H.; Chen, B. Numerical Simulation and the Underlying Mechanism of a Severe Hail-Producing Convective System in East China. J. Geophys. Res. Atmos. 2021, 126, e2019JD032285. [Google Scholar] [CrossRef]
- Liu, X.; Min, K.; Sang, J.; Ma, S. Classification of Hailstone Trajectories in a Hail Cloud over a Semi-Arid Region in China. Adv. Atmos. Sci. 2023, 40, 1877–1894. [Google Scholar] [CrossRef]
- Changnon, S.A.; Changnon, D.; Hilberg, S.D. Hailstorms across the nation: An atlas about hail and its damages. In Illinois State Water Survey Contract Report CR-2009-12; Illinois State Water Survey: Champaign, IL, USA, 2009. [Google Scholar]
- Wieringa, J.; Holleman, I. If cannons cannot fight hail, what else? Meteorol. Z. 2006, 15, 659–670. [Google Scholar] [CrossRef]
- Vivekanandan, J.; Tuttle, J.D.; Brandes, E.A. Observational and modeling considerations for multiparameter radar detection of hail. In Proceedings of the 26th International Conference on Radar Meteorology, Norman, OK, USA, 1 April 1993; Volume 525, pp. 525–527. [Google Scholar]
- Changnon, S.A. The climatology of hail in North America. In Review of Hail Science and Hail Suppression; American Meteorological Society: Boston, MA, USA, 1978; Monograph 38; pp. 107–128. [Google Scholar]
- Chen, G.T.J. A study on the upper-tropospheric cold vortices: Cases accompanying thunderstorms. In Proceedings of the Conference on Weather, Radar and Flight Safety; Civil Aeronautics Administration: Taipei, Taiwan, 1990; pp. 329–349. [Google Scholar]
- Deng, Z.; Yang, M.; Jiang, L.; Zou, H.; Cheng, Z. Preliminary study of a mesosynoptic case in early spring. Meteorol. Mon. 1989, 10, 43–48. [Google Scholar]
- Smith, S.B. The Mesoscale Effect of Topography on the Genesis of Alberta Hailstorms. Master’s Thesis, McGill University, Montreal, QC, USA, 1986. [Google Scholar]
- Li, X.; Zhang, F.; Zhang, Q.; Kumjian, M.R. Sensitivity of Hail Precipitation to Ensembles of Uncertainties of Representative Initial Environmental Conditions From ECMWF. J. Geophys. Res. Atmos. 2019, 124, 6929–6948. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A description of the Advanced Research WRF version 3. NCAR Tech. Note 2008, 475, 113. [Google Scholar]
- Brown, T.M.; Pogorzelski, W.H.; Giammanco, I.M. Evaluating hail damage using property insurance claims data. Weather Clim. Soc. 2015, 7, 197–210. [Google Scholar] [CrossRef]
- Changnon, S.A. The scales of hail. J. Appl. Meteorol. Climatol. 1977, 16, 626–648. [Google Scholar] [CrossRef]
- Changnon, S.A. Data and approaches for determining hail risk in the contiguous United States. J. Appl. Meteorol. 1999, 38, 1730–1739. [Google Scholar] [CrossRef]
- Sánchez, J.; Fraile, R.; De La Madrid, J.; Fuente, M.D.L.; Rodriguez, P.; Castro, A. Crop damage: The hail size factor. J. Appl. Meteorol. Climatol. 1996, 35, 1535–1541. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA) Website. 2021. Available online: http://www.spc.noaa.gov/climo/ (accessed on 10 June 2021).
- Towery, N.G.; Changnon, S.A., Jr.; Morgan, G.M., Jr. A review of hail-measuring instruments. Bull. Am. Meteorol. Soc. 1976, 57, 1132–1141. [Google Scholar] [CrossRef]
- Löffler-Mang, M.; Schön, D.; Landry, M. Characteristics of a new automatic hail recorder. Atmos. Res. 2011, 100, 439–446. [Google Scholar] [CrossRef]
- Long, B.; Matson, R.J.; Crow, E.L. The hailpad: Materials, data reduction and calibration. J. Appl. Meteorol. Climatol. 1980, 19, 1300–1313. [Google Scholar] [CrossRef]
- Changnon, S.A. Note on recording hail incidences. J. Appl. Meteorol. Climatol. 1966, 5, 899–901. [Google Scholar] [CrossRef]
- Morgan, G.M., Jr.; Towery, N.G. On the role of strong winds in damage to crops by hail and its estimation with a simple instrument. J. Appl. Meteorol. Climatol. 1976, 15, 891–898. [Google Scholar] [CrossRef]
- Palencia, C.; Castro, A.; Giaiotti, D.; Stel, F.; Vinet, F.; Fraile, R. Hailpad-based research: A bibliometric review. Atmos. Res. 2009, 93, 664–670. [Google Scholar] [CrossRef]
- Kim, J.; Jang, K.I. Benefits of the next generation geostationary meteorological satellite observation and policy plans for expanding satellite data application: Lessons from GOES-16. Atmosphere 2018, 28, 201–209. [Google Scholar]
- Yoon, K.H. The present and future state of national disaster prevention system in Korea. J. Korean Soc. Environ. Eng. 2008, 30, 128–135. [Google Scholar]
- Kim, J.H.; Bae, D.H. A Study on Stochastic Radar Rainfall Estimation. In Proceedings of the Korea Water Resources Association Conference, Pyeongchang, Republic of Korea, 15–18 May 2007; pp. 311–315. [Google Scholar]
- Féral, L.; Sauvageot, H.; Soula, S. Hail detection using S-and C-band radar reflectivity difference. J. Atmos. Ocean. Technol. 2003, 20, 233–248. [Google Scholar] [CrossRef]
- Schmidt, M.; Tromel, S.; Ryzhkov, A.V.; Simmer, C. Severe hail detection: Hydrometeor classification for polarimetric C-band radars using fuzzy-logic and T-matrix scattering simulations. In Proceedings of the 2018 19th International Radar Symposium (IRS), Bonn, Germany, 20–22 June 2018. [Google Scholar]
- López, L.; García-Ortega, E.; Sánchez, J.L. A short-term forecast model for hail. Atmos. Res. 2007, 83, 176–184. [Google Scholar] [CrossRef]
- Snook, N.; Jung, Y.; Brotzge, J.; Putnam, B.; Xue, M. Prediction and ensemble forecast verification of hail in the supercell storms of 20 May 2013. Weather Forecast. 2016, 31, 811–825. [Google Scholar] [CrossRef]
- Ii, D.J.G.; McGovern, A.; Haupt, S.E.; Sobash, R.A.; Williams, J.K.; Xue, M. Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Weather Forecast. 2017, 32, 1819–1840. [Google Scholar]
- Kim, I.G. Premodern meteorological prediction reference and phenology structure on the Chosun Wisun-ji text. Korean Stud. Q. 2013, 36, 217–253. [Google Scholar]
- Yu, W.S.; Yoon, S.S.; Choi, M.; Jung, K. Performance comparison of rainfall and flood forecasts using short-term numerical weather prediction data from Korea and Japan. J. Korea Water Resour. Assoc. 2017, 50, 537–549. [Google Scholar]
- Manzato, A. Hail in northeast Italy: Climatology and bivariate analysis with the sounding-derived indices. J. Appl. Meteorol. Climatol. 2012, 51, 449–467. [Google Scholar] [CrossRef]
- Adams-Selin, R.D.; Ziegler, C.L. Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Weather Rev. 2016, 144, 4919–4939. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Xue, H. The role of initial cloud condensation nuclei concentration in hail using the WRF NSSL 2-moment microphysics scheme. Adv. Atmos. Sci. 2017, 34, 1106–1120. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Fan, J.; Zhang, F. Notable Contributions of Aerosols to the Predictability of Hail Precipitation. Geophys. Res. Lett. 2021, 48, e2020GL091712. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Wang, J.; Jeong, J.H.; Chen, X.; Zhang, S.; Lin, Y.; Feng, Z.; Adams-Selin, R. Contrasting responses of hailstorms to anthro-pogenic climate change in different synoptic weather systems. Earth’s Future 2022, 10, e2022EF002768. [Google Scholar] [CrossRef]
- Púčik, T.; Castellano, C.; Groenemeijer, P.; Kühne, T.; Rädler, A.T.; Antonescu, B.; Faust, E. Large hail incidence and its economic and societal impacts across Europe. Mon. Weather Rev. 2019, 147, 3901–3916. [Google Scholar] [CrossRef]
- Fiss, C.J.; McNeil, D.J.; Rodríguez, F.; Rodewald, A.D.; Larkin, J.L. Hail-induced nest failure and adult mortality in a declining ground-nesting forest songbird. Wilson J. Ornithol. 2019, 131, 165–170. [Google Scholar] [CrossRef]
- McMaster, H. Hailstorm risk assessment in rural New South Wales. Nat. Hazards 2001, 24, 187–196. [Google Scholar] [CrossRef]
- Cox, M.; Armstrong, P.R. A statistical model for the incidence of large hailstones on solar collectors. Sol. Energy 1981, 26, 97–111. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Giammanco, I.M.; Wright, R. Terminal velocities and kinetic energies of natural hailstones. Geophys. Res. Lett. 2014, 41, 8666–8672. [Google Scholar] [CrossRef]
- Cremer, K.W. Hail damage in Australian pine plantations I. Nature and extent of damage. Aust. For. 1984, 47, 103–114. [Google Scholar] [CrossRef]
- Battaglia, M.; Lee, C.; Thomason, W.; Fike, J.; Sadeghpour, A. Hail damage impacts on corn productivity: A review. Crop Sci. 2019, 59, 1–14. [Google Scholar] [CrossRef]
- Beal, A.; Hallak, R.; Martins, L.D.; Martins, J.A.; Biz, G.; Rudke, A.P.; Tarley, C.R.T. Climatology of hail in the triple border Paraná, Santa Catarina (Brazil) and Argentina. Atmos. Res. 2020, 234, 104747. [Google Scholar] [CrossRef]
- Beresford, B.C. Effect of simulated hail damage on yield and quality of potatoes. Am. Potato J. 1967, 44, 347–354. [Google Scholar] [CrossRef]
- Ferguson, H.; Jones, A.J.; Tsai, K.J. Damage to barley spikes resulting from impact momentum similar to small sized hail. Agron. J. 1987, 79, 1015–1018. [Google Scholar] [CrossRef]
- Lim, Y.S.; Kim, M.K.; Park, S.H.; Woo, I.D.; Shin, Y.S.; Kim, S.J. Suggestion of standard for rebuilding according to the degree of hail damage of apple tree orchard. Hortic. Abstr. 2019, 37, 118–119. [Google Scholar]
- Allen, J.T.; Tippett, M.K.; Sobel, A.H. An empirical model relating US monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst. 2015, 7, 226–243. [Google Scholar] [CrossRef]
- Hohl, R.; Schiesser, H.-H.; Aller, D. Hailfall: The relationship between radar-derived hail kinetic energy and hail damage to buildings. Atmos. Res. 2002, 63, 177–207. [Google Scholar] [CrossRef]
- Höller, M.E.; Reinhardt, M.E. The Munich hailstorm of July 12, 1984-Convective development and preliminary hailstone analysis. Beiträge Phys. Atmos. 1986, 59, 1–12. [Google Scholar]
- Charlton, R.B.; Kachman, B.M.; Wojtiw, L. Urban hailstorms: A view from Alberta. Nat. Hazards 1995, 12, 29–75. [Google Scholar] [CrossRef]
- Andrews, K.E.; Blong, R.J. March 1990 hailstorm damage in Sydney, Australia. Nat. Hazards 1997, 16, 113–125. [Google Scholar] [CrossRef]
- Laurie, J.A.P. Hail and its effects on buildings. In CSIR Research Report No. 176; Bulletin 21; National Building Research Institute: Pretoria, South Africa, 1960; pp. 1–12. [Google Scholar]
- Morrison, S. Causes and extent of damage related to structure, material, and architectural failure. In Hail, Hail the Disaster’s Here; Employers Reinsurance Corp.: Overland Park, KS, USA, 1997; p. 12. [Google Scholar]
- Rhodes, K. Developing standards to evaluate impact resistance of roofing materials. In Hail, Hail the Disaster’s Here; Employers Reinsurance Corp.: Overland Park, KS, USA, 1997; p. 5. [Google Scholar]
- Marshall, T.; Herzog, R.; Morrison, S.; Smith, S. Hail damage threshold sizes for common roofing materials. In Proceedings of the 21st Conference on Severe Local Storms, San Antonio, TX, USA, 11 August 2002; Transactions of the American Meteorological Society: Washington, DC, USA, 2002; p. 3. [Google Scholar]
- Teule, T.; Appeldoorn, M.; Bosma, P.; Sprenger, L.; Koks, E.; Moel, H.D. The Vulnerability of Solar Panels to Hail; Vrije Universiteit Amsterdam: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Mathiak, G.; Sommer, J.; Reil, F.; Althaus, J.; Kontges, M.; Nusperling, M. Hail Impact on PV Module Reliability; International Energy Agency: Munich, Germany, 2015. [Google Scholar]
- Moore, D.; Wilson, A. Photovoltaic Solar Panel Resistance to Simulated Hail; Report DOE/JPL-1012-78/6; California Institute of Technology: Pasadena, CA, USA, 1978. [Google Scholar]
- Allen, J.T.; Allen, E.R. A review of severe thunderstorms in Australia. Atmos. Res. 2016, 178, 347–366. [Google Scholar] [CrossRef]
- Blamey, R.C.; Middleton, C.; Lennard, C.; Reason, C.J.C. A climatology of potential severe convective environments across South Africa. Clim. Dyn. 2017, 49, 2161–2178. [Google Scholar] [CrossRef]
- Brooks, H.E.; Lee, J.W.; Craven, J.P. The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res. 2003, 67–68, 73–94. [Google Scholar] [CrossRef]
- Gensini, V.A.; Ashley, W.S. Climatology of potentially severe convective environments from the North American Regional Reanalysis. Electron. J. Sev. Storms Meteorol. 2011, 6, 1–15. [Google Scholar]
- Ni, X.; Zhang, Q.; Liu, C.; Li, X.; Zou, T.; Lin, J.; Kong, H.; Ren, Z. Decreased hail size in China since 1980. Sci. Rep. 2017, 7, 10913. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.-J.; Shim, K.M. Hail risk map based on multidisciplinary data fusion. Korean J. Agric. For. Meteorol. 2022, 24, 234–243, (In Korean with English abstract). [Google Scholar]
- Marinică, I. Fenomene Meteorologice Extreme in Oltenia (Extreme Meteorological Phenomena in Oltenia); MJM Press: Craiova, Romanian, 2003; p. 280. [Google Scholar]
- Randalls, S.; Kneale, J. A Fragile Network: Effecting Hail Insurance in Britain, 1840–1900. Enterp. Soc. 2021, 22, 739–769. [Google Scholar] [CrossRef]
- Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. A methodological proposal to support estimation of damages from hailstorms based on Copernicus Sentinel 2 data times series. In Lernational Conference on Computational Science and Its Applications. ICCSA 2020. In Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12252, pp. 737–751. [Google Scholar]
- Shin, D.H. Review of the compulsory storm and flood insurance and policy implications. J. Insur. Financ. 2008, 54, 77–107. [Google Scholar]
- Diaz-Caneja, M.B.; Conze, C.G.; Dittmann, C.; Pinilla, F.J.G.; Stroblmair, J. Agricultural Insurance Schemes; Office for Official Publications of the European Union: Luxembourg, Luxembourg, 2008. [Google Scholar]
- Enjolras, G.; Sentis, P. Crop insurance policies and purchases in France. Agric. Econ. 2011, 42, 475–486. [Google Scholar] [CrossRef]
- Garrido, A.; Zilberman, D. Revisiting the demand of agricultural insurance: The case of Spain (No. 686-2016-47109). Agric. Financ. Rev. 2008, 68, 43–66. [Google Scholar] [CrossRef]
- Finger, R.; Lehmann, N. The influence of direct payments on farmers’ hail insurance decisions. Agric. Econ. 2012, 43, 343–354. [Google Scholar] [CrossRef]
- Khudiyev, N.N.; Dadashov, A.A. Current status and socio-economic aspects of the agricultural insurance system in Azerbaijan. In Economic and Social Development: Book of Proceedings; Varazdin Development and Entrepreneurship Agency and University North: Rabat, Morocco, 2022; pp. 271–276. [Google Scholar]
- Inshakova, O.; Uskova, M.S.; Dolinskaya, V.V.; Frolova, E.E. Dynamics of the legislative development of public-private partnership in the sphere of agricultural insurance in Russia and the US. Rev. Espac. 2018, 39, 2–9. [Google Scholar]
- Naghshpour, S. Are exports an engine of growth? Int. J. Trade Glob. Mark. 2012, 5, 153–166. [Google Scholar] [CrossRef]
- Changnon, S.A.; Ivens, J.L. History repeated: The forgotten hail cannons of Europe. Bull. Am. Meteorol. Soc. 1981, 62, 368–375. [Google Scholar] [CrossRef]
- Solomakhin, A.; Blanke, M. Improving light conditions by use of reflective mulch cloth (ExtendayTM) in an apple orchard under hail nets. IX In-ternational Symposium on Integrating Canopy, Rootstock and Environmental Physiology in Orchard Systems. Acta Hortic. 2008, 903, 1101–1105. [Google Scholar]
- Mariani, L.; Ferrante, A. Agronomic management for enhancing plant tolerance to abiotic stresses—Drought, salinity, hypoxia, and lodging. Horticulturae 2017, 3, 52. [Google Scholar] [CrossRef]
- Mészáros, M.; Bělíková, H.; Čonka, P.; Náměstek, J. Effect of hail nets and fertilization management on the nutritional status, growth and production of apple trees. Sci. Hortic. 2019, 255, 134–144. [Google Scholar] [CrossRef]
- Mupambi, G.; Anthony, B.M.; Layne, D.R.; Musacchi, S.; Serra, S.; Schmidt, T.; Kalcsits, L.A. The influence of protective netting on tree physiology and fruit quality of apple: A review. Sci. Hortic. 2018, 236, 60–72. [Google Scholar] [CrossRef]
- Singh, N.P.; Bal, S.K.; More, N.S.; Singh, Y.; Gudge, A. Adaptation and intervention in crops for managing atmospheric stresses. In Climate Change and Agriculture in India; Impact and Adaptation; Springer: Cham, Switzerland, 2019; pp. 111–127. [Google Scholar]
- Castellano, S.; Mugnozza, G.S.; Russo, G.; Briassoulis, D.; Mistriotis, A.; Hemming, S.; Waaijenberg, D. Plastic nets in agriculture: A general review of types and applications. Appl. Eng. Agric. 2008, 24, 799–808. [Google Scholar] [CrossRef]
- Bosco, L.C.; Bergamaschi, H.; Cardoso, L.S.; de Paula, V.A.; Marodin, G.A.B.; Brauner, P.C. Microclimate alterations caused by agricultural hail net coverage and effects on apple tree yield in subtropical climate of Southern Brazil. Bragantia 2017, 77, 181–192. [Google Scholar] [CrossRef]
- Salem, B.B. Arid zone forestry: A guide for field technicians. In FAO Conservation Guide (20); FAO: Rome, Italy, 1989. [Google Scholar]
- Pelley, J. Does cloud seeding really work. Chem. Eng. News 2016, 92, 18–21. [Google Scholar]
- Morgan, G.M. The return of the anti-hail cannons. Weatherwise 2008, 61, 14–19. [Google Scholar] [CrossRef]
- Ćurić, M.; Janc, D.; Vučković, V. Cloud seeding impact on precipitation as revealed by cloud-resolving mesoscale model. Meteorol. Atmos. Phys. 2007, 95, 179–193. [Google Scholar] [CrossRef]
- Hill, S.; Ming, Y. Nonlinear climate response to regional brightening of tropical marine stratocumulus. Geophys. Res. Lett. 2012, 39, L15707. [Google Scholar] [CrossRef]
- Birsan, M.; Muscalu, A.; Voicea, I.; Pruteanu, A. General aspects of the extreme meteorological phenomenon: Hail. Ann. Fac. Eng. Hunedoara Int. J. Eng. 2019, 17, 81–88. [Google Scholar]
- Mihailescu, C.; Radulescu, M. The study of the influence of propellant performances changes on the ballistic characteristics of anti-hail rocket. Rev. Air Force Acad. 2015, 3, 55–58. [Google Scholar] [CrossRef]
- Morgan, G.M., Jr. A general description of the hail problem in the Po Valley of northern Italy. J. Appl. Meteorol. Climatol. 1973, 12, 338–353. [Google Scholar] [CrossRef]
- Neyman, J.; Sansom, H. Rockets and hail. Weather 1966, 21, 336–337. [Google Scholar]
- Davis, S.A.C., Jr.; Farhar, R.J.; Haas, B.C.; Ivens, J.E.; Jones, J.L.; Mann, M.V.; Morgan, D.; Sonka, G.M., Jr.; Swanson, S.T.; Taylor, E.R.; et al. Hail Suppression Impacts and Issues. Final Report, Ill; Illinois State Water Survey: Champaign, IL, USA, 1977; 441p. [Google Scholar]
- Yuter, S.E.; Houze, R.A., Jr. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Mon. Weather Rev. 1995, 123, 1964–1983. [Google Scholar] [CrossRef]
- Houston, W. Severe hail damage to mangroves at Port Curtis, Australia. Mangroves Salt Marshes 1999, 3, 29–40. [Google Scholar] [CrossRef]
Intensity | Size Category | Diameter (mm) | Shape | Impact |
---|---|---|---|---|
Hard hail | H0 | <8.4 | Pea | No damage |
Potentially damaging | H1 | 8.4–15.2 | Marble | Slight damage to plants, crops |
H2 | 15.2–20.3 | Coin or grape | Substantial destruction to fruit, vegetation | |
Severe | H3 | 20.3–30.5 | Nickel to quarter | Severe harm to fruit and yields, harm to glass and plastic structure |
H4 | 30.5–40.6 | Golf ball | Extensive glass damage, vehicle-frame destruction | |
Destructive | H5 | 40.6–50.8 | Tennis ball | Extensive demolition of glass; destruction of tiled roofs; substantial risk of injury |
H6 | 50.8–61.0 | Baseball | Aircraft body spoilt; walls rutted | |
Very destructive | H7 | 61.0–76.2 | Grapefruit | Severe roof destruction, risk of severe injury |
H8 | 76.2–88.9 | Softball | Severe destruction to aircraft bodywork | |
Super hailstorms | H9 | 88.9–101.6 | Softball | Extensive structural destruction, risk of severe or even fatal injury to persons caught in the open |
H10 | >101.6 | Softball and up | Extensive structural damage, risk of severe or even fatal injury to persons caught in the open |
Agricultural Sector | Type of Damage | References |
---|---|---|
Field crops | Stem lodging and breakage Stem bruising Fiber-quality deterioration Grain shattering Pod shedding Defoliation Secondary infection | [2,81,82,83,84,85] |
Horticultural crops | Scars in bunches Dropping of immature fruits, berries, flower buds, or flowers Fruit cracking, lesions, and scars Stem bruising Petiole breakage and defoliation Leaf shattering | [78,86] |
Vegetable crops | Lesion on fruits and leaves Fruit rotting Burning of terminal ends of leaves Stem bruising Twig breakage Leaf drying Secondary fungal infections | [2] |
Fishes | Migration Damage to fishing structures Poorly understood impacts due to microalgae and pathogens | [2] |
Animals | Mortality Injury Fungal infections Nest failure | [2,77] |
Date | Country | Location | Number of Casualties |
---|---|---|---|
12 July 1984 | Germany | Munich | 400 |
5 May 1995 | USA | Fort Worth | 109 |
28 July 2013 | Germany | Reutlingen | 74 |
20 June 1997 | Romania | Apele Vii | 60 |
8 July 2014 | Bulgaria | Sofia | 40 |
23 July 1988 | France | Torcy | 33 |
21 September 2007 | Serbia | Indija | 30 |
4 August 2002 | Spain | Marbella | 30 |
Crop Name | Weather Risks Covered by Insurance | Rationale for These Options |
---|---|---|
Wheat | Hail, Fire, Storm, Hurricane, Landslide, Earthquake | Improves food security |
Barley | ||
Corn | ||
Potato | ||
Sugar beet | ||
Orange | Hail, Fire, Storm, Hurricane, Landslide, Earthquake, Loss of quality due to hail | Affected by import substitution policy |
Lemon | ||
Tangerine | ||
Tea | Hail, Fire, Storm, Hurricane, Landslide, Earthquake | |
Tobacco | ||
Rice | ||
Grapes | Hail, Fire, Storm, Hurricane, Landslide, Earthquake, Loss of quality due to hail | Strengthens export potential |
Hazel | Hail, Fire, Storm, Hurricane, Landslide, Earthquake | |
Cotton |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.H.; Lee, J.; Lee, S.-J. Hail: Mechanisms, Monitoring, Forecasting, Damages, Financial Compensation Systems, and Prevention. Atmosphere 2023, 14, 1642. https://doi.org/10.3390/atmos14111642
Kim MH, Lee J, Lee S-J. Hail: Mechanisms, Monitoring, Forecasting, Damages, Financial Compensation Systems, and Prevention. Atmosphere. 2023; 14(11):1642. https://doi.org/10.3390/atmos14111642
Chicago/Turabian StyleKim, Min Hee, Jaeyong Lee, and Seung-Jae Lee. 2023. "Hail: Mechanisms, Monitoring, Forecasting, Damages, Financial Compensation Systems, and Prevention" Atmosphere 14, no. 11: 1642. https://doi.org/10.3390/atmos14111642
APA StyleKim, M. H., Lee, J., & Lee, S. -J. (2023). Hail: Mechanisms, Monitoring, Forecasting, Damages, Financial Compensation Systems, and Prevention. Atmosphere, 14(11), 1642. https://doi.org/10.3390/atmos14111642