Analyzing Sensitive Aerosol Regimes and Active Geolocations of Aerosol Effects on Deep Convective Clouds over the Global Oceans by Using Long-Term Operational Satellite Observations
Abstract
:1. Introduction
2. Data
2.1. Satellite Data
2.2. Reanalysis Data
3. Analysis Approaches
4. Results
4.1. Global Long-Term Mean Distributions
4.2. Statistical Features
4.3. Correlation Analysis Result
4.4. AIE Active Regions
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACI | aerosol cloud interaction |
AIE | aerosol indirect effect |
AIX | aerosol index |
AOT | aerosol optical thickness |
AVHRR | Advanced Very High-Resolution Radiometer |
CAPE | convective available potential energy |
CCN | cloud condensation nuclei |
CDR(s) | climate data record(s) |
CFSR | climate forecast system reanalysis |
COD | cloud optical depth |
CPER | cloud particle effective radius |
CTH | cloud top height |
CTT | cloud top temperature |
DCC(s) | deep convective cloud(s) |
EUMETSAT | European Organization for the Exploitation of Meteorological Satellites |
GAC | global area coverage |
HIRS | High-resolution Infra-Red Sounder |
INP(s) | ice nucleating particle(s) |
IWP | ice water path |
NASA | National Aeronautics and Space Administration |
MCS | mesoscale convective cloud systems |
MetOp | Meteorological Operational Satellites |
MODIS | Moderate-resolution Imaging Spectroradiometer |
MVLR | multiple-variables linear regression |
NCEI | National Centers for Environmental Information |
NCEP | National Centers for Environmental Prediction |
NESDIS | National Environmental Satellite, Data, and Information Service |
NH | northern hemisphere |
NML | northern middle latitudes |
NOAA | National Oceanic and Atmospheric Administration |
PATMOS-x | Pathfinder Atmospheres-Extended |
RH | relative humidity |
SH | southern hemisphere |
SML | southern middle latitudes |
STAR | Center for Satellite Applications and Research |
TRL | tropical latitude |
References
- Mason, B.J. The Physics of Clouds; Oxford: Oxford, UK, 2010. [Google Scholar]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation; Kluwer Academy: Dordrecht, The Netherlands, 1997; p. 954. [Google Scholar]
- Arakawa, A. The cumulus parameterization problem: Past, present, and future. J. Clim. 2004, 17, 2493–2525. [Google Scholar] [CrossRef]
- Futyan, J.M.; Del Genio, A.D. Deep convective system evolution over africa and the tropical atlantic. J. Clim. 2007, 20, 5041–5060. [Google Scholar] [CrossRef]
- Khain, A.; Rosenfeld, D.; Pokrovsky, A. Aerosol impact on the dynamics and microphysics of deep convective clouds. Q. J. Roy. Meteor. Soc. 2005, 131, 2639–2663. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef] [Green Version]
- Stevens, B.; Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 2009, 461, 607–613. [Google Scholar] [CrossRef]
- Tao, W.K.; Chen, J.P.; Li, Z.Q.; Wang, C.; Zhang, C.D. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 2012, 50, 1–62. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.W.; Wang, Y.; Rosenfeld, D.; Liu, X.H. Review of aerosol-cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci. 2016, 73, 4221–4252. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Bretherton, C.; Carslaw, K.S.; Coe, H.; DeMott, P.J.; Dunlea, E.J.; Feingold, G.; Ghan, S.; Guenther, A.B.; Kahn, R.; et al. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. Proc. Natl. Acad. Sci. USA 2016, 113, 5781–5790. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Q.; Rosenfeld, D.; Fan, J.W. Aerosols and their impact on radiation, clouds, precipitation, and severe weather events. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press USA: New York, NY, USA, 2017; pp. 1–36. [Google Scholar]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or drought: How do aerosols affect precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Igel, A.L.; van den Heever, S.C. Invigoration or enervation of convective clouds by aerosols? Geophys. Res. Lett. 2021, 48, e2021GL093804. [Google Scholar] [CrossRef]
- Li, X.W.; Tao, W.K.; Masunaga, H.; Gu, G.J.; Zeng, X.P. Aerosol effects on cumulus congestus population over the tropical pacific: A cloud-resolving modeling study. J. Meteorol. Soc. Jpn. 2013, 91, 817–833. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Rosenfeld, D.; Artaxo, P.; Costa, A.A.; Frank, G.P.; Longo, K.M.; Silva-Dias, M.A.F. Smoking rain clouds over the amazon. Science 2004, 303, 1337–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koren, I.; Feingold, G.; Remer, L.A. The invigoration of deep convective clouds over the atlantic: Aerosol effect, meteorology or retrieval artifact? Atmos. Chem. Phys. 2010, 10, 8855–8872. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Q.; Niu, F.; Fan, J.W.; Liu, Y.G.; Rosenfeld, D.; Ding, Y.N. Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci. 2011, 4, 888–894. [Google Scholar] [CrossRef]
- Niu, F.; Li, Z.Q. Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos. Chem. Phys. 2012, 12, 8491–8498. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.W.; Leung, L.R.; Rosenfeld, D.; Chen, Q.; Li, Z.Q.; Zhang, J.Q.; Yan, H.R. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA 2013, 110, E4581–E4590. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.W.; Rosenfeld, D.; Zhang, Y.W.; Giangrande, S.E.; Li, Z.Q.; Machado, L.A.T.; Martin, S.T.; Yang, Y.; Wang, J.; Artaxo, P.; et al. Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science 2018, 359, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.H.; Su, H.; Huang, L.; Wang, Y.; Massie, S.; Zhao, B.; Omar, A.; Wang, Z.E. Contrasting effects on deep convective clouds by different types of aerosols. Nat. Commun. 2018, 9, 3874. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, W.W.; Morrison, H. Do ultrafine cloud condensation nuclei invigorate deep convection? J. Atmos. Sci. 2020, 77, 2567–2583. [Google Scholar] [CrossRef]
- Wang, Y.; Khalizov, A.; Levy, M.; Zhang, R.Y. New directions: Light absorbing aerosols and their atmospheric impacts. Atmos. Environ. 2013, 81, 713–715. [Google Scholar] [CrossRef]
- Wang, Y.; Vogel, J.M.; Lin, Y.; Pan, B.W.; Hu, J.X.; Liu, Y.G.; Dong, X.Q.; Jiang, J.H.; Yung, Y.L.; Zhang, R.Y. Aerosol microphysical and radiative effects on continental cloud ensembles. Adv. Atmos. Sci. 2018, 35, 234–247. [Google Scholar] [CrossRef]
- Bollasina, M.A.; Ming, Y.; Ramaswamy, V. Anthropogenic aerosols and the weakening of the south asian summer monsoon. Science 2011, 334, 502–505. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Lau, W.K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M.G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 2016, 54, 866–929. [Google Scholar] [CrossRef]
- Wu, G.X.; Li, Z.Q.; Fu, C.B.; Zhang, X.Y.; Zhang, R.Y.; Zhang, R.H.; Zhou, T.J.; Li, J.P.; Li, J.D.; Zhou, D.G.; et al. Advances in studying interactions between aerosols and monsoon in China. Sci. China Earth Sci. 2016, 59, 1–16. [Google Scholar] [CrossRef]
- Li, R.; Dong, X.; Guo, J.C.; Fu, Y.F.; Zhao, C.; Wang, Y.; Min, Q.L. The implications of dust ice nuclei effect on cloud top temperature in a complex mesoscale convective system. Sci. Rep. 2017, 7, 13826. [Google Scholar] [CrossRef] [Green Version]
- Heidinger, A.K.; Foster, M.J.; Walther, A.; Zhao, X.P. The pathfinder atmospheres-extended avhrr climate dataset. Bull. Am. Meteorol. Soc. 2014, 95, 909–922. [Google Scholar] [CrossRef]
- Foster, M.J.; Phillips, C.; Heidinger, A.K.; Borbas, E.E.; Li, Y.; Menzel, W.P.; Walther, A.; Weisz, E. Patmos-x version 6.0: 40 years of merged avhrr and hirs global cloud data. J. Clim. 2022; in press. [Google Scholar]
- Heidinger, A.K.; Straka, W.C.; Molling, C.C.; Sullivan, J.T.; Wu, X.Q. Deriving an inter-sensor consistent calibration for the avhrr solar reflectance data record. Int. J. Remote Sens. 2010, 31, 6493–6517. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Evan, A.T.; Foster, M.J. A naive bayesian cloud-detection scheme derived from calipso and applied withing patmos-x. J. Appl. Meteorol. Clim. 2012, 51, 1129–1144. [Google Scholar] [CrossRef]
- Walther, A.; Heidinger, A.K. Implementation of the daytime cloud optical and microphysical properties algorithm (dcomp) in patmos-x. J. Appl. Meteorol. Clim. 2012, 51, 1371–1390. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Cao, C.; Sullivan, J.T. Using moderate resolution imaging spectrometer (modis) to calibrate advanced very high resolution radiometer reflectance channels. J. Geophys. Res. 2002, 107, 4702. [Google Scholar] [CrossRef]
- Cao, C.; Weinreb, M.; Xu, H. Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Ocean. Technol. 2004, 21, 537–542. [Google Scholar] [CrossRef]
- Cao, C.Y.; Xiong, X.X.; Wu, A.H.; Wu, X.Q. Assessing the consistency of avhrr and modis l1b reflectance for generating fundamental climate data records. J. Geophys. Res. Atmos. 2008, 113, D9. [Google Scholar] [CrossRef] [Green Version]
- Pavolonis, M.J.; Heidinger, A.K.; Uttal, T. Daytime global cloud typing from avhrr and viirs: Algorithm description, validation, and comparisons. J. Appl. Meteorol. 2005, 44, 804–826. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. Advances in understanding clouds from isccp. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef]
- Kubar, T.L.; Hartmann, D.L.; Wood, R. Radiative and convective driving of tropical high clouds. J. Clim. 2007, 20, 5510–5526. [Google Scholar] [CrossRef]
- Yuan, T.L.; Li, Z.Q. General macro- and microphysical properties of deep convective clouds as observed by modis. J. Clim. 2010, 23, 3457–3473. [Google Scholar] [CrossRef] [Green Version]
- Yuan, T.E.; Martins, J.V.; Li, Z.Q.; Remer, L.A. Estimating glaciation temperature of deep convective clouds with remote sensing data. Geophys. Res. Lett. 2010, 37, L08808. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.-P.; Dubovik, O.; Smirnov, A.; Holben, B.N.; Sapper, J.; Pietras, C.; Voss, K.J.; Frouin, R. Regional evaluation of an advanced very high resolution radiometer (avhrr) two-channel aerosol retrieval algorithm. J. Geophys. Res. 2004, 109, D02204. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.X.P.; Chan, P.K.; Heidinger, A.K. A global survey of the effect of cloud contamination on the aerosol optical thickness and its long-term trend derived from operational avhrr satellite observations. J. Geophys. Res. Atmos. 2013, 118, 2849–2857. [Google Scholar] [CrossRef]
- Nakajima, T.; Higurashi, A.; Kawamoto, K.; Penner, J.E. A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett. 2001, 28, 1171–1174. [Google Scholar] [CrossRef]
- Liu, J.J.; Li, Z.Q. Estimation of cloud condensation nuclei concentration from aerosol optical quantities: Influential factors and uncertainties. Atmos. Chem. Phys. 2014, 14, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Stier, P. Limitations of passive remote sensing to constrain global cloud condensation nuclei. Atmos. Chem. Phys. 2016, 16, 6595–6607. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.R.; Wang, J.D.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The ncep climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef] [Green Version]
- Boing, S.J.; Jonker, H.J.J.; Siebesma, A.P.; Grabowski, W.W. Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci. 2012, 69, 2682–2698. [Google Scholar] [CrossRef]
- Richardson, Y.P.; Droegemeier, K.K. The influence of horizontal environmental variability on numerically simulated convective storms. Part i: Variations in vertical shear. Mon. Weather Rev. 2007, 135, 3429–3455. [Google Scholar] [CrossRef] [Green Version]
- Takemi, T. A sensitivity of squall-line intensity to environmental static stability under various shear and moisture conditions. Atmos. Res. 2007, 84, 374–389. [Google Scholar] [CrossRef]
- Fan, J.W.; Yuan, T.L.; Comstock, J.M.; Ghan, S.; Khain, A.; Leung, L.R.; Li, Z.Q.; Martins, V.J.; Ovchinnikov, M. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. Atmos. 2009, 114, D22. [Google Scholar] [CrossRef]
- Gryspeerdt, E.; Stier, P. Regime-based analysis of aerosol-cloud interactions. Geophys. Res. Lett. 2012, 39, L21802. [Google Scholar] [CrossRef]
- Gryspeerdt, E.; Stier, P.; Grandey, B.S. Cloud fraction mediates the aerosol optical depth-cloud top height relationship. Geophys. Res. Lett. 2014, 41, 3622–3627. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, H.; Li, J.P. Impacts of asian summer monsoon on seasonal and interannual variations of aerosols over eastern china. J. Geophys. Res. Atmos. 2010, 115, D7. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, H.; Li, J. Impact of the southeast asian summer monsoon strength on the outflow of aerosols from South Asia. Ann. Geophys. 2010, 28, 277–287. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.J.; Solmon, F.; Zhuang, B.L.; Wu, H.; Xie, M.; Han, Y.; Wang, X.M. Impact of aerosols on regional climate in southern and northern China during strong/weak east Asian summer monsoon years. J. Geophys. Res. Atmos. 2016, 121, 4069–4081. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.Y.; Li, G.H.; Fan, J.W.; Wu, D.L.; Molina, M.J. Intensification of pacific storm track linked to asian pollution. Proc. Natl. Acad. Sci. USA 2007, 104, 5295–5299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, W.; L’Ecuyer, T.; Kummerow, C. Rainfall climate regimes: The relationship of regional trmm rainfall biases to the environment. J. Appl. Meteorol. Clim. 2006, 45, 434–454. [Google Scholar] [CrossRef]
- Berg, W.; L’Ecuyer, T.; van den Heever, S. Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations. J. Geophys. Res. Atmos. 2008, 113, D14. [Google Scholar] [CrossRef]
# | Region Name (Acronym) | Latitude Bounds | Longitude Bounds |
---|---|---|---|
1 | Middle Subtropical Pacific Ocean (MSPO) | [10° N, 30° N] | [150° W, 180° W] |
2 | Northwest Pacific Ocean (NWPO) | [30° N, 60° N] | [120° E, 180° E] |
3 | Southeast Coastal Oceans of China (SEC) | [10° N, 30° N] | [110° E, 140° E] |
4 | Southern Indian Ocean (SIO) | [30° S, 60° S] | [60° E, 120° E] |
5 | Tropical Western Pacific Ocean (TWPO) | [15° S, 15° N] | [120° E, 180° E] |
Number | Variable (Ci) | Linear Correlation Coefficients (%) for Individual Region | ||||
---|---|---|---|---|---|---|
MSPO | NWPO | SEC | SIO | TWPO | ||
1 | AIX (C1) | 72.47 | 61.64 | 49.70 | 7.13 | 68.67 |
2 | CAPE (C2) | 10.58 | −18.80 | −11.56 | 28.43 | −8.71 |
3 | PW (C3) | 38.14 | 40.41 | 33.62 | 19.58 | 43.12 |
4 | RHclm (C4) | 52.57 | 32.47 | 41.84 | 33.12 | 55.93 |
5 | RH850 (C5) | 53.20 | 53.65 | 27.06 | 24.44 | 60.92 |
6 | RH2m (C6) | 6.45 | −27.44 | 15.74 | 15.52 | 23.97 |
7 | T850 (C7) | 30.60 | 3.23 | 0.36 | −24.65 | 29.66 |
8 | T2m (C8) | 36.94 | 31.54 | 7.52 | −25.44 | 22.91 |
9 | U850 (C9) | 1.50 | 13.21 | 9.18 | −27.01 | 18.95 |
10 | U10m (C10) | 0.69 | 12.94 | 10.76 | −11.02 | 20.61 |
11 | V850 (C11) | −15.75 | −8.94 | −11.09 | −11.19 | −7.52 |
12 | V10m (C12) | −16.17 | −10.07 | −16.02 | −24.18 | 10.70 |
13 | ω850 (C13) | −23.68 | −25.76 | −44.20 | −39.93 | −46.04 |
14 | ωsig995 (C14) | −5.77 | −57.07 | 20.62 | −51.16 | −33.19 |
15 | VSHW (C15) | −14.72 | 3.00 | −23.66 | 5.66 | −31.79 |
Multiple Linear Correlation Coefficient (%) (Ct) | 84.74 | 89.98 | 86.08 | 80.61 | 86.63 |
Number | Variable (Ci) | Linear Correlation Coefficients (%) for Individual Region | ||||
---|---|---|---|---|---|---|
MSPO | NWPO | SEC | SIO | TWPO | ||
1 | AIX (C1) | 76.70 | 65.65 | 56.25 | −48.26 | 75.25 |
2 | CAPE (C2) | 19.11 | −8.19 | −7.31 | −7.96 | 3.38 |
3 | PW (C3) | 49.77 | 51.03 | 32.68 | −28.57 | 52.75 |
4 | RHclm (C4) | 59.07 | 34.39 | 35.87 | −16.31 | 62.17 |
5 | RH850 (C5) | 58.84 | 59.55 | 22.91 | −9.49 | 66.47 |
6 | RH2m (C6) | 16.94 | −27.00 | 12.61 | −35.80 | 31.56 |
7 | T850 (C7) | 44.47 | 16.89 | 9.77 | −15.48 | 42.63 |
8 | T2m (C8) | 49.44 | 45.94 | 14.91 | 2.86 | 36.36 |
9 | U850 (C9) | −0.68 | 11.65 | 12.70 | 18.82 | 25.77 |
10 | U10m (C10) | −1.94 | 13.09 | 16.45 | 39.42 | 27.71 |
11 | V850 (C11) | −18.25 | −7.06 | −16.21 | 16.15 | −11.39 |
12 | V10m (C12) | −18.30 | −6.99 | −15.49 | 7.00 | 10.71 |
13 | ω850 (C13) | −31.82 | −39.11 | −39.63 | −14.31 | −50.09 |
14 | ωsig995 (C14) | −16.69 | −46.14 | 18.74 | −34.27 | −32.04 |
15 | VSHW (C15) | −16.31 | 11.04 | −13.74 | −19.53 | −34.13 |
Multiple Linear Correlation Coefficient (%) (Ct) | 86.41 | 86.20 | 82.36 | 91.39 | 86.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Foster, M.J. Analyzing Sensitive Aerosol Regimes and Active Geolocations of Aerosol Effects on Deep Convective Clouds over the Global Oceans by Using Long-Term Operational Satellite Observations. Climate 2022, 10, 167. https://doi.org/10.3390/cli10110167
Zhao X, Foster MJ. Analyzing Sensitive Aerosol Regimes and Active Geolocations of Aerosol Effects on Deep Convective Clouds over the Global Oceans by Using Long-Term Operational Satellite Observations. Climate. 2022; 10(11):167. https://doi.org/10.3390/cli10110167
Chicago/Turabian StyleZhao, Xuepeng, and Michael J. Foster. 2022. "Analyzing Sensitive Aerosol Regimes and Active Geolocations of Aerosol Effects on Deep Convective Clouds over the Global Oceans by Using Long-Term Operational Satellite Observations" Climate 10, no. 11: 167. https://doi.org/10.3390/cli10110167
APA StyleZhao, X., & Foster, M. J. (2022). Analyzing Sensitive Aerosol Regimes and Active Geolocations of Aerosol Effects on Deep Convective Clouds over the Global Oceans by Using Long-Term Operational Satellite Observations. Climate, 10(11), 167. https://doi.org/10.3390/cli10110167