Lightning Stroke Strength and Its Correlation with Cloud Macro- and Microphysics over the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. WWLLN
- (1)
- The value of energy is larger than 0;
- (2)
- The number of participating WWLLN stations in the location fit is at least seven;
- (3)
- The energy uncertainty is less than 50% of the energy.
2.2. The Chinese CGLLS
2.3. Reanalysis Data
3. Results
3.1. The Distribution of Stroke Number and Strength over the Study Regions
3.2. Strong Lightning Strokes over the Study Regions
3.3. The Factors That Impact on Lightning Stroke Strength
4. Conclusions
5. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magono, C. Thunderstorms; Elsevier: Amsterdam, The Netherlands, 1980. [Google Scholar]
- Qie, X.; Zhang, Q.; Yuan, T.; Zhang, T. Lightning Physics, 1st ed.; Science Press: Beijing, China, 2013; p. 162. (In Chinese) [Google Scholar]
- Ripoll, J.F.; Farges, T.; Malaspina, D.M.; Cunningham, G.S.; Lay, E.H.; Hospodarsky, G.B.; Kletzing, C.A.; Wygant, J.R.; Pédeboy, S. Electromagnetic power of lightning superbolts from Earth to space. Nat. Commun. 2021, 12, 3553. [Google Scholar] [CrossRef]
- Kochtubajda, B.; Burrows, W.R.; Power, B.E. Large current lightning flashes in Canada. In Proceedings of the Second Conference on Meteorological Applications of Lightning Data, Atlanta, GA, USA, 31 January–2 February 2006. P2.11. [Google Scholar]
- Pinto, O., Jr.; Pinto, I.R.C.A.; De Campos, D.R.; Naccarato, K.P. Climatology of large peak current cloud-to-ground lightning flashes in southeastern Brazil. J. Geophys. Res. 2009, 114, D16105. [Google Scholar] [CrossRef]
- Blaes, P.R.; Marshall, R.A.; Inan, U.S. Global occurrence rate of elves and ionospheric heating due to cloud-to-ground lightning. J. Geophys. Res. 2016, 121, 699–712. [Google Scholar] [CrossRef]
- Chen, A.B.; Kuo, C.L.; Lee, Y.J.; Su, H.T.; Hsu, R.R.; Chern, J.L.; Frey, H.U.; Mende, S.B.; Takahashi, Y.; Fukunishi, H.; et al. Global distributions and occurrence rates of transient luminous events. J. Geophys. Res. 2008, 113, A08306. [Google Scholar] [CrossRef]
- Chen, A.B.C.; Su, H.T.; Hsu, R.R. Energetics and geographic distribution of elve-producing discharges. J. Geophys. Res. 2014, 119, 1381–1391. [Google Scholar] [CrossRef]
- Wada, Y.; Enoto, T.; Nakamura, Y.; Morimoto, T.; Sato, M.; Ushio, T.; Nakazawa, K.; Yuasa, T.; Yonetoku, D.; Sawano, T.; et al. High peak—Current lightning discharges associated with downward terrestrial gamma-ray flashes. J. Geophys. Res. 2020, 125, e2019JD031730. [Google Scholar] [CrossRef]
- Bjørge-Engeland, I.; Østgaard, N.; Marisaldi, M.; Luque, A.; Mezentsev, A.; Lehtinen, N.; Chanrion, O.; Neubert, T.; Reglero, V. Detections of high peak current lightning and observations of Elves. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. EGU23-9415. [Google Scholar]
- Yang, J.; Qie, X.S.; Zhang, G.S.; Zhao, Y.; Zhang, T. Red sprites over thunderstorms in the coast of Shandong province, China. Chin. Sci. Bull. 2008, 53, 1079–1086. [Google Scholar]
- Yang, J.; Qie, X.S.; Zhong, L.; He, Q.; Lu, G.; Wang, Z.; Wang, Y.; Liu, N.; Liu, F.; Peng, K.M.; et al. Analysis of a gigantic jet in southern China: Morphology, meteorology, storm evolution, lightning, and narrow bipolar events. J. Geophys. Res. 2020, 125, e2019JD031538. [Google Scholar] [CrossRef]
- Christian, H.J.; Blakeslee, R.J.; Boccippio, D.J.; Boeck, W.L.; Buechler, D.E.; Driscoll, K.T.; Goodman, S.J.; Hall, J.M.; Koshak, W.J.; Mach, D.M.; et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. 2003, 108, 4005. [Google Scholar] [CrossRef]
- Hutchins, M.L.; Holzworth, R.H.; Virts, K.S.; Wallace, J.M.; Heckman, S. Radiated VLF energy differences of land and oceanic lightning. Geophys. Res. Lett. 2013, 40, 2390–2394. [Google Scholar] [CrossRef]
- Evtushenko, A.; Ilin, N.; Svechnikova, E. Parameterization and global distribution of sprites based on the WWLLN data. Atmos. Res. 2022, 276, 106272. [Google Scholar] [CrossRef]
- Holzworth, R.H.; McCarthy, M.P.; Brundell, J.B.; Jacobson, A.R.; Rodger, C.J. Global distribution of superbolts. J. Geophys. Res. 2019, 124, 9996–10005. [Google Scholar] [CrossRef]
- Iwasaki, H. Preliminary study on features of lightning discharge around Japan using WorldWide Lightning Location Network data. SOLA 2014, 10, 98–102. [Google Scholar] [CrossRef]
- Orville, R.E. Peak-current variations of lightning return strokes as a function of latitude. Nature 1990, 343, 149–151. [Google Scholar] [CrossRef]
- Lyons, W.A.; Uliasz, M.; Nelson, T.E. Large peak current cloud-to-ground lightning flashes during the summer months in the contiguous United States. Mon. Weather Rev. 1998, 126, 2217–2233. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, Y.; Meng, Q.; Chen, L.; Dan, J. Climatological comparison of small-and large-current cloud-to-ground lightning flashes over southern China. J. Clim. 2016, 29, 2831–2848. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.J.; Chen, L.W.; Zhang, Y.; Yao, W.; Zheng, D. Climatology of large peak current cloud-to-ground lightning flashes in China’s most populous areas. Earth Space Sci. 2023, 10, e2023EA003202. [Google Scholar] [CrossRef]
- Xu, M.Y.; Qie, X.S.; Pang, W.J.; Shi, G.Y.; Liang, L.; Sun, Z.L.; Yuan, S.F.; Zhu, K.X.; Zhao, P.G. Lightning climatology across the Chinese continent from 2010 to 2020. Atmos. Res. 2022, 275, 106251. [Google Scholar] [CrossRef]
- Qie, X.S.; Toumi, R.; Yuan, T. Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor. J. Geophys. Res. 2003, 108, 4551. [Google Scholar] [CrossRef]
- Qie, X.S.; Yuan, T.; Xie, Y.R.; Ma., Y.M. Spatial and temporal distribution of lightning activities over the Tibetan plateau. Chin. J. Geophys. 2004, 47, 997–1002. (In Chinese) [Google Scholar]
- Qie, X.S.; Kong, X.Z. Progression features of a stepped leader process with four grounded leader branches. Geophys. Res. Lett. 2007, 34, L06809. [Google Scholar] [CrossRef]
- Qi, P.C.; Zheng, D.; Zhang, Y.J.; Gao, L.N. Climatological characteristics and spatiotemporal correspondence of lightning and precipitation over the Tibetan Plateau. J. Appl. Meteorol. Sci. 2016, 27, 488–497. [Google Scholar]
- Zheng, D.; Zhang, Y.J. New Insights into the Correlation Between Lightning Flash Rate and Size in Thunderstorms. Geophys. Res. Lett. 2021, 48, e2021GL096085. [Google Scholar] [CrossRef]
- Qie, X.S.; Toumi, R. Lightning activities on Qinghai-Xizang Plateau as observed by satellite-based lightning imaging sensor. Plateau Meteorol. 2003, 22, 288–294. (In Chinese) [Google Scholar]
- Qie, X.S.; Toumi, R.; Zhou, Y.J. Lightning activity on the central Tibetan Plateau and its response to convective available potential energy. Chin. Sci. Bull. 2003, 48, 296–299. [Google Scholar] [CrossRef]
- Qie, X.S.; Zhang, T.L.; Chen, C.P.; Zhang, G.S.; Zhang, T.; Wei, W.Z. The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau. Geophys. Res. Lett. 2005, 32, L05814. [Google Scholar] [CrossRef]
- Guo, F.X.; Zhang, Y.J.; Qie, X.S.; Yan, M.H. Numerical simulation of different charge structures in thunderstorm. Plateau Meteorol. 2003, 22, 268–274, (In Chinese with English Abstract). [Google Scholar]
- Xu, C.; Qie, X.S.; Sun, Z.L.; Yang, J.; Zhang, H.B.; Chen, A.B. Transient luminous events and their relationship to lightning strokes over the Tibetan Plateau and its comparison regions. J. Geophys. Res. 2023, 128, e2022JD037292. [Google Scholar] [CrossRef]
- Chronis, T.; Cummins, K.; Said, R.; Koshak, W.; McCaul, E.; Williams, E.R.; Stano, G.T.; Grant, M. Climatological diurnal variation of negative CG lightning peak current over the continental United States. J. Geophys. Res. 2015, 120, 582–589. [Google Scholar] [CrossRef]
- Chronis, T.; Koshak, W.J. Diurnal variation of TRMM/LIS lightning flash radiances. Bull. Am. Meteorol. Soc. 2017, 98, 1453–1470. [Google Scholar] [CrossRef]
- Bovalo, C.; Barthe, C.; Pinty, J.P. Examining relationships between cloud—resolving model parameters and total flash rates to generate lightning density maps. Q. J. R. Meteorol. Soc. 2019, 145, 1250–1266. [Google Scholar] [CrossRef]
- Qian, X.; Wang, H. Evaluation of Different Storm Parameters as the Proxies for Gridded Total Lightning Flash Rates: A Convection-Allowing Model Study. Atmosphere 2021, 12, 95. [Google Scholar] [CrossRef]
- Chronis, T.; Carey, L.D.; Schultz, C.J.; Schultz, E.V.; Calhoun, K.M.; Goodman, S.J. Exploring lightning jump characteristics. Weather Forecast. 2015, 30, 23–37. [Google Scholar] [CrossRef]
- Schultz, C.J.; Carey, L.D.; Schultz, E.V.; Blakeslee, R.J. Insight into the kinematic and microphysical processes that control lightning jumps. Weather Forecast. 2015, 30, 1591–1621. [Google Scholar] [CrossRef]
- Schultz, C.J.; Carey, L.D.; Schultz, E.V.; Blakeslee, R.J. Kinematic and microphysical significance of lightning jumps versus nonjump increases in total flash rate. Weather Forecast. 2017, 32, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Luo, H.; Wu, Y.H.; Zhang, Y.J.; Dong, W.J. Cloud ice fraction governs lightning rate at a global scale. Commun. Earth Environ. 2021, 2, 157. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, J.; Logan, T.; Li, Z.; Homeyer, C.R. Wildfire impact on environmental thermodynamics and severe convective storms. Geophys. Res. Lett. 2019, 46, 10082–10093. [Google Scholar] [CrossRef]
- Williams, E.R.; Mushtak, V.; Rosenfeld, D.; Goodman, S.; Boccippio, D. Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res. 2005, 76, 288–306. [Google Scholar] [CrossRef]
- Stolz, D.C.; Rutledge, S.A.; Pierce, J.R. Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. J. Geophys. Res. 2015, 120, 6207–6231. [Google Scholar] [CrossRef]
- Stolz, D.C.; Rutledge, S.A.; Pierce, J.R.; van den Heever, S.C. A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology. J. Geophys. Res. 2017, 122, 7461–7492. [Google Scholar] [CrossRef]
- Kamra, A.K. Contributions of cloud and precipitation particles to the electrical conductivity and the relaxation time of the air in thunderstorms. J. Geophys. Res. 1979, 84, 5034–5038. [Google Scholar] [CrossRef]
- Asfur, M.; Price, C.; Silverman, J.; Wishkerman, A. Why is lightning more intense over the oceans? J. Atmos. Sol. Terr. Phys. 2020, 202, 105259. [Google Scholar] [CrossRef]
- Yair, Y.; Price, C.; Namia-Cohen, Y.; Lynn, B.; Shpund, J.; Yaffe, M. Why are lightning super-bolts more frequent in East Mediterranean winter thunderstorms? In Proceedings of the EGU General Assembly 2021, online, 19–30 April 2021. EGU21-1474. [Google Scholar]
- Pizzuti, A.; Bennett, A.; Soula, S.; Amor, S.N.; Mlynarczyk, J.; Füllekrug, M.; Pédeboy, S. On the relationship between lightning superbolts and TLEs in Northern Europe. Atmos. Res. 2022, 270, 106047. [Google Scholar] [CrossRef]
- Efraim, A.; Rosenfeld, D.; Holzworth, R.; Thornton, J.A. A possible cause for preference of super bolt lightning over the Mediterranean Sea and the Altiplano. J. Geophys. Res. 2023, 128, e2022JD038254. [Google Scholar] [CrossRef]
- Dowden, R.L.; Holzworth, R.H.; Rodger, C.J.; Lichtenberger, J.; Thomson, N.R.; Jacobson, A.R.; Lay, E.; Brundell, J.B.; Lyons, T.J.; O’Keefe, S.; et al. World-wide lightning location using VLF propagation in the Earth-ionosphere waveguide. IEEE Antennas Propag. Mag. 2008, 50, 40–60. [Google Scholar] [CrossRef]
- Pierce, E.T. Atmospherics and radio noise. In Lightning; A78-16269 04-47; Academic Press: London, UK; New York, NY, USA, 1977; Volume 1, pp. 351–384. [Google Scholar]
- Hutchins, M.L.; Holzworth, R.H.; Brundell, J.B.; Rodger, C.J. Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci. 2012, 47, 1–9. [Google Scholar] [CrossRef]
- Hutchins, M.L.; Holzworth, R.H.; Rodger, C.J.; Brundell, J.B. Far-field power of lightning strokes as measured by the World Wide Lightning Location Network. J. Atmos. Ocean. Technol. 2012, 29, 1102–1110. [Google Scholar] [CrossRef]
- Jacobson, A.R.; Holzworth, R.; Harlin, J.; Dowden, R.; Lay, E. Performance Assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as Ground Truth. J. Atmos. Ocean. Technol. 2006, 23, 1082–1092. [Google Scholar] [CrossRef]
- Rodger, C.J.; Werner, S.; Brundell, J.B.; Lay, E.H.; Thomson, N.R.; Holzworth, R.H.; Dowden, R.L. Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys. 2006, 24, 3197–3214. [Google Scholar] [CrossRef]
- Srivastava, A.; Tian, Y.; Qie, X.S.; Wang, D.F.; Sun, Z.L.; Yuan, S.F.; Wang, Y.; Chen, Z.X.; Xu, W.J.; Zhang, H.B.; et al. Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing. Atmos. Res. 2017, 197, 76–83. [Google Scholar] [CrossRef]
- Fan, P.L.; Zheng, D.; Zhang, Y.J.; Gu, S.Q.; Zhang, W.J.; Yao, W.; Yan, B.W.; Xu, Y.B. A performance evaluation of the World Wide Lightning Location Network (WWLLN) over the Tibetan Plateau. J. Atmos. Ocean. Technol. 2018, 35, 927–939. [Google Scholar] [CrossRef]
- Ma, R.Y.; Zheng, D.; Zhang, Y.J.; Yao, W.; Zhang, W.J.; Cuomu, D.Q. Spatiotemporal Lightning Activity Detected by WWLLN over the Tibetan Plateau and Its Comparison with LIS Lightning. J. Atmos. Ocean. Technol. 2021, 38, 511–523. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, S.Q.; Meng, G.; Fang, Y.H.; Xu, Y.G.; An, C. Effect of Lightning Return Stroke Speed on Accuracy of Inversed Return Stroke Peak Current Using Lightning Location System. High Volt. Eng. 2021, 47, 1617–1624. (In Chinese) [Google Scholar]
- Chen, L.W.P.; Zhang, Y.J.; Lu, W.T.; Zheng, D.; Zhang, Y.; Chen, S.D.; Huang, Z.H. Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes. J. Atmos. Ocean. Technol. 2012, 29, 1835–1844. [Google Scholar] [CrossRef]
- Cummins, K.L.; Murphy, M.J.; Bardo, E.A.; Hiscox, W.L.; Pyle, R.B.; Pifer, A.E. A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res. 1998, 103, 9035–9044. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, R.I.; Morales, C.A.; Silva Dias, M.A. Electrification of precipitating systems over the Amazon: Physical processes of thunderstorm development. J. Geophys. Res. 2011, 116, D08209. [Google Scholar] [CrossRef]
- Bang, S.D.; Zipser, E.J. Seeking reasons for the differences in size spectra of electrified storms over land and ocean. J. Geophys. Res. 2016, 121, 9048–9068. [Google Scholar] [CrossRef]
- Fuchs, B.R.; Rutledge, S.A.; Bruning, E.C.; Pierce, J.R.; Kodros, J.K.; Lang, T.J.; MacGorman, D.R.; Krehbiel, P.R.; Rison, W. Environmental controls on storm intensity and charge structure in multiple regions of the continental United States. J. Geophys. Res. 2015, 120, 6575–6596. [Google Scholar] [CrossRef]
- Liu, N.N.; Liu, C.T.; Tissot, P.E. A Bayesian-like approach to describe the regional variation of high-flash rate thunderstorms from thermodynamic and kinematic environment variables. J. Geophys. Res. 2019, 124, 12507–12522. [Google Scholar] [CrossRef]
- Bourscheidt, V.; Junior, O.P.; Naccarato, K.P.; Pinto, I.R.C.D.A. The influence of topography on the cloud-to-ground lightning density in South Brazil. Atmos. Res. 2009, 91, 508–513. [Google Scholar] [CrossRef]
- Slyunyaev, N.N.; Mareev, E.A.; Rakov, V.A.; Golitsyn, G.S. Statistical distributions of lightning peak currents: Why do they appear to be lognormal? J. Geophys. Res. 2018, 123, 5070–5089. [Google Scholar] [CrossRef]
- Li, D.S.; Azadifar, M.; Rachidi, F.; Rubinstein, M.; Paolone, M.; Pavanello, D.; Metz, S.; Zhang, Q.L.; Wang, Z.H. On lightning electromagnetic field propagation along an irregular terrain. IEEE Trans. Electromagn. Compat. 2015, 58, 161–171. [Google Scholar] [CrossRef]
- Azadifar, M.; Rachidi, F.; Rubinstein, M.; Paolone, M.; Diendorfer, G.; Pichler, H.; Schulz, W.; Pavanello, D.; Romero, C. Evaluation of the performance characteristics of the European Lightning Detection Network EUCLID in the Alps region for upward negative flashes using direct measurements at the instrumented Säntis Tower. J. Geophys. Res. 2016, 121, 595–606. [Google Scholar] [CrossRef]
- Kuo, C.L.; Chen, A.B.; Lee, Y.J.; Tsai, L.Y.; Chou, R.K.; Hsu, R.R.; Su, H.T.; Lee, L.C.; Cummer, S.A.; Frey, H.U.; et al. Modeling elves observed by FORMOSAT-2 satellite. J. Geophys. Res. 2007, 112, A11312. [Google Scholar] [CrossRef]
- Chang, S.C.; Kuo, C.L.; Lee, L.J.; Chen, A.B.; Su, H.T.; Hsu, R.R.; Frey, H.U.; Mende, S.B.; Takahashi, Y.; Lee, L.C. ISUAL far—ultraviolet events, elves, and lightning current. J. Geophys. Res. 2010, 115, A00E46. [Google Scholar] [CrossRef]
- Marshall, R.A.; Da Silva, C.L.; Pasko, V.P. Elve doublets and compact intracloud discharges. Geophys. Res. Lett. 2015, 42, 6112–6119. [Google Scholar] [CrossRef]
- Zheng, D.; Fan, P.L.; Zhang, Y.J.; Yao, W.; Fang, X.G.; Ran, R. Deep convective clouds observed by ground-based radar over Naqu, Qinghai-Tibet Plateau. Atmos. Res. 2023, 293, 106930. [Google Scholar] [CrossRef]
- Qie, X.S.; Wu, X.K.; Yuan, T.; Bian, J.C.; Lu, D.R. Comprehensive pattern of deep convective systems over the Tibetan Plateau-south Asian monsoon region based on TRMM data. J. Clim. 2014, 27, 6612–6626. [Google Scholar] [CrossRef]
- Yang, X.L.; Sun, J.H.; Li, W.L. An Analysis of Cloud-to-Ground Lightning in China during 2010–13. Wea. Forecast. 2015, 30, 1537–1550. [Google Scholar] [CrossRef]
- Wang, C.H.; Shi, H.X.; Hu, H.L.; Wang, Y.; Xi, B.K. Properties of cloud and precipitation over the Tibetan Plateau. Adv. Atmos. Sci. 2015, 32, 1504–1516. [Google Scholar] [CrossRef]
- Wang, J.; Jian, B.D.; Wang, G.Y.; Zhao, Y.X.; Li, Y.R.; Letu, H.S.; Zhang, M.; Li, J.M. Climatology of cloud phase, cloud radiative effects and precipitation properties over the Tibetan Plateau. Remote Sens. 2021, 13, 363. [Google Scholar] [CrossRef]
- Clark, S.K.; Ward, D.S.; Mahowald, N.M. Parameterization—based uncertainty in future lightning flash density. Geophys. Res. Lett. 2017, 44, 2893–2901. [Google Scholar] [CrossRef]
- Price, C.; Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. 1992, 97, 9919–9933. [Google Scholar] [CrossRef]
- Yoshida, S.; Morimoto, T.; Ushio, T.; Kawasaki, Z. A fifth-power relationship for lightning activity from Tropical Rainfall Measuring Mission satellite observations. J. Geophys. Res. 2009, 114, D09104. [Google Scholar] [CrossRef]
- Qie, X.S.; Qie, K.; Wei, L.; Zhu, K.X.; Sun, Z.L.; Yuan, S.F.; Jiang, R.B.; Zhang, H.B.; Xu, C. Significantly increased lightning activity over the Tibetan Plateau and its relation to thunderstorm genesis. Geophys. Res. Lett. 2022, 49, e2022GL099894. [Google Scholar] [CrossRef]
- Ma, M.M.; Huang, X.G.; Fei, J.F.; Zhang, C.; Li, C.; Cheng, X.P. Analysis of the winter cloud-to-ground lightning activity and its synoptic background in China during 2010–20. Adv. Atmos. Sci. 2022, 39, 985–998. [Google Scholar] [CrossRef]
- Orville, R.E.; Huffines, G.R. Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Weather Rev. 2001, 129, 1179–1193. [Google Scholar] [CrossRef]
- Xie, Y.R.; Xu, K.; Zhang, T.F.; Liu, X.T. Five-year study of cloud-to-ground lightning activity in Yunnan province, China. Atmos. Res. 2013, 129, 49–57. [Google Scholar] [CrossRef]
- Qie, X.S.; Wang, Z.C.; Wang, D.F.; Liu, M.Y. Characteristics of positive cloud-to-ground lightning in Da Hinggan Ling forest region at relatively high latitude, northeastern China. J. Geophys. Res. 2013, 118, 13393–13404. [Google Scholar] [CrossRef]
- Wu, J.Y.; Guo, J.P.; Yun, Y.X.; Yang, R.F.; Guo, X.R.; Meng, D.L.; Sun, Y.P.; Zhang, Z.; Xu, H.; Chen, T. Can ERA5 reanalysis data characterize the pre-storm environment? Atmos. Res. 2024, 297, 107108. [Google Scholar] [CrossRef]
- Zhu, J.; Xia, X.G.; Che, H.Z.; Wang, J.; Cong, Z.Y.; Zhao, T.L.; Kang, S.C.; Zhang, X.L.; Yu, X.N.; Zhang, Y.L. Spatiotemporal variation of aerosol and potential long-range transport impact over the Tibetan Plateau, China. Atmos. Chem. Phys. 2019, 19, 14637–14656. [Google Scholar] [CrossRef]
- Frey, H.U.; Mende, S.B.; Harris, S.E.; Heetderks, H.; Takahashi, Y.; Su, H.T.; Hsu, R.R.; Chen, A.B.; Fukunishi, H.; Chang, Y.S.; et al. The Imager for Sprites and Upper Atmospheric Lightning (ISUAL). J. Geophys. Res. 2016, 121, 8134–8145. [Google Scholar] [CrossRef]
- Neubert, T.; Østgaard, N.; Reglero, V.; Blanc, E.; Chanrion, O.; Oxborrow, C.A.; Orr, A.; Tacconi, M.; Hartnack, O.; Bhanderi, D.D. The ASIM mission on the international space station. Space Sci. Rev. 2019, 215, 1–17. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz—Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_slv_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Xu, C.; Sun, Z. Lightning Stroke Strength and Its Correlation with Cloud Macro- and Microphysics over the Tibetan Plateau. Remote Sens. 2024, 16, 876. https://doi.org/10.3390/rs16050876
Wei L, Xu C, Sun Z. Lightning Stroke Strength and Its Correlation with Cloud Macro- and Microphysics over the Tibetan Plateau. Remote Sensing. 2024; 16(5):876. https://doi.org/10.3390/rs16050876
Chicago/Turabian StyleWei, Lei, Chen Xu, and Zhuling Sun. 2024. "Lightning Stroke Strength and Its Correlation with Cloud Macro- and Microphysics over the Tibetan Plateau" Remote Sensing 16, no. 5: 876. https://doi.org/10.3390/rs16050876
APA StyleWei, L., Xu, C., & Sun, Z. (2024). Lightning Stroke Strength and Its Correlation with Cloud Macro- and Microphysics over the Tibetan Plateau. Remote Sensing, 16(5), 876. https://doi.org/10.3390/rs16050876