Impact of Aerosols on the Macrophysical and Microphysical Characteristics of Ice-Phase and Mixed-Phase Clouds over the Tibetan Plateau
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Quality Control
2.4. Data Sample Selection
2.5. CF Calculation
2.6. Correlation Analysis
3. Results
3.1. Distribution Characteristics of Aerosols and Clouds
3.2. Correlation between Aerosols and Cloud Characteristics
3.2.1. Macrophysical Characteristics of Clouds
3.2.2. Microphysical Characteristics of Clouds
3.3. Correlation between Aerosols and Clouds under Controlled Meteorological Conditions
3.3.1. Macrophysical Characteristics of Clouds
3.3.2. Microphysical Characteristics of Clouds
4. Discussion
4.1. The Potential Effects of Aerosols on Clouds
4.2. Preliminary Quantification of the Interactions of Aerosols and Clouds
5. Conclusions
- (1)
- Based on MERRA-2 reanalysis data, the aerosol optical depth (AOD) over the Tibetan Plateau was higher in MAM and JJA than in SON and DJF, with aerosols primarily composed of dust, sulfate, and organic carbon. The cloud phases are predominantly ice-phase and mixed-phase. During MAM and JJA, dust aerosols accounted for a higher proportion, representing over 40% of the total AOD, while during SON and DJF, sulfate aerosols significantly outweighed other types of aerosols, accounting for 54% and 47%, respectively. According to CloudSat satellite data, in each season, the cloud fraction of ice-phase clouds was the highest, followed by mixed-phase and liquid-phase.
- (2)
- Based on CloudSat/CALIPSO satellite data and ERA5 reanalysis data, the macrophysical and microphysical characteristics of ice-phase and mixed-phase clouds exhibited non-linear changes with an increasing AOD. When the lnAOD was ≤−4.0, with an increasing AOD during MAM and JJA nights, for every unit change in the lnAOD, the cloud thickness and ice particle effective radius of ice-phase clouds (mixed-phase clouds) decreased at speeds of 0.41 km (0.47 km) and 2.06 μm (1.95 μm), respectively, while the ice water path of ice-phase clouds and the liquid water path of mixed-phase clouds decreased at speeds of 18.54 g m−2 and 111.11 g m−2, respectively. The ice particle number concentration of ice-phase clouds and the cloud fraction of mixed-phase clouds also decreased at speeds of 2.96 L−1 and 7.05%, respectively. During SON and DJF nights, for every unit change in lnAOD, the cloud thickness of ice-phase clouds, the cloud top height of mixed-phase clouds, the liquid droplet number concentration, and the liquid water path decreased at speeds of 0.19 km, 0.34 km, 4.87 cm−3, and 59.30 g m−2, respectively. When the lnAOD was >−4.0, with an increasing AOD during MAM and JJA nights, for every unit change in the lnAOD, the cloud top height, cloud base height, cloud fraction, ice particle number concentration of ice-phase clouds, and the ice water path of mixed-phase clouds increased at speeds of 0.61 km, 0.31 km, 7.9%, 2.22 L−1, and 30.39 g m−2, respectively. During MAM and DJF nights, for every unit change in the lnAOD, the cloud fraction of mixed-phase clouds and the ice water path of ice-phase clouds increased at speeds of 7.88% and 15.40 g m−2, respectively.
- (3)
- Based on CloudSat/CALIPSO satellite data and ERA5 data, after a partial correlation analysis excluding the influence of meteorological factors on the correlation between aerosols and clouds, during MAM and JJA nights, when the lnAOD is ≤−4.0, an increase in aerosols may lead to thinning of ice-phase and mixed-phase cloud layers and a decrease in cloud water path values; when the lnAOD is >−4.0, an increase in aerosols may cause the cloud base and cloud top heights of ice-phase clouds to rise. During SON and DJF nights, changes in the macrophysical and microphysical characteristics of ice-phase and mixed-phase clouds may be influenced by both meteorological factors and aerosols.
- (4)
- Based on CloudSat/CALIPSO satellite data, during MAM and JJA nights, when the ice water path of ice-phase clouds was in the range of 1–5 g m−2 and 5–10 g m−2, the ice particle effective radius was negatively correlated with the AOD. The ACI values were 0.10 × 10−1 and 0.18 × 10−1, respectively, and passed the 95% significance test, consistent with the “Twomey effect” phenomenon.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 923–1054. [Google Scholar] [CrossRef]
- Bender, F.A.M.; Frey, L.; McCoy, D.T.; Grosvenor, D.P.; Mohrmann, J.K. Assessment of aerosol-cloud-radiation correlations in satellite observations, climate models and reanalysis. Clim. Dyn. 2019, 52, 4371–4392. [Google Scholar] [CrossRef]
- Redemann, J.; Wood, R.; Zuidema, P.; Doherty, S.J.; Luna, B.; LeBlanc, S.E.; Diamond, M.S.; Shinozuka, Y.; Chang, I.Y.; Ueyama, R.; et al. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: Aerosol-cloud-radiation interactions in the southeast Atlantic basin. Atmos. Chem. Phys. 2021, 21, 1507–1563. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Andreae, M.O.; Asmi, A.; Chin, M.; de Leeuw, G.; Donovan, D.P.; Kahn, R.; Kinne, S.; Kivekäs, N.; Kulmala, M.; et al. Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys. 2014, 52, 750–808. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Andrews, T.; Forster, P.M.; Taylor, K.E. Quantifying components of aerosol-cloud-radiation interactions in climate models. J. Geophys. Res.-Atmos. 2014, 119, 7599–7615. [Google Scholar] [CrossRef]
- Sharma, P.; Ganguly, D.; Sharma, A.K.; Kant, S.; Mishra, S. Assessing the Aerosols, Clouds and Their Relationship Over the Northern Bay of Bengal Using a Global Climate Model. Earth Space Sci. 2023, 10, e2022EA002706. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Huang, L.; Wang, Y.; Massie, S.; Zhao, B.; Omar, A.; Wang, Z.E. Contrasting effects on deep convective clouds by different types of aerosols. Nat. Commun. 2018, 9, 3874. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.S.; Zhu, L.; Liu, Y.G.; Mei, F.; Fast, J.D.; Pekour, M.S.; Luo, S.; Xu, X.Q.; He, X.; Li, J.J.; et al. Observational study of relationships between entrainment rate, homogeneity of mixing, and cloud droplet relative dispersion. Atmos. Res. 2023, 293, 106900. [Google Scholar] [CrossRef]
- Ma, X.; Jia, H.; Yu, F.; Quaas, J. Opposite Aerosol Index-Cloud Droplet Effective Radius Correlations Over Major Industrial Regions and Their Adjacent Oceans. Geophys. Res. Lett. 2018, 45, 5771–5778. [Google Scholar] [CrossRef]
- Pan, Z.X.; Mao, F.Y.; Wang, W.; Logan, T.; Hong, J. Examining Intrinsic Aerosol-Cloud Interactions in South Asia Through Multiple Satellite Observations. J. Geophys. Res.-Atmos. 2018, 123, 11210–11224. [Google Scholar] [CrossRef]
- Qiu, Y.M.; Zhao, C.F.; Guo, J.P.; Li, J.M. 8-Year ground-based observational analysis about the seasonal variation of the aerosol-cloud droplet effective radius relationship at SGP site. Atmos. Environ. 2017, 164, 139–146. [Google Scholar] [CrossRef]
- Saponaro, G.; Kolmonen, P.; Sogacheva, L.; Rodriguez, E.; Virtanen, T.; de Leeuw, G. Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations. Atmos. Chem. Phys. 2017, 17, 3133–3143. [Google Scholar] [CrossRef]
- Yang, Y.K.; Zhao, C.F.; Wang, Y.; Zhao, X.; Sun, W.X.; Yang, J.; Ma, Z.S.; Fan, H. Multi-Source Data Based Investigation of Aerosol-Cloud Interaction Over the North China Plain and North of the Yangtze Plain. J. Geophys. Res.-Atmos. 2021, 126, e2021JD035609. [Google Scholar] [CrossRef]
- Almeida, G.P. The Role Played by the Bulk Hygroscopicity on the Prediction of the Cloud Condensation Nuclei Concentration Inside the Urban Aerosol Plume in Manaus, Brazil: From Measurements to Modeled Results. Atmos. Environ. 2023, 295, 119517. [Google Scholar] [CrossRef]
- Garrett, T.J.; Zhao, C.F. Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature 2006, 440, 787–789. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.F.; Yang, Y.K.; Fan, H.; Huang, J.P.; Fu, Y.F.; Zhang, X.Y.; Kang, S.C.; Cong, Z.Y.; Letu, H.; Menenti, M. Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. Natl. Sci. Rev. 2020, 7, 492. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, J.; Wang, T.; Li, J.; Yan, H.; He, Y.J.E.-S.R. Aerosol-cloud interactions over the Tibetan Plateau: An overview. Earth-Sci. Rev. 2022, 234, 104216. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Zhu, Q.Z.; Huang, J.P.; Hua, S.; Jia, R. Impact of dust-polluted convective clouds over the Tibetan Plateau on downstream precipitation. Atmos. Environ. 2019, 209, 67–77. [Google Scholar] [CrossRef]
- Kim, B.; Miller, M.A.; Schwartz, S.E.; Liu, Y.; Min, Q. The role of adiabaticity in the aerosol first indirect effect. J. Geophys. Res.-Atmos. 2008, 113, D5. [Google Scholar] [CrossRef]
- Lihavainen, H.; Kerminen, V.-M.; Remer, L. Aerosol-cloud interaction determined by both in situ and satellite data over a northern high-latitude site. Atmos. Chem. Phys. 2010, 10, 10987–10995. [Google Scholar] [CrossRef]
- Liu, Y.Q.; de Leeuw, G.; Kerminen, V.M.; Zhang, J.H.; Zhou, P.T.; Nie, W.; Qi, X.M.; Hong, J.; Wang, Y.H.; Ding, A.J.; et al. Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations. Atmos. Chem. Phys. 2017, 17, 5623–5641. [Google Scholar] [CrossRef]
- Pandithurai, G.; Takamura, T.; Yamaguchi, J.; Miyagi, K.; Takano, T.; Ishizaka, Y.; Dipu, S.; Shimizu, A.J.G.R.L. Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region. Geophys. Res. Lett. 2009, 36, 13. [Google Scholar] [CrossRef]
- Wang, F.; Guo, J.P.; Wu, Y.R.; Zhang, X.Y.; Deng, M.J.; Li, X.W.; Zhang, J.H.; Zhao, J. Satellite observed aerosol-induced variability in warm cloud properties under different meteorological conditions over eastern China. Atmos. Environ. 2014, 84, 122–132. [Google Scholar] [CrossRef]
- Zhao, C.; Qiu, Y.; Dong, X.; Wang, Z.; Peng, Y.; Li, B.; Wu, Z.; Wang, Y.J.E.; Science, S. Negative aerosol-cloud re relationship from aircraft observations over Hebei, China. Earth Space Sci. 2018, 5, 19–29. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, W.; Yuan, L.; Zhou, X.; Ge, F.; Xiao, H.; Zhang, P.; Wang, Y.; Zhou, Y. Spatial heterogeneity of aerosol effect on liquid cloud microphysical properties in the warm season over Tibetan Plateau. J. Geophys. Res.-Atmos. 2023, 128, e2022JD037738. [Google Scholar] [CrossRef]
- Kiran, V.R.; Ratnam, M.V.; Fujiwara, M.; Russchenberg, H.; Wienhold, F.G.; Madhavan, B.L.; Raman, M.R.; Nandan, R.; Raj, S.T.A.; Kumar, A.H.; et al. Balloon-borne aerosol-cloud interaction studies (BACIS): Field campaigns to understand and quantify aerosol effects on clouds. Atmos. Meas. Tech. 2022, 15, 4709–4734. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Toon, O.B.; Hobbs, P.V. Dissipation of marine stratiform clouds and collapse of the marine boundary layer due to the depletion of cloud condensation nuclei by clouds. Science 1993, 262, 226–229. [Google Scholar] [CrossRef]
- Hobbs, P.V. Aerosol-Cloud Interactions. In International Geophysics; Hobbs, P.V., Ed.; Academic Press: San Diego, CA, USA, 1993; Volume 54, Chapter 2; pp. 33–73. [Google Scholar]
- Fan, J.; Wang, Y.; Rosenfeld, D.; Liu, X. Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci. 2016, 73, 4221–4252. [Google Scholar] [CrossRef]
- Barahona, D.; Nenes, A. Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation–polydisperse ice nuclei. Atmos. Chem. Phys. 2009, 9, 5933–5948. [Google Scholar] [CrossRef]
- Haag, W.; Kärcher, B. The impact of aerosols and gravity waves on cirrus clouds at midlatitudes. J. Geophys. Res.-Atmos. 2004, 109, D12. [Google Scholar] [CrossRef]
- Mao, F.Y.; Pan, Z.X.; Henderson, D.S.; Wang, W.; Gong, W. Vertically resolved physical and radiative response of ice clouds to aerosols during the Indian summer monsoon season. Remote Sens. Environ. 2018, 216, 171–182. [Google Scholar] [CrossRef]
- Massie, S.T.; Delano, J.; Bardeen, C.G.; Jiang, J.H.; Huang, L. Changes in the shape of cloud ice water content vertical structure due to aerosol variations. Atmos. Chem. Phys. 2016, 16, 6091–6105. [Google Scholar] [CrossRef]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef]
- Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef]
- Borys, R.D.; Lowenthal, D.H.; Mitchell, D.L. The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmos. Environ. 2000, 34, 2593–2602. [Google Scholar] [CrossRef]
- Lohmann, U. A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett. 2002, 29, 11-11–11-14. [Google Scholar] [CrossRef]
- Lowenthal, D.H.; Borys, R.D.; Choularton, T.W.; Bower, K.N.; Flynn, M.J.; Gallagher, M.W. Parameterization of the cloud droplet–sulfate relationship. Atmos. Environ. 2004, 38, 287–292. [Google Scholar] [CrossRef]
- Muhlbauer, A.; Hashino, T.; Xue, L.; Teller, A.; Lohmann, U.; Rasmussen, R.M.; Geresdi, I.; Pan, Z. Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. Atmos. Chem. Phys. 2010, 10, 8173–8196. [Google Scholar] [CrossRef]
- Saleeby, S.M.; Cotton, W.R.; Lowenthal, D.; Borys, R.D.; Wetzel, M.A. Influence of cloud condensation nuclei on orographic snowfall. J. Appl. Meteorol. 2009, 48, 903–922. [Google Scholar] [CrossRef]
- Twomey, S.A.; Piepgrass, M.; Wolfe, T. An assessment of the impact of pollution on global cloud albedo. Tellus B 1984, 36, 356–366. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Heymsfield, A.; Fan, J.; Liu, D.; Zhao, M. Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds. Geophys. Res. Lett. 2012, 39, L18805. [Google Scholar] [CrossRef]
- Yao, T.; Chen, F.; Cui, P.; Ma, Y.; Xu, B.; Zhu, L.; Zhang, F.; Wang, W.; Ai, l.; Yang, X. From Tibetan Plateau to Third Pole and Pan-Third Pole. Bull. Chin. Acad. Sci. 2017, 32, 924–931. [Google Scholar] [CrossRef]
- Chen, D.; Xu, B.; Yao, T.; Guo, Z.; Cui, P.; Chen, F.; Zhang, R.; Zhang, X.; Yili, Z.; Jie, F.; et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3025–3035. [Google Scholar]
- Wu, G.; Duan, A.; Zhang, X.; Liu, Y.; Ma, Y.; Yang, K. Extreme weather and climate changes and its environmental effects over the Tibetan Plateau. Chin. J. Nat. 2013, 35, 167–171. [Google Scholar]
- Pokharel, M.; Guang, J.; Liu, B.; Kang, S.C.; Ma, Y.M.; Holben, B.N.; Xia, X.A.; Xin, J.Y.; Ram, K.; Rupakheti, D.; et al. Aerosol Properties Over Tibetan Plateau from a Decade of AERONET Measurements: Baseline, Types, and Influencing Factors. J. Geophys. Res.-Atmos. 2019, 124, 13357–13374. [Google Scholar] [CrossRef]
- Xu, X.F.; Wu, H.; Yang, X.Y.; Xie, L.F. Distribution and transport characteristics of dust aerosol over Tibetan Plateau and Taklimakan Desert in China using MERRA-2 and CALIPSO data. Atmos. Environ. 2020, 237, 117670. [Google Scholar] [CrossRef]
- DeMott, P.J.; Prenni, A.J.; McMeeking, G.R.; Sullivan, R.C.; Petters, M.D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J.R.; Wang, Z.; et al. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys. 2015, 15, 393–409. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Yan, H.; Yi, Y.; Chen, B.; Zhang, L.; Ayers, J.K. Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements. Atmos. Chem. Phys. 2010, 10, 6863–6872. [Google Scholar] [CrossRef]
- Klein, H.; Nickovic, S.; Haunold, W.; Bundke, U.; Nillius, B.; Ebert, M.; Weinbruch, S.; Schuetz, L.; Levin, Z.; Barrie, L.A.; et al. Saharan dust and ice nuclei over Central Europe. Atmos. Chem. Phys. 2010, 10, 10211–10221. [Google Scholar] [CrossRef]
- Liu, D.T.; He, C.L.; Schwarz, J.P.; Wang, X. Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere. npj Clim. Atmos. Sci. 2020, 3, 40. [Google Scholar] [CrossRef]
- Pan, B.W.; Yao, Z.D.; Wang, M.Z.; Pan, H.L.; Bu, L.B.; Kumar, K.R.; Gao, H.Y.; Huang, X.Y. Evaluation and utilization of CloudSat and CALIPSO data to analyze the impact of dust aerosol on the microphysical properties of cirrus over the Tibetan Plateau. Adv. Space Res. 2019, 63, 2–15. [Google Scholar] [CrossRef]
- Pratt, K.A.; DeMott, P.J.; French, J.R.; Wang, Z.; Westphal, D.L.; Heymsfield, A.J.; Twohy, C.H.; Prenni, A.J.; Prather, K.A. In situ detection of biological particles in cloud ice-crystals. Nat. Geosci. 2009, 2, 397–400. [Google Scholar] [CrossRef]
- Wang, W.C.; Sheng, L.F.; Jin, H.C.; Han, Y.Q. Dust aerosol effects on cirrus and altocumulus clouds in Northwest China. J. Meteorol. Res. 2015, 29, 793–805. [Google Scholar] [CrossRef]
- Hua, S. Study on Aerosol-Cloud Interaction and Cloud Radiative Effect over the Tibetan Plateau. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2020. [Google Scholar]
- Hua, S.; Liu, Y.Z.; Luo, R.; Shao, T.B.; Zhu, Q.Z. Inconsistent aerosol indirect effects on water clouds and ice clouds over the Tibetan Plateau. Int. J. Climatol. 2020, 40, 3832–3848. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Hua, S.; Jia, R.; Huang, J.P. Effect of Aerosols on the Ice Cloud Properties Over the Tibetan Plateau. J. Geophys. Res.-Atmos. 2019, 124, 9594–9608. [Google Scholar] [CrossRef]
- Yuan, C.; Yao, X.; Qu, Y.; Chen, T.; Huang, Y.; Ma, J. Variability of clouds over Southeast Tibetan Plateau: The roles of aerosols. Chin. Sci. Bull. 2023, 68, 532–545. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Zhu, Q.Z.; Hua, S.; Alam, K.; Dai, T.; Cheng, Y.M. Tibetan Plateau driven impact of Taklimakan dust on northern rainfall. Atmos. Environ. 2020, 234, 117583. [Google Scholar] [CrossRef]
- Merdji, A.; Xu, X.F.; Lu, C.S.; Habtemicheal, B.A.; Li, J.J. Accuracy assessment and climatology of MODIS aerosol optical properties over North Africa. Environ. Sci. Pollut. Res. 2023, 30, 13449–13468. [Google Scholar] [CrossRef] [PubMed]
- Manenti, F.; Cavazzani, S.; Bertolin, C.; Ortolani, S.; Fiorentin, P. Spatial-Temporal resolution implementation of cloud-aerosols data through satellite cross-correlation. MethodsX 2024, 12, 102547. [Google Scholar] [CrossRef] [PubMed]
- Merdji, A.; Lu, C.S.; Xu, X.F.; Mhawish, A. Long-term three-dimensional distribution and transport of Saharan dust: Observation from CALIPSO, MODIS, and reanalysis data. Atmos. Res. 2023, 286, 106658. [Google Scholar] [CrossRef]
- Pan, Z.X.; Mao, F.Y.; Gong, W.; Min, Q.L.; Wang, W. The warming of Tibetan Plateau enhanced by 3D variation of low-level clouds during daytime. Remote Sens. Environ. 2017, 198, 363–368. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. THE CALIPSO MISSION A Global 3D View of Aerosols and Clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- Xu, X.; Dong, L.; Zhao, Y.; Wang, Y. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation. Chin. Sci. Bull. 2019, 64, 2830–2841. [Google Scholar]
- Shen, J.; Cao, N. Characteristics of Aerosol Vertical Distribution over the Yangtze River Delta Region of China in 2018. Environ. Sci. 2019, 40, 4743–4754. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.H.; Winker, D.M.; Tackett, J.L.; Giles, D.M.; Kar, J.; Liu, Z.; Vaughan, M.A.; Powell, K.A.; Trepte, C.R. CALIOP and AERONET aerosol optical depth comparisons: One size fits none. J. Geophys. Res.-Atmos. 2013, 118, 4748–4766. [Google Scholar] [CrossRef]
- Wang, Z.; Sassen, K. Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors. J. Appl. Meteorol. 2001, 40, 1665–1682. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Liu, D. A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements. J. Geophys. Res.-Atmos. 2010, 115, D4. [Google Scholar] [CrossRef]
- Fang, L.; Li, Y.; Sun, G.; Gao, C.; Lu, Z. Horizontal and Vertical Distributions of Clouds of Different Types Based on CloudSat-CALIPSO Data. Clim. Environ. Res. 2016, 21, 547–556. [Google Scholar]
- Kendall, M.G. Partial Rank correlation. Biometrika 1942, 32, 277–283. [Google Scholar] [CrossRef]
- Zhao, B.; Gu, Y.; Liou, K.N.; Wang, Y.; Liu, X.H.; Huang, L.; Jiang, J.H.; Su, H. Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals. Geophys. Res. Lett. 2018, 45, 3297–3306. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.U.; Pavel, M.R.S.; Joy, K.S.; Jeba, F.; Islam, M.S.; Paul, S.; Bari, M.A.; Salam, A. Spatial and temporal variation of aerosol optical depths over six major cities in Bangladesh. Atmos. Res. 2021, 262, 105803. [Google Scholar] [CrossRef]
- Che, H.Z.; Wang, Y.Q.; Sun, J.Y.; Zhang, X.C.; Zhang, X.Y.; Guo, J.P. Variation of Aerosol Optical Properties over the Taklimakan Desert in China. Aerosol Air Qual. Res. 2013, 13, 777–785. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, T.L.; Boiyo, R.; Chen, S.Y.; Lu, Z.Q.; Wu, Y.; Zhao, Y. Vertical Structures of Dust Aerosols over East Asia Based on CALIPSO Retrievals. Remote Sens. 2019, 11, 701. [Google Scholar] [CrossRef]
- Zhen, X.; Kang, Y.; Yang, X.; Yang, F.; He, Q. Statistical Analysis of Dust Weather Frequency in Taklamakan Desert. Environ. Sci. Manag. 2021, 46, 133–137. [Google Scholar]
- Ge, J.M.; Huang, J.P.; Xu, C.P.; Qi, Y.L.; Liu, H.Y. Characteristics of Taklimakan dust emission and distribution: A satellite and reanalysis field perspective. J. Geophys. Res.-Atmos. 2014, 119, 11772–11783. [Google Scholar] [CrossRef]
- Huang, J.P.; Wang, T.H.; Wang, W.C.; Li, Z.Q.; Yan, H.R. Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res.-Atmos. 2014, 119, 11398–11416. [Google Scholar] [CrossRef]
- Froyd, K.D.; Yu, P.F.; Schill, G.P.; Brock, C.A.; Kupc, A.; Williamson, C.J.; Jensen, E.J.; Ray, E.; Rosenlof, K.H.; Bian, H.S.; et al. Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements. Nat. Geosci. 2022, 15, 177. [Google Scholar] [CrossRef]
- Shen, H.; Yin, Z.; He, Y.; Wang, L.; Zhan, Y.; Jing, D. Measurement report: Influence of long-range transported dust on cirrus cloud formation over remote ocean: Case studies near Midway Island, Pacific. EGUsphere 2023, 2023, 1–21. [Google Scholar] [CrossRef]
- Xu, C.; Ma, Y.M.; Yang, K.; You, C. Tibetan Plateau Impacts on Global Dust Transport in the Upper Troposphere. J. Clim. 2018, 31, 4745–4756. [Google Scholar] [CrossRef]
- Fossum, K.N.; Ovadnevaite, J.; Ceburnis, D.; Preissler, J.; Snider, J.R.; Huang, R.J.; Zuend, A.; O’Dowd, C. Sea-spray regulates sulfate cloud droplet activation over oceans. npj Clim. Atmos. Sci. 2020, 3, 14. [Google Scholar] [CrossRef]
- Singh, A.; Raj, S.S.; Panda, U.; Kommula, S.M.; Jose, C.; Liu, T.; Huang, S.; Swain, B.; Pöhlker, M.L.; Reyes-Villegas, E. Rapid growth and high cloud-forming potential of anthropogenic sulfate aerosol in a thermal power plant plume during COVID lockdown in India. npj Clim. Atmos. Sci. 2023, 6, 109. [Google Scholar] [CrossRef]
- Wang, T.H.; Han, Y.; Huang, J.P.; Sun, M.X.; Jian, B.D.; Huang, Z.W.; Yan, H.R. Climatology of Dust-Forced Radiative Heating Over the Tibetan Plateau and Its Surroundings. J. Geophys. Res.-Atmos. 2020, 125, e2020JD032942. [Google Scholar] [CrossRef]
- Fan, J.; Leung, L.R.; DeMott, P.J.; Comstock, J.M.; Singh, B.; Rosenfeld, D.; Tomlinson, J.M.; White, A.; Prather, K.A.; Minnis, P.; et al. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: Local pollution versus long-range transported dust. Atmos. Chem. Phys. 2014, 14, 81–101. [Google Scholar] [CrossRef]
- Luo, R.; Liu, Y.Z.; Luo, M.; Li, D.; Tan, Z.Y.; Shao, T.B.; Alam, K. Dust effects on mixed-phase clouds and precipitation during a super dust storm over northern China. Atmos. Environ. 2023, 313, 120081. [Google Scholar] [CrossRef]
- Engström, A.; Ekman, A.M.L. Impact of meteorological factors on the correlation between aerosol optical depth and cloud fraction. Geophys. Res. Lett. 2010, 37, L18814. [Google Scholar] [CrossRef]
- Shao, N.; Lu, C.; Jia, X.; Wang, Y.; Li, Y.; Yin, Y.; Zhu, B.; Zhao, T.; Liu, D.; Niu, S.; et al. Radiation fog properties in two consecutive events under polluted and clean conditions in the Yangtze River Delta, China: A simulation study. Atmos. Chem. Phys. 2023, 23, 9873–9890. [Google Scholar] [CrossRef]
- Yang, Y.; Russell, L.M.; Lou, S.J.; Liu, Y.; Singh, B.; Ghan, S.J. Rain-aerosol relationships influenced by wind speed. Geophys. Res. Lett. 2016, 43, 2267–2274. [Google Scholar] [CrossRef]
- Alam, K.; Anwar, K.; Liu, Y.A.; Huang, Z.W.; Huang, J.P.; Liu, Y.Z. Analysis of aerosol cloud interactions with a consistent signal of meteorology and other influencing parameters. Atmos. Res. 2022, 275, 106241. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, W.X.; Liu, Q.Q.; Zhou, J.C.; Crumeyrolle, S.; Xu, X.Z.; Zhang, C.; Ye, C.X.; Zheng, Y.; Che, H.Z.; et al. Strong Aerosol Absorption and Its Radiative Effects in Lhasa on the Tibetan Plateau. Geophys. Res. Lett. 2024, 51, e2023GL107833. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, L. The effects of heating by transported dust layers on cloud and precipitation: A numerical study. Atmos. Chem. Phys. 2007, 7, 3497–3505. [Google Scholar] [CrossRef]
- Carrió, G.G.; Cotton, W.R.; Cheng, W.Y.Y. Urban growth and aerosol effects on convection over Houston Part I: The August 2000 case. Atmos. Res. 2010, 96, 560–574. [Google Scholar] [CrossRef]
- Han, J.Y.; Baik, J.J.; Khain, A.P. A Numerical Study of Urban Aerosol Impacts on Clouds and Precipitation. J. Atmos. Sci. 2012, 69, 504–520. [Google Scholar] [CrossRef]
- Van Den Heever, S.C.; Cotton, W.R. Urban aerosol impacts on downwind convective storms. J. Appl. Meteorol. Climatol. 2007, 46, 828–850. [Google Scholar] [CrossRef]
- Fan, J.W.; Rosenfeld, D.; Yang, Y.; Zhao, C.; Leung, L.R.; Li, Z.Q. Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China. Geophys. Res. Lett. 2015, 42, 6066–6075. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Toon, O.B.; Stevens, D.E.; Heymsfield, A.J.; Ramanathan, V.; Welton, E.J. Reduction of tropical cloudiness by soot. Science 2000, 288, 1042–1047. [Google Scholar] [CrossRef]
- Xiong, C.R.; Li, J.; Liu, Z.X.; Zhang, Z.Y. The dominant role of aerosol-cloud interactions in aerosol-boundary layer feedback: Case studies in three megacities in China. Front. Environ. Sci. 2022, 10, 1002412. [Google Scholar] [CrossRef]
- Seiki, T.; Nakajima, T. Aerosol Effects of the Condensation Process on a Convective Cloud Simulation. J. Atmos. Sci. 2014, 71, 833–853. [Google Scholar] [CrossRef]
- Herbert, R.J.; Bellouin, N.; Highwood, E.J.; Hill, A.A. Diurnal cycle of the semi-direct effect from a persistent absorbing aerosol layer over marine stratocumulus in large-eddy simulations. Atmos. Chem. Phys. 2020, 20, 1317–1340. [Google Scholar] [CrossRef]
- Feingold, G.; Remer, L.A.; Ramaprasad, J.; Kaufman, Y.J. Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey's approach. J. Geophys. Res.-Atmos. 2001, 106, 22907–22922. [Google Scholar] [CrossRef]
- Patel, P.N.; Kumar, R. Dust Induced Changes in Ice Cloud and Cloud Radiative Forcing over a High Altitude Site. Aerosol Air Qual. Res. 2016, 16, 1820–1831. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Chakraborty, T.; Sorooshian, A.; Ziemba, L.D.; Voigt, C.; Thornhill, K.L. On the Stochasticity of Aerosol-Cloud Interactions within a Data-driven Framework. arXiv 2024, arXiv:2403.08702. [Google Scholar]
- Su, L.; Fung, J.C.H. Investigating the role of dust in ice nucleation within clouds and further effects on the regional weather system over East Asia—Part 1: Model development and validation. Atmos. Chem. Phys. 2018, 18, 8707–8725. [Google Scholar] [CrossRef]
Data | Observation Wavelength | Product | Parameter | Spatial Resolution | Temporal Resolution | Period | Usage |
---|---|---|---|---|---|---|---|
MERRA-2 | / | M2TMNXAER | Black Carbon AOD, Dust AOD, Organic Carbon AOD, Sea Salt AOD, Sulfate AOD, Total AOD | 0.625° × 0.5° horizontal | Monthly | June 2006–December 2010 | Analyze the distribution characteristics of aerosols |
CALIPSO | 532 and 1064 nm | L2_05kmAPro_V4 | Extinction_Coefficient_532, Extinction_Coefficient_Uncertainty_532, CAD_Score, Extinction_QC_Flag_532, Atmospheric_Volume_Description | 5 × 5 km horizontal; 0.06 km from −0.5 to 20.2 km, 0.18 km from 20.2 to 30.1 km vertical | Ground tracks repeat every 16 days | 19 June 2006–31 December 2010 | Calculate AOD and analyze the correlation between AOD and cloud macrophysical/microphysical characteristics |
CloudSat | 3.2 mm | 2B-CLDCLASS /2B-CLDCLASS-LIDAR | CTH, CBH, Cloud Layer, Precip Flag, Cloud Phase | 1.3 × 1.7 km horizontal; 10 layers vertical | Ground tracks repeat every 16 days | 19 June 2006–31 December 2010 | Analyze the correlation between AOD and cloud macrophysical characteristics |
2B-CWC-RO | LER, IER, LNC, INC | 1.3 × 1.7 km horizontal; 0.24 km vertical | Ground tracks repeat every 16 days | 19 June 2006–31 December 2010 | Analyze the correlation between AOD and cloud microphysical characteristics | ||
LWP, IWP | 1.3 × 1.7 km horizontal | ||||||
ECMWF | / | ERA5 | U, V, PVV, T, RH | 0.25° × 0.25° horizontal; 37 pressure levels from 1000 hPa to 1 hPa | Hourly | 19 June 2006–31 December 2010 | Analyze the correlation between AOD, cloud macrophysical/microphysical characteristics, and meteorological factors |
PWV, CAPE, SP | 0.25° × 0.25° horizontal |
MAM and JJA | SON and DJF | |||||
---|---|---|---|---|---|---|
ACIIER | ACILER | ACIIER | ACILER | |||
Ice-phase clouds | IWP/(g m−2) | 1–5 | 0.10 × 10−1 * | 0.06 × 10−1 | ||
5–10 | 0.18 × 10−1 * | 0.03 × 10−1 | ||||
10–15 | 0.14 × 10−1 | −0.03 × 10−1 | ||||
Mixed-phase clouds | CWP/(g m−2) | 10–50 | −0.46 × 10−2 | −0.26 × 10−2 | 0.49 × 10−2 | 0.70 × 10−2 |
50–100 | 0.69 × 10−2 | −0.02 × 10−2 | 1.83 × 10−2 | 3.78 × 10−2 * | ||
100–150 | 0.41 × 10−2 | −0.84 × 10−2 | 0.77 × 10−2 | −0.01 × 10−2 | ||
150–200 | −1.29 × 10−2 | −1.69 × 10−2 | −4.31 × 10−2 | −0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Qian, L.; Ma, X.; Qiu, Y.; Yang, J.; He, X.; Li, J.; Zhu, L.; Gong, J.; Lu, C. Impact of Aerosols on the Macrophysical and Microphysical Characteristics of Ice-Phase and Mixed-Phase Clouds over the Tibetan Plateau. Remote Sens. 2024, 16, 1781. https://doi.org/10.3390/rs16101781
Zhu S, Qian L, Ma X, Qiu Y, Yang J, He X, Li J, Zhu L, Gong J, Lu C. Impact of Aerosols on the Macrophysical and Microphysical Characteristics of Ice-Phase and Mixed-Phase Clouds over the Tibetan Plateau. Remote Sensing. 2024; 16(10):1781. https://doi.org/10.3390/rs16101781
Chicago/Turabian StyleZhu, Shizhen, Ling Qian, Xueqian Ma, Yujun Qiu, Jing Yang, Xin He, Junjun Li, Lei Zhu, Jing Gong, and Chunsong Lu. 2024. "Impact of Aerosols on the Macrophysical and Microphysical Characteristics of Ice-Phase and Mixed-Phase Clouds over the Tibetan Plateau" Remote Sensing 16, no. 10: 1781. https://doi.org/10.3390/rs16101781
APA StyleZhu, S., Qian, L., Ma, X., Qiu, Y., Yang, J., He, X., Li, J., Zhu, L., Gong, J., & Lu, C. (2024). Impact of Aerosols on the Macrophysical and Microphysical Characteristics of Ice-Phase and Mixed-Phase Clouds over the Tibetan Plateau. Remote Sensing, 16(10), 1781. https://doi.org/10.3390/rs16101781