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Abstract: Predicting boundary layer clouds is important for the accurate modeling of pollutant
dispersion. Higher resolution mesoscale models would be expected to produce better forecasts of
cloud properties that affect dispersion. Using ceilometer observations, we assess the skill of two
operational mesoscale models (RAMS and WRF) to forecast cloud base altitude and cloud fraction at
the Savannah River Site in the southeastern US during the springtime. Verifications were performed
at small spatial and temporal scales necessary for dispersion modeling. Both models were unreliable
with a 50% (RAMS) and a 46% (WRF) rate of predicting clouds observed by the ceilometer which led
to low cloud fraction predictions. Results indicated that WRF better predicted daytime cloud bases
from convection that occurred frequently later in the period and RAMS better predicted nighttime
cloud bases. Using root mean squared error (RMSE) to score the forecast periods also highlighted
this diurnal dichotomy, with WRF scores better during the day and RAMS scores better at night.
Analysis of forecast errors revealed divergent model cloud base biases—WRF low and RAMS high.
A hybrid solution which weighs more heavily the RAMS nighttime forecasts and WRF daytime
forecasts will likely provide the best prediction of cloud properties for dispersion.
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1. Introduction

Scavenging and absorption of atmospheric particles and gases by boundary layer clouds affect the
dispersion of pollutants, The processes of washout, chemical transformations, and sedimentation upon
droplet evaporation of constituents all impact the rate of atmospheric removal or deposition. To predict
the interactions between atmospheric aerosols and cloud droplets, models need to accurately predict
clouds within the boundary layer. Large spatial or temporal variability in cloud field predictions will
lead to incorrect localization of clouds that fail to correctly interact with the plume limiting dispersion
predictions on small scales.

The variable scale nature of clouds and cloud processes make them difficult to model. Small- scale
interactions within clouds require state of the art microphysical and cumulus parameterizations [1] to estimate
cloud properties for most mesoscale to global-scale meteorological simulations. Correctly parameterizing
cloud processes is complicated by feedbacks by which clouds modify their own environment. For example,
the formation of clouds modifies the local environment by moderating Earth’s energy balance and releasing
latent heat to the atmosphere [2–4].

In dispersion modeling, clouds and precipitation drive wet deposition. Transformations of
atmospheric aerosols and chemical constituents occur in clouds which, upon evaporation, leave altered
aerosols [5] and modify airborne concentrations. Additionally, clouds moderate photochemistry
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affecting these constituents [6]. These interactions highlight the importance of accurate cloud forecasts.
Recent emphasis on high frequency solar forecasting to manage electricity loads further demonstrates
the important role of cloud prediction [7]. Understanding and improving cloud modeling aids to
improve functionality for these types of forecasts.

Studies that assess cloud forecasts are primarily performed for cloud cover (cloud fraction) and
cloud ceiling (base) height necessary for aviation safety [8–12]. Other studies focus on validating cloud
properties from cloud parameterizations for use in large scale climate models [13]. Most of these studies
use models with grid spacing greater than 6 km. Fewer have used higher resolution models (<2 km)
in these assessments [7,14], but note that higher resolution models performed better at resolving the
lower boundary layer cloud base heights (<500 m) that might affect dispersion.

The Savannah River National Laboratory utilizes two operational mesoscale models, the Regional
Atmospheric Modeling System [15] (RAMS) and the Weather Research and Forecasting model [16]
(WRF), to produce forecasts for the Savannah River Site (SRS) located in western South Carolina along
the Savannah River near Aiken, SC (Figure 1). These forecasts support a variety of site operations
including identifying weather patterns which can impact site operations, assisting the prescribed
burns conducted by the US Forest Service at SRS and driving site dispersion modeling for emergency
response. Verification studies of the models used for dispersion purposes [17] provide confidence in
constituent fate and transport predictions.
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Figure 1. Location and size of forecast area in the southeastern US (state abbreviations as noted). RAMS
inner domain, red box; WRF inner domain, blue box; ceilometer located at black cross on the Savannah
River Site (SRS).

Observational data sets that have previously been used to perform cloud forecast assessments
include satellite data (cloud fraction/mask and brightness temperatures) [8,13], cloud radar and
lidar networks [9,11,18], observation networks [14], pyranometer networks [7], and radiosondes [12].
Techniques for verifying cloud forecasts using satellite data include global analysis to compare with 3 h
global models [8] and grid point or area comparisons [7,13,19]. Verification techniques using observation
networks include area averaging [11,14] and probabilistic comparisons [18]. Radiosonde relative
humidity profiles were also used to verify model cloud base height [12].

In this study, we provide an assessment of model capabilities in forecasting cloud macrophysical
properties that affect atmospheric constituent dispersion at fine spatial and temporal scales. We use
15-min averaged ceilometer data at SRS to compare with 15-min WRF and RAMS forecast output of
cloud properties. Comparisons between single point temporal measurements and instantaneous spatial
measurements are highly dependent on resolution and advection [14]. For high-quality dispersion
modeling, model resolution becomes very important. Horizontal grid spacings used in this assessment
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are 1.3 km for WRF and 1 km for RAMS. We use a spatial averaging method based on cloud field
advection by the model wind speed to compare model forecasts every 15 min to 15-min averaged
ceilometer cloud fraction and cloud base height. Synoptic conditions during the springtime in the
southeastern US can be quite variable. Cloud formation can be driven by forcing from local diabatic
heating, large-scale low-pressure systems and frontal passages, and sea breeze penetration among
others. Clouds range from low level stratus and fog to deep convective thunderstorms. Therefore,
the time period from April to June provides a robust evaluation of these two models.

2. Methods

To facilitate comparisons in this study, data are taken from both RAMS and WRF runs that were
initiated at 18:00 UTC using the 18:00 UTC forecast of the 12 km North American Mesoscale Forecast
System (NAM), available through the National Centers for Environmental Prediction [20], The first
six hours of simulations were used to spin up the model and assessments for this study began with
the forecast period at 00:00 UTC. RAMS simulations were for 42 h and WRF simulations were for
36 h, producing 36 h RAMS forecasts and 30 h WRF forecasts. Both models generate gridded forecasts
every 15 min. These model configurations have been tuned over the years to provide the best regional
meteorological forecasts for key variables which affect atmospheric dispersion processes: temperature,
humidity, wind speed, and wind direction.

2.1. RAMS

The RAMS model (v6.2.06) [21] was configured with two domains; a 600 × 500 km outer domain
with 5 km horizontal grid spacing and 102 × 92 km nested domain (Figure 1) with 1 km grid spacing.
Both domains were centered on the Savannah River Site and have 37 vertical grid boxes with the lowest
grid spacing 25 m deep and the highest 1000 m. Intermediate levels are stretched by a factor of 1.2
until reaching 1000 m. Five model soil levels are used at 2.5, 15, 30, 50 and 70 cm below the surface.
Soil moisture initialization uses a constant saturation fraction of 0.29. Soil temperature is initialized by
the offset in temperature between three measured soil temperature levels (1, 6 and 12 inches) and the
two-meter temperature measurement from the relative humidity probe at the SRS Climatology Site.
Temperature offsets for the lowest two soil levels are estimated by calculating the slope of the 6- and
12-inch measurements and dividing by 2, for the 50 cm level, or 4, for the 70 cm level. This creates a
more realistic soil temperature profile for model initialization. Additional information for topography,
soil, and vegetation are read in from standard RAMS data files with a 30 arc second resolution.

Following the guidelines of the model developers [22], no cumulus parameterizations were used
for either grid. Traditional convective parameterizations have been shown to overpredict precipitation
and initiate convection too early in the southeastern United States [23], The operational RAMS model
utilizes the Harrington two-stream radiation parameterization [24] updated every 1200 s, and the Mellor
and Yamada [25] diffusion parameterization scheme, The minimum value for the horizontal diffusion
coefficient was set to 0.9 for the outer grid and 0.7 is used for the inner nested grid, The operational
RAMS model utilizes the two-moment bin emulating bulk microphysical parameterization [26,27]
with aerosol regeneration and wet and dry deposition activated, The ice nucleation scheme uses the
Demott 2010 composite aerosol ice nuclei formula [28]. Cloud condensation nuclei are initialized
with a concentration of 500 mg−1 and diameter of 100 nm and 120 nm when regenerated with typical
solubility fractions.

During the time period 31 March to 30 June (2020), only one of the RAMS operational runs failed
(missing data for 22 April), The failure was due to aerosols exceeding the maximum values close to
steep terrain near grid outer grid boundary.

2.2. WRF

The operational WRF (v3.81) [29] model was configured with two domains; 400 × 400 km outer
domain with 4 km horizontal grid spacing and nested domain about 89 × 89 km (Figure 1) with a
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grid spacing of 1.33 km. Both domains surrounded the Savannah River Site and have 35 vertical
levels, The model uses four soil levels and soil initialization is provided by the operational North
American Mesoscale (NAM) [30] forecast model grids. Information for soil type and vegetation [31] is
provided by the NLCD2011 database. Topography for the large domain is 30 arc second and 1 arc
second for the inner domain. Assimilation of temperature, moisture and wind information from the
SRS meteorological towers is used operationally, with observations available at a 15-min frequency for
the first 2 h of model integration.

The Thompson microphysical parameterization [32], which includes double moment parameters
for rain and ice but not for cloud, was used for the WRF operational model. This operational model
used the improved Grell 3D cumulus parameterization [33] that can be used on higher resolution
domains, The radiation parameterization uses an improved Rapid Radiative Transfer Model (RRTMG)
scheme [34] and the boundary layer parameterization uses the Mellor–Yamada–Janjic scheme [35].

Cloud data collection from WRF runs began on 2 April, so data are missing for 1 April. WRF cloud
data are also missing for 19 April and 28 June because the 18 UTC runs failed on those days.

2.3. Cloud Base Altitude and Cloud Fractions

At SRS, a Vaisala CL31 ceilometer [36] measured cloud base altitude (CBA), when present,
every 15 s. These were used to calculate a 15-min averaged CBA and a 15-min cloud fraction (CF).
CF was calculated based on the fraction of time that a cloud base was detected during that period,
The averaging was performed to center the 15-min periods on the quarter hours to provide the nearest
representation to the 15-min model forecast times. For additional analysis, daily averaged CBA and
CF were also calculated. On two separate days the ceilometer data were unavailable for short periods
of 3.25 (18 April) and 2.5 h (27 June).

CBA and CF for the models were determined by examining the cloud properties in the grid cells
in the proximity of the ceilometer, The specific grid cells were selected using model horizontal wind
components (U and V) at the location of the ceilometer, The U and V components were taken from the
model level nearest 2 km above the surface (median climatological daily CBA at SRS). Calculations
from U and V (m/s) determined the distance (km) traveled in 15-min of a possible cloud field in
the west–east (U) and south–north (V) directions. These values were used as an estimate to cloud
advection and therefore select the number of grid boxes within a rectangle centered on the ceilometer
to be used for CBA and CF calculations, The rectangle sizing and centering were performed to better
match the ceilometer averaging mentioned previously. To increase statistics in cases with low wind
speeds, an extra grid box is added in each direction, The lowest level of the vertical grid with a cloud
water mixing ratio of at least 0.01 g/kg [37] or an ice water mixing ratio of at least 0.003 g/kg [38,39] is
determined for each horizontal grid box within the rectangle. These limits are imposed as a better
comparison for the clouds measured by the ceilometer. Model CBA used for comparisons is the average
CBA of all the grid cells within the rectangle and model CF is the fraction of grid cells that have a valid
CBA within that same rectangle. While this method differs from other commonly used methods for
determining these values, it allows for the comparison of the instantaneous model spatial forecast data
with the time averaged ceilometer cloud properties focused on a specific location rather than over
a region covered by satellite or multiple cloud-measurement sites where the focus is on identifying
whether the model produced the observed behavior within a reasonable vicinity of the measurement.
For this application, we are more concerned with whether the modeled clouds occurred at the same
location and time as the measurement as would be necessary for dispersion calculations. Only the
nested domains were used for this analysis.

2.4. Cloud Forecast Scoring

Root mean squared error (RMSE) was used to score models on their ability to closely forecast
CBA and CF. For CF, this was a simple process of taking the square root of the mean of the squared
difference between the model value (predicted) and the ceilometer value (observed) for all 15-min
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values in a daily forecast. CBA scores were more complicated. Clouds near the surface within the
boundary layer are most likely to affect dispersion. Thus, we set a maximum error limit of 2500 m
because any cloud base error beyond that would likely be irrelevant to the dispersion. Additionally,
we use the same maximum error for cases when models failed to develop cloud when observed by
the ceilometer or created clouds when absent in ceilometer observations. All CBA scores were then
normalized by a value of 2500; this allows us to quickly identify all cases when there was a discrepancy
between the ceilometer and the models regarding whether clouds had formed because these cases will
all be scored as a 1.0. After normalizing, the RMSE for CBA follows the process for CF. Because we
use RMSE, lower scores indicate better forecasts (less error). Only the 15-min forecast times for the
30 h forecasts were used in scoring to provide a fair scoring comparison between RAMS and WRF.
Besides scoring each 30 h forecast, each forecast was also divided into five 6 h periods and scored.

3. Results and Discussion

3.1. Fifteen-Minute Monthly Averaged Forecasts

Forecasts and observations are averaged monthly for each 15-min forecast time and corresponding
observation time. Monthly ceilometer CF averages showed the least cloud in April (0.28) and increasing
in May (0.30) and June (0.34) which is opposite the climatological trend where monthly CF decreases
from April to June, The fewer clouds (smaller sample size) in April could be what leads to the apparent
variability in ceilometer CBA in Figure 2a that the models have difficulty in forecasting. Additionally,
clouds in April are more likely to be driven by synoptic scale events compared to May and June where
local convection is more prominent. One such example was a widespread tornado outbreak in South
Carolina from a frontal passage on 13 April 2020. Thus, deviations in both RAMS and WRF CBA
compared to the ceilometer CBA (Figure 2a) could also be due to issues with timing of these synoptic
scale events by the models.
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Differences in the accuracy of cloud predictions from RAMS and WRF are more apparent in May
(Figure 2b) and June (Figure 2c). In May, RAMS CBA forecasts compare well with the overnight
ceilometer CBA but demonstrate a tendency to increase CBA too early in the day (Figure 2b). However,
RAMS does well in predicting the maximum CBA, as its predictions compare much more favorably
in the late afternoon and evening hours. In contrast, WRF CBA is forecasted much lower than
observations overnight but compares well with ceilometer CBA in the daytime by seemingly correctly
developing daytime convection but likely benefiting from an early morning CBA well below the
measured ceilometer CBA. RAMS increases daytime CBA with convection at a similar rate but begins
with at CBA much too high. In the evening, WRF lowers CBA much too soon compared to the
observations or RAMS. It is interesting to note that both WRF and RAMS predict a similar timing in
when CBA begins to rise, suggesting that the onset of convection is being treated correctly within the
models, but struggle with predicting the behavior of CBA during the transition periods during sunset
and sunrise. Similar patterns continue for RAMS and WRF in June (Figure 2c).

CF comparisons in April (Figure 3a), show RAMS-forecasted CF to compare well with the
ceilometer CF except during early morning time periods before sunrise when the ceilometer CF
increases. WRF forecasts CF well below the ceilometer CF and does not properly develop the early
morning high CF. These high CF measured by the ceilometer may be due to fog or low cloud formation
that the models do not develop correctly. In May (Figure 3b), both models start with CF too low but do
develop the increase in CF in the early morning hours. Later in the day, WRF CF is lower than the
ceilometer CF but RAMS CF compares well. A similar pattern exists in June (Figure 3c) without the
development of the high morning CF, and RAMS CF continues to compare much better later in the
forecast with ceilometer CF than WRF CF. RAMS better forecasts daytime CF during this time period
than WRF (Figure 3d).
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3.2. Daily Averaged Forecasts

Averaged CBA and CF were calculated for the ceilometer, RAMS and WRF for each 30 h forecast
period. WRF CBA was generally lower than the ceilometer CBA (Figure 4). This became more consistent
from mid-May (Figure 4b) into June where WRF missed many of the time periods of mid-level clouds.
This time period (May–June) is more consistent with daytime convection and higher cloud bases than
was apparent in Figure 2. RAMS CBA fluctuated from above to below the ceilometer measurements,
but in mid to late May, RAMS more closely forecasted the mid-level clouds detected by the ceilometer
for these averaged forecasts. In June, however, many days the RAMS-forecasted CBA were consistently
higher than the measured CBA. This is highlighted in Table 1, where a greater number of RAMS
forecasted CBA were higher than the ceilometer while WRF was reversed, and supports the trends in
Figure 2 which showed RAMS lifting CBA too quickly in the morning while WRF generally dropped
the CBA too early in the evening. However, for these averaged forecasts, RAMS CBA was more often
closer to the ceilometer CBA than WRF (62% of the time, Table 1).
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Figure 4. Averages of CBA for each 30 h period for the ceilometer (black), RAMS (red) and WRF (blue)
for each month: (a) April, (b) May, and (c) June.

Table 1. Number of cases where the model is greater than the ceilometer (m > c), less than (m < c) and
equal to (m = c); and number of times when the each model has the lowest absolute difference (<diff)
from the ceilometer or when the difference is equal (=diff).

m > c m < c m = c <diff =diff

RAMS CBA 49 31 46
WRF CBA 15 62 28
RAMS CF 29 58 3 47 8
WRF CF 13 72 3 32 8

RAMS and WRF forecasts of CF exhibit periods of increased and decreased forecast skill (Figure 5),
The WRF model showed a tendency to exhibit errors leading to the underprediction of CF while the
RAMS model showed cases with both overprediction and underprediction of CF (Table 1 and Figure 5).
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Overall, the RAMS model seems to more accurately predict trends of CF, particularly in April and early
May. As convective conditions begin to dominate the weather patterns in late May and June, the RAMS
model shows increasing variability and error in its predictions, a trend mirrored in the WRF predictions.
For CF, it is interesting to note that most periods when WRF accurately predicted CF values, the RAMS
model likewise predicted CF well (Figure 5), The reverse cannot be said, as there are numerous examples
where RAMS predicted CF much better than WRF. In 54% of cases, RAMS predicted an averaged CF
nearer the observed CF than WRF (Table 1). Periods when RAMS and WRF agreed on the CF occurred
primarily for cases where both forecasted clear sky for the entire period.Atmosphere 2020, 11, x FOR PEER REVIEW 8 of 16 

 

 

Figure 5. Averages of CF for each 30 h period for the ceilometer (black), RAMS (red) and WRF (blue) 

for each month: (a) April, (b) May, and (c) June. 

Comparing the trends of CF prediction with those of CBA prediction (Figure 4), we can identify 

that there are apparent relationships between the skill of CF forecasts with the measured CBA. 

Primarily, this seems to occur when the ceilometer CBA indicates extended periods of low clouds, 

generally fog or low stratus cases where the average CBA was about 2 km or less. This relates to the 

results illustrated in Figure 3 for the early morning hours, typically periods with lower CBA, which 

had more poorly forecasted CF values. It seems that both models struggle to correctly resolve low 

stratus clouds or fog in these cases, which is consistent with previous findings [7,14]. 

3.3. Forecast Scoring 

Table 2 provides a comparison of the number of 15 min periods for all 30 h forecasts for periods 

with CF or clear sky for the ceilometer and both models. RAMS failed to predict correct cloud 

conditions 31.5% of the time. False clear sky predictions made up 71% of failed predictions and false 

cloud predictions made up 29%. WRF error in prediction conditions was higher at 32.8%, also with 

more false clear sky predictions than false cloud predictions (76% to 24%). The ceilometer averaged 

slightly lower CBA when RAMS falsely predicted clear sky (650 m) than when WRF did (731 m). 

However, when the models falsely predicted CF, WRF averaged CBA was lower (88 m) than RAMS 

(350 m). The low clouds from WRF false prediction appears to be associated with the low nighttime 

CBA in Figure 2. 

Table 2. Frequency distribution describing the number of cases when clouds were present or absent 

in both the model and the observations (ceil. for ceilometer). 

  RAMS WRF 

ceil. 

 cld no cld cld no cld 

cld 2443 2440 2064 2637 

no cld 985 4992 848 5069 
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for each month: (a) April, (b) May, and (c) June.

Comparing the trends of CF prediction with those of CBA prediction (Figure 4), we can identify
that there are apparent relationships between the skill of CF forecasts with the measured CBA. Primarily,
this seems to occur when the ceilometer CBA indicates extended periods of low clouds, generally fog or
low stratus cases where the average CBA was about 2 km or less. This relates to the results illustrated
in Figure 3 for the early morning hours, typically periods with lower CBA, which had more poorly
forecasted CF values. It seems that both models struggle to correctly resolve low stratus clouds or fog
in these cases, which is consistent with previous findings [7,14].

3.3. Forecast Scoring

Table 2 provides a comparison of the number of 15 min periods for all 30 h forecasts for periods
with CF or clear sky for the ceilometer and both models. RAMS failed to predict correct cloud conditions
31.5% of the time. False clear sky predictions made up 71% of failed predictions and false cloud
predictions made up 29%. WRF error in prediction conditions was higher at 32.8%, also with more
false clear sky predictions than false cloud predictions (76% to 24%), The ceilometer averaged slightly
lower CBA when RAMS falsely predicted clear sky (650 m) than when WRF did (731 m). However,
when the models falsely predicted CF, WRF averaged CBA was lower (88 m) than RAMS (350 m),
The low clouds from WRF false prediction appears to be associated with the low nighttime CBA in
Figure 2.
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Table 2. Frequency distribution describing the number of cases when clouds were present or absent in
both the model and the observations (ceil. for ceilometer).

RAMS WRF

ceil.

cld no cld cld no cld

cld 2443 2440 2064 2637
no cld 985 4992 848 5069

Figure 6 depicts histograms of CBA scores in 8 bins. Scores for the full forecast (Figure 6a) indicate
neither RAMS nor WRF provide good comparisons for the entire forecast period. A larger number of
good scores close to zero appear when the scores are broken down into 6 h periods. These are likely
time periods where that 6 h period has clear skies with no clouds. RAMS and WRF both appear to do
poorly otherwise in these periods as identified by the full forecast scores. Besides the lowest scores,
the 12–18 h forecast period (8 a.m. to 2 p.m. local time) seems to be more distributed to lower scores
for both models, The 6–12 h forecast period indicates that RAMS is performing better during these
early morning hours. This is supported by the mean CBA score (Table 3) for this period that is better
(lower) than that of WRF. WRF is observably better in the afternoon (18–24 h) forecast period which
supports Figure 2. Mean scores with large standard deviations (Table 3) indicate limited differences
between the two models for all forecast periods. However, because both models miss much of the
clouds observed by the ceilometer (50% for RAMS and 56% for WRF, Table 2), these scores are heavily
influenced by the error factor of 2500 for model forecast failures.
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Figure 6. Histograms of RAMS and WRF CBA forecast scores using RMSE (bin size 0.125 and number
of forecasts per bin on the ordinate). (a) Scores for 30 h forecasts; (b) scores for 0–6 h forecasts; (c) scores
for 6–12 h forecasts; (d) scores for 12–18 h forecasts; (e) scores for 18–24 h forecasts; and (f) scores for
24–30 h forecasts. Lower scores are better.
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Table 3. Mean and standard deviation of forecast scores for the full forecast (All) and for each 6 h
forecast period. Scores for CBA and CF for each model. CBAo are scores calculated only for times
when CBA existed for both the model and ceilometer.

All 0–6 6–12 12–18 18–24 24–30

RAMS CBA 0.59 ± 0.21 0.50 ± 0.34 0.55 ± 0.34 0.54 ± 0.31 0.58 ± 0.30 0.51 ± 0.33
WRF CBA 0.58 ± 0.20 0.47 ± 0.34 0.59 ± 0.34 0.50 ± 0.30 0.54 ± 0.29 0.49 ± 0.34

RAMS CBAo 0.20 ± 0.12 0.21 ± 0.14 0.20 ± 0.15 0.19 ± 0.14 0.19 ± 0.13 0.26 ± 0.15
WRF CBAo 0.20 ± 0.15 0.23 ± 0.25 0.24 ± 0.20 0.15 ± 0.14 0.14 ± 0.13 0.28 ± 0.21
RAMS CF 0.41 ± 0.19 0.33 ± 0.29 0.40 ± 0.31 0.34 ± 0.28 0.36 ± 0.25 0.31 ± 0.27
WRF CF 0.40 ± 0.18 0.32 ± 0.29 0.44 ± 0.32 0.33 ± 0.25 0.30 ± 0.22 0.33 ± 0.28

To diagnose how well the models accurately predict CBA when they do generate clouds,
we examined only those times when model CBA and ceilometer CBA coexist (Table 2). These scores
were normalized as described in Section 2.4 to be from 0 to 1 (where a valued of 1 indicated a mismatch
between the presence of measured and modeled clouds) and comparable to the full CBA scores. This is
accomplished by dividing by 7000 m, which is the maximum error rounded up to the nearest 1000 m.
Slightly lower mean scores and lower variability over nighttime periods (Table 3, 0–6, 6–12, 24–30)
indicate that RAMS performs slightly better during these periods, whereas WRF performs better
during the daytime hours (12–18, 18–24) regardless of standard deviations, similar to Figure 2, while for
the entire forecasts there is not much difference. However, Figure 7 indicates that WRF mean scores
suffer from occasional high (poor) scores where RAMS does not. For the full forecast scores and the
first two periods (0–6 and 6–12), WRF performs similarly to RAMS but exhibits a few poorer scores.
WRF appears to predict CBA during the daytime and early evening better than RAMS as demonstrated
by having a greater number of the lowest scores (good) in the following three forecast periods (12–18,
18–24, 24–30). These daytime clouds are heavily weighted to the daytime convection that became
prevalent in the latter half of our study period (Figure 2).
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CF scores for both models seem to be better than the CBA scores overall. Figure 8 shows scores
to be more evenly distributed and less heavily weighted to poor scores (higher values). As with
CBA, RAMS CF scores better for the 6–12 h period and WRF CF scores better for the 18–24 h period.
CF scores for other periods and full forecast indicate little difference (Figure 8), although mean CF
scores edge slightly towards WRF (Table 3) regardless of the standard deviations. This contrasts with
Figures 3 and 5, where RAMS appears to perform much better at predicting CF.Atmosphere 2020, 11, x FOR PEER REVIEW 11 of 16 
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Figure 8. As in Figure 6 but for RAMS and WRF CF forecast scores.

We have limited our analysis to 30 h forecasts to provide a consistent assessment. However,
Figure 2 indicates that RAMS seems to continue with better CBA forecasts at night where WRF shows
CBA decreasing in May and June. In Figure 3, WRF CF forecasts are also below RAMS for May and
June but trend toward RAMS values toward the end of the 30 hr forecast period. Including the full
36 h forecast for RAMS does not improve the mean overall scores for CBA or CF, but the mean score
for only coexisting CBA during the 30–36 h forecast period is lower (better) than the 24–30 h forecast
period (0.25 to 0.26). From Figure 2, it does not seem that WRF CBA is trending in a way that it would
improve on its score from the 24–30 h forecast period. This result further indicates that RAMS performs
better during the nighttime hours.

3.4. Summary of Typical Forecast Errors

Figure 9 provides some specific examples of forecast errors observed in our analysis. On 25 April
(Figure 9a,c), both WRF and RAMS failed to forecast many of the clouds that were detected by the
ceilometer (0–6 h). This is common for many of these forecasts as indicated by Table 2. WRF erroneously
develops low clouds (likely fog) during the night on this day as on others, giving it a poor nighttime
forecast score when compared to RAMS (6–12 h). RAMS CBA is closer than WRF in the late afternoon
(18–30 h), but both models fail to predict the CF and the duration of clouds, The models perform better
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on 25 May (Figure 9b,d). RAMS develops cloud in the nighttime when WRF does not but does not
match the ceilometer CBA (0–6 h). WRF develops low clouds too early (6–12 h) but follows well with
the correct CBA while maintain CF too low into the daytime (12–18 h). RAMS misses morning clouds
and creates CBA well above those of the ceilometer during the afternoon (12–18 h). Thus, for the
25 May example, WRF performs much better during the daytime (12–24 h). However, WRF cuts the
clouds off too soon in the evening (after 24 h) where RAMS maintains clouds, but at a much lower
CBA then detected by the ceilometer.Atmosphere 2020, 11, x FOR PEER REVIEW 12 of 16 
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These models provide different configurations that affect their ability to forecast clouds. WRF uses a
cumulus parameterization which may improve its convection derived clouds where RAMS, following the
suggested guidelines, does not. Both models initiate the rise of CBA (convection) too quickly after
sunrise, regardless of parameterization [23]. Additionally, the WRF microphysics package uses only
single moment for cloud water while RAMS uses a double moment microphysics package which may
be why RAMS predicts CF slightly better than WRF [40]. Differences in soil initialization and treatment
probably had some effect as well as the differences in domain size and grid spacing; the WRF domain
was smaller (Figure 1) but with slightly larger horizontal grid spacing than RAMS.

We also explored whether there were tendencies in the errors as a function of low, medium,
or high CBA and low, medium, and high CF. To assess whether CF played a role in the CBA errors,
we separated the forecast cases into high CF (CF > 0.8), medium CF (CF = 0.4 to 0.8) and low CF
(CF > 0 to 0.4) based on ceilometer CF (Figure 10) and analyzed the distribution of CBA for each range.
Clear sky (CF = 0) was not considered as a measured ceilometer CBA did not exist for these cases.
Figure 10 clearly highlights the failure of both models to forecast clouds consistently as shown by the
band of data across ceilometer CBA but where the models show clear sky. Regardless of CF, Figure 10
indicates that RAMS CBA is more often higher than the measured CBA, while WRF is more often lower.
As previously shown (Figure 9), WRF has a bias in creating low clouds (fog) for all CF. RAMS frequently
creates cloud with CBA just below 4 km. WRF predicts CBA better than RAMS for low and mid CF
with correlation coefficients (R) of 0.35 (WRF low CF), 0.30 (WRF mid CF), 0.27 (RAMS low CF) and



Atmosphere 2020, 11, 1202 13 of 16

0.24 (RAMS mid CF). However, RAMS predicts CBA better than WRF with high CF (0.39 vs. 0.28),
which is not clear in Figure 10.
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Figure 10. Plots of CBA separated by ceilometer CF; (a,b) CF > 0.8; (c,d) CF 0.4–0.8; (e,f) >0–0.4. RAMS
is on the left (red) and WRF is on the right (blue). Clear sky for the models is indicated at the top of the
plot. No ceilometer clear sky (CF = 0) is shown (see Table 2).

Performing the opposite analysis, assessing CF based on categorization by measured CBA,
showed similarities with RAMS correlations, showing it was better than WRF at predicting CF for
all divisions; very low CBA (0.31 vs. 0.18, <500 m), low CBA (0.34 vs. 0.33, 500–2500 m), mid CBA
(0.09 vs. 0.05, 2500–5000 m) and high CBA (0.12 vs. 0.00, >5000 m). These results indicate that RAMS
performs better at predicting CF and CBA at high CF (stratus), whereas WRF performs better at
predicting clouds at lower CF (cumulus).

4. Conclusions

This study assesses the ability of two operational mesoscale models (RAMS and WRF) to forecast
CBA and CF at SRS in the southeastern US during the spring of 2020. We utilize monthly averages,
forecast averages and a RMSE scoring method to assess model forecasts using observations from a
ceilometer. WRF better predicts daytime CBA primarily from convection but it suffers from too low
CBA at night and low CF overall, particularly during periods of low clouds or fog. RAMS better
predicts nighttime CBA and seems to better maintain convection at night but suffers from high CBA
in the daytime due to the incorrect reduction in CBA at morning. RAMS model improvement in the
second evening highlights this diurnal dichotomy over possible trends due to a single initialization
time. RAMS CF is also too low overall, but Figure 3 shows it to be better than WRF. Additionally,
comparisons indicate that RAMS CBA is generally biased high whereas WRF CBA is biased low.
WRF better predicts CBA at lower CF but RAMS better predicts CBA at high CF. However, CF forecast



Atmosphere 2020, 11, 1202 14 of 16

scoring was determined to be less conclusive in identifying the strengths or shortcomings of each
model relative to the other.

The ability of cloud droplets to interact with atmospheric constituents allows for modification to
dispersion. This characteristic has become more important to dispersion modeling, and this assessment
highlights this need. These results indicate that a combination of mesoscale models for predicting
clouds that affect dispersion (WRF for daytime and RAMS for nighttime) may be necessary. However,
with 50% (RAMS) and 46% (WRF) rates of predicting clouds (Table 2), neither model provides a reliable
cloud forecast. While it is possible that using a larger area or probabilistic methods could improve
these prediction rates, dispersion modeling is highly dependent on the location and time of clouds
for interactions to occur. Thus, future research needs to focus on similar high spatial and temporal
resolution comparisons of clouds. Improved configurations, initialization and data assimilation may
improve these cloud forecasts. Improvements and adjustments to SRS operational models, such as
implementing a double moment microphysical scheme for WRF and a cumulus parameterization for
the outer domain of RAMS, have been identified though this study with the plan to improve onsite
dispersion modeling.
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