Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = lpars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7982 KB  
Article
RNA Sequencing of Immune Response-Related Gene Expression Characteristics in Bovine Mammary Glands Infected with Escherichia coli
by Kai Zhang, Yuanyuan Zhang, Hong Su, Min Zhang, Feifei Zhao, Daqing Wang, Guifang Cao, Yong Zhang and Caiyun Wang
Microorganisms 2025, 13(10), 2226; https://doi.org/10.3390/microorganisms13102226 - 23 Sep 2025
Viewed by 1039
Abstract
Bovine mastitis is one of the most prevalent and economically significant diseases affecting dairy cows worldwide, with Escherichia coli (E. coli) recognized as one of the principal pathogens causing acute mastitis. The innate immune system plays a crucial role in the [...] Read more.
Bovine mastitis is one of the most prevalent and economically significant diseases affecting dairy cows worldwide, with Escherichia coli (E. coli) recognized as one of the principal pathogens causing acute mastitis. The innate immune system plays a crucial role in the defense of the bovine mammary gland, serving as the first line of defense against pathogen invasion. This study elucidated the pathological mechanisms and immune response-related molecular regulatory networks involved in E. coli-induced bovine mastitis. Histopathological and apoptosis analyses of mammary tissues were performed using hematoxylin-eosin (HE) staining and TUNEL staining, respectively, while RNA sequencing (RNA-seq) was conducted to identify differentially expressed genes (DEGs) and their associated signaling pathways. HE staining revealed typical inflammatory lesions in the mammary glands of mastitis cows. TUNEL staining further confirmed that the level of apoptosis in the mastitis group was significantly higher than in the healthy control group (p < 0.0001). RNA-seq analysis identified 2717 DEGs, with 2238 upregulated and 479 downregulated genes. The top 20 significantly upregulated genes (e.g., S100A12, IL1RN, IL1R2, CXCL8, SAA3, S100A8, S100A9, TREML2, TREM1, M-SAA3.2, PTX3, MMP9) were predominantly involved in inflammatory immune regulation, acute phase responses (e.g., HP, SAA3), and cellular signal transduction (e.g., PLEK, LPAR3). Gene Ontology (GO) enrichment analysis revealed that these DEGs were mainly associated with biological processes, such as signal transduction, immune response, inflammatory response, and transcriptional regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these DEGs were significantly enriched in key inflammatory and immune regulatory pathways, including the TNF signaling pathway, C-type lectin receptor signaling pathway, Chemokine signaling pathway, NOD-like receptor signaling pathway, NF-κ B signaling pathway, and IL-17 signaling pathway, suggesting that these pathways play central roles in the mammary immune defense against E. coli infection. In conclusion, this study demonstrated at the histopathological, cellular apoptosis, and transcriptomic levels that E. coli infection induces mammary tissue damage and apoptosis by activating immune and inflammation-related genes (S100A12, IL1RN, IL1R2, CXCL8, SAA3, S100A8, S100A9, TREML2, TREM1, M-SAA3.2, PTX3, MMP9) and key signaling pathways (TNF signaling pathway, C-type lectin receptor signaling pathway, Chemokine signaling pathway, NOD-like receptor signaling pathway, NF-κ B signaling pathway, IL-17 signaling pathway). The findings of this study provide a theoretical basis for probing into the pathogenesis of bovine mastitis and the development of targeted interventions. Full article
(This article belongs to the Special Issue Microbial Infections in Ruminants)
Show Figures

Figure 1

13 pages, 759 KB  
Article
Bone Marrow Mononuclear Cells Administration Restore Lysophosphatidic Acid (LPA) Levels and Cellular Signaling Axis in Rats Submitted to Renal Ischemia–Reperfusion
by Paula Mattos-Silva, Sabrina Ribeiro Gonsalez, Lucienne S. Lara and Marcelo Einicker-Lamas
Int. J. Mol. Sci. 2025, 26(18), 9186; https://doi.org/10.3390/ijms26189186 - 20 Sep 2025
Viewed by 642
Abstract
Bone marrow-derived mononuclear cells (BMMCs) have shown beneficial effects on tissue repair, largely attributed to the paracrine action of bioactive mediators such as lysophosphatidic acid (LPA). This study aimed to evaluate the effects of BMMC treatment in a rat model of renal ischemia/reperfusion [...] Read more.
Bone marrow-derived mononuclear cells (BMMCs) have shown beneficial effects on tissue repair, largely attributed to the paracrine action of bioactive mediators such as lysophosphatidic acid (LPA). This study aimed to evaluate the effects of BMMC treatment in a rat model of renal ischemia/reperfusion (I/R) injury, focusing on LPA-related molecular pathways. Male Wistar rats were divided into three groups: control; I/R, subjected to bilateral renal artery clamping for 30 min followed by 24 h of reperfusion; and I/R + BMMC, which received 1 × 106 BMMCs per kidney directly into the renal capsule post-ischemia. During reperfusion, the rats were placed in metabolic cages for urine collection, renal function and protein expression. BMMC treatment did not reverse the I/R-induced increase in urine volume or decrease in glomerular filtration rate, serum potassium, or filtered sodium load. However, it prevented proteinuria, increased blood urea nitrogen, and enhanced urinary potassium excretion. Mechanistically, BMMC treatment prevented I/R-induced upregulation of LPAR1, downregulated LPAR2 and LPAR3, restored plasma LPA levels, and reduced renal autotaxin content. These results suggest that BMMCs modulate harmful LPA-related signaling and may contribute to renal protection through paracrine mechanisms in the setting of acute I/R injury. Full article
(This article belongs to the Special Issue Bioactive Lipids and Their Derivatives in Biomedical Applications)
Show Figures

Figure 1

18 pages, 3414 KB  
Article
Identification of Key Genes and Pathways Associated with Frailty and Exercise Effects Using a Network and Evolutionary Approach
by Kyoko Naito, Hiromichi Akahori, Yoshinori Muto and Tomoyoshi Terada
Genes 2025, 16(8), 976; https://doi.org/10.3390/genes16080976 - 19 Aug 2025
Viewed by 1003
Abstract
Background: Frailty is an aging-associated syndrome involving a loss of physiological reserve and function, with decreased ability to recover from physical and psychosocial stress. However, the etiology and pathogenesis of frailty remain largely unknown. Aim: This study aimed to investigate key genes involved [...] Read more.
Background: Frailty is an aging-associated syndrome involving a loss of physiological reserve and function, with decreased ability to recover from physical and psychosocial stress. However, the etiology and pathogenesis of frailty remain largely unknown. Aim: This study aimed to investigate key genes involved in frailty pathogenesis, exercise effects, and their contributions. Methods: We performed a weighted gene co-expression network analysis using a microarray dataset. By using the positive selection (PS), human accelerated region (HAR), and aging gene sets, we identified key genes for frailty and exercise-related genes. Results: We identified magenta and pink modules that have the most significant enrichments for the evolutionally elaborated genes. A functional enrichment analysis (FEA) revealed that genes related to redox-process regulation and extracellular-matrix organization were enriched in magenta and pink modules, respectively. We observed that six of the evolutionarily imprinted genes in the modules (MEOX2, PLCB4, LPAR6, SH3KBP1, APP and SPON1) were highly connected and showed signs of hub properties, which might play crucial roles in frailty- and exercise-related mechanisms. Conclusions: Further investigation into the functions of the identified modules and their member genes could aid in identifying diagnostic biomarkers and therapeutic targets for frailty. Full article
(This article belongs to the Special Issue Genetics and Genomics of Heritable Pediatric Disorders)
Show Figures

Figure 1

12 pages, 589 KB  
Conference Report
2024 Annual Meeting of the International Network on Ectopic Calcification (INTEC)—Abstract Proceedings
by M. Leonor Cancela, Ahmed Alouane, Pietro M. Bertelli, Antonio Camacho, Robbe Derudder, Antonella Forlino, Matthew P. Harris, Marta Jacinto, Imre Lengyel, Wolfgang Link, Monzur Murshed, Andreas Pasch, Arun-Kumar Kaliya-Perumal, Daniela Quaglino, Zihan Qin, Yves Sabbagh, Elena Seminari, Marcos M. Villar, Christoph Winkler and Olivier M. Vanakker
Gout Urate Cryst. Depos. Dis. 2025, 3(3), 14; https://doi.org/10.3390/gucdd3030014 - 6 Aug 2025
Viewed by 868
Abstract
The 3rd Annual Meeting of the International Network on Ectopic Calcification (INTEC) was held in Faro, Portugal on 12–13 September 2024. This hybrid meeting brought together researchers and clinicians focused on the molecular, (patho)physiological, and clinical aspects of ectopic calcification in hereditary and [...] Read more.
The 3rd Annual Meeting of the International Network on Ectopic Calcification (INTEC) was held in Faro, Portugal on 12–13 September 2024. This hybrid meeting brought together researchers and clinicians focused on the molecular, (patho)physiological, and clinical aspects of ectopic calcification in hereditary and acquired conditions, as well as in aging. The findings presented in this year’s meeting emphasised the complexity of the field, offering new insights into both mechanistic pathways and translational hurdles. The abstracts of this year’s meeting are collected in this conference paper, with permission from the corresponding authors. Full article
Show Figures

Figure 1

20 pages, 7927 KB  
Article
Efficient License Plate Alignment and Recognition Using FPGA-Based Edge Computing
by Chao-Hsiang Hsiao, Hoi Lee, Yin-Tien Wang and Min-Jie Hsu
Electronics 2025, 14(12), 2475; https://doi.org/10.3390/electronics14122475 - 18 Jun 2025
Cited by 1 | Viewed by 2278
Abstract
Efficient and accurate license plate recognition (LPR) in unconstrained environments remains a critical challenge, particularly when confronted with skewed imaging angles and the limited computational capabilities of edge devices. In this study, we propose a high-performance, FPGA-based license plate alignment and recognition (LPAR) [...] Read more.
Efficient and accurate license plate recognition (LPR) in unconstrained environments remains a critical challenge, particularly when confronted with skewed imaging angles and the limited computational capabilities of edge devices. In this study, we propose a high-performance, FPGA-based license plate alignment and recognition (LPAR) system to address these issues. Our LPAR system integrates lightweight deep learning models, including YOLOv4-tiny for license plate detection, a refined convolutional pose machine (CPM) for pose estimation and alignment, and a modified LPRNet for character recognition. By restructuring the pose estimation and alignment architectures to enhance the geometric correction of license plates and adding channel and spatial attention mechanisms to LPRNet for better character recognition, the proposed LPAR system improves recognition accuracy from 88.33% to 95.00%. The complete pipeline achieved a processing speed of 2.00 frames per second (FPS) on a resource-constrained FPGA platform, demonstrating its practical viability for real-time deployment in edge computing scenarios. Full article
Show Figures

Figure 1

20 pages, 11248 KB  
Article
Integrated Analysis of DNA Methylome and Transcriptome Reveals Regulatory Mechanism in the Longissimus Dorsi of Duroc Pigs
by Shiyin Li, Yarui Gao, Lixia Ma, Wei Chen, Zhao Ma, Zhanchi Ren, Yunzhou Wang and Yongqing Zeng
Cells 2025, 14(11), 786; https://doi.org/10.3390/cells14110786 - 27 May 2025
Viewed by 1124
Abstract
DNA methylation plays a pivotal role in the epigenetic regulation of gene expression and holds promise for enhancing livestock meat production. In this study, we analyzed the DNA methylome and transcriptome of the longissimus dorsi muscle (LDM) in Duroc pigs with varying growth [...] Read more.
DNA methylation plays a pivotal role in the epigenetic regulation of gene expression and holds promise for enhancing livestock meat production. In this study, we analyzed the DNA methylome and transcriptome of the longissimus dorsi muscle (LDM) in Duroc pigs with varying growth rates. Our results reveal that DNA methylation suppressed the expression of key muscle development markers (MYOD, MYOG, MHC1) and proliferation markers (PI67, PCNA), as well as the protein expression and phosphorylation of PI3K and AKT (p < 0.05). Dual-luciferase reporter assays and EMSA showed that SP1 overexpression enhanced the luciferase activity of the wild-type LPAR1 promoter, an effect amplified by the demethylating agent 5-AZA (p < 0.05). The EMSA further demonstrates the relationship between SP1 and the LPAR1 promoter region. Overexpression of SP1 upregulated LPAR1 expression at both the mRNA and protein levels (p < 0.05). Knockdown of LPAR1 reduced muscle marker gene expression and delayed myotube formation, while silencing SP1 disrupted the expression of LPAR1, MEF2C, and MHC1 (p < 0.05), and the demethylation induced by 5-AZA partially reversed these effects. These findings suggest that the DNA methylation/SP1/LPAR1 axis is critical for skeletal muscle growth and development, underscoring the regulatory role of DNA methylation in muscle formation. Full article
Show Figures

Figure 1

35 pages, 18237 KB  
Article
Effect of Corticosterone on Gene Expression in the Context of Global Hippocampal Transcription
by Grzegorz R. Juszczak, Adrian M. Stankiewicz, Rafał R. Starzyński, Magdalena Ogłuszka and Aneta Jaszczyk
Int. J. Mol. Sci. 2025, 26(10), 4889; https://doi.org/10.3390/ijms26104889 - 21 May 2025
Cited by 2 | Viewed by 1777
Abstract
The composition of genomic mediators of glucocorticoid actions in the brain remains elusive because of low-statistical-power experiments and the associated transcriptomic data with very low consistency. The problem is further exaggerated by the underrepresentation of chronic experiments and the interpretation of differentially expressed [...] Read more.
The composition of genomic mediators of glucocorticoid actions in the brain remains elusive because of low-statistical-power experiments and the associated transcriptomic data with very low consistency. The problem is further exaggerated by the underrepresentation of chronic experiments and the interpretation of differentially expressed genes without understanding their contribution to the total transcriptomic activity. To fill existing gaps in knowledge, we have performed a large transcriptomic experiment, testing the effects of prolonged treatment with corticosterone on the hippocampal transcriptome (RNA sequencing). The experiment showed that prolonged treatment with corticosterone induced a set of transcriptomic effects that were replicable across treatment durations, including genes relevant for human PTSD (Opalin, Pllp, Ttyh2, Lpar1) and prolonged stress in animals (Cnp, Fam163a, Fcrls, Tmem125). Some of the affected genes are specific for oligodendrocytes, neurons, astrocytes, immune cells, the vascular system, and brain ventricles, indicating that glucocorticoids may affect all central nervous system components. The data also showed that the largest changes in expression of corticosterone-responsive genes are restricted to genes with a relatively low expression level and small contribution to the overall pool of mRNAs in the hippocampus. As a result, even a large change in the number of affected genes leads to a small change in the number of newly synthesized mRNA copies. This means, in turn, that the transcriptomic changes induced by corticosterone have low-cost effects on the brain. This specificity of transcriptomic responses also poses a challenge for the interpretation of data and constitutes a potential source of reporting bias in past studies. Therefore, there is a need for further research on products of gene expression, both at the transcriptomic and proteomic levels, during stress conditions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 11628 KB  
Article
LPAR6 Inhibits the Progression of Hepatocellular Carcinoma (HCC) by Suppressing the Nuclear Translocation of YAP/TAZ
by Gegentuya Bao, Manjue Zhai, Yali Yan, Yuewu Wang and Alatangaole Damirin
Int. J. Mol. Sci. 2025, 26(9), 4205; https://doi.org/10.3390/ijms26094205 - 29 Apr 2025
Cited by 2 | Viewed by 1377
Abstract
Lysophosphatidic acid (LPA), a key bioactive lipid, modulates cellular functions through interactions with LPA receptors (LPAR1-6) of the G protein-coupled receptor (GPCR) family, participating in both physiological and pathological processes. While LPA/LPAR signaling typically promotes cancer progression by regulating angiogenesis and cancer cell [...] Read more.
Lysophosphatidic acid (LPA), a key bioactive lipid, modulates cellular functions through interactions with LPA receptors (LPAR1-6) of the G protein-coupled receptor (GPCR) family, participating in both physiological and pathological processes. While LPA/LPAR signaling typically promotes cancer progression by regulating angiogenesis and cancer cell metastasis, our study unexpectedly reveals that LPA exhibits an inhibitory effect on cellular activity in hepatocellular carcinoma (HCC). We further investigate the specific receptor subtypes mediating these effects and elucidate the underlying mechanisms at the cellular, tissue, and organismal levels. Pharmacological studies demonstrated that LPA predominantly inhibits HCC progression through activation of LPAR6. Mechanistically, LPA/LPAR6 activation suppresses HCC proliferation, migration, and epithelial–mesenchymal transition (EMT). In vivo, LPAR6 overexpression in a nude mouse xenograft model significantly reduced tumor growth rate and volume, accompanied by decreased Ki-67 expression in tumor tissues, as shown by immunohistochemical analysis. Transcriptomic analysis combined with Western blot experiments demonstrated that LPA/LPAR6 inhibits YAP/TAZ nuclear translocation, thereby suppressing HCC cell proliferation and migration. In conclusion, these findings suggest that enhancing LPAR6 expression or developing LPAR6 agonists may offer a promising therapeutic strategy for adjuvant cancer treatment. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 3211 KB  
Article
Generation of New Knock-Out Mouse Strains of Lysophosphatidic Acid Receptor 1
by Georgia Antonopoulou, Christiana Magkrioti, Ismini Chatzidaki, Dimitris Nastos, Sofia Grammenoudi, Konstantinos Bozonelos and Vassilis Aidinis
Int. J. Mol. Sci. 2025, 26(6), 2811; https://doi.org/10.3390/ijms26062811 - 20 Mar 2025
Cited by 1 | Viewed by 1926
Abstract
The lysophosphatidic acid receptor 1 (LPAR1) is one of the six cognate G protein-coupled receptors of the bioactive, growth factor-like phospholipid lysophosphatidic acid (LPA). LPAR1 is widely expressed in different cell types and mediates many LPA effects. LPAR1 has been implicated in several [...] Read more.
The lysophosphatidic acid receptor 1 (LPAR1) is one of the six cognate G protein-coupled receptors of the bioactive, growth factor-like phospholipid lysophosphatidic acid (LPA). LPAR1 is widely expressed in different cell types and mediates many LPA effects. LPAR1 has been implicated in several chronic inflammatory diseases, and especially pulmonary fibrosis, where it has been established as a promising therapeutic target. Herein, we present the generation of several Lpar1 mouse strains through genetic recombination. These strains include an initial versatile Lpar1 strain (tm1a) from which three other strains derive: an Lpar1 reporter knockout strain (tm1b) where LacZ has replaced exon 3 of Lpar1; a “floxed” Lpar1 strain (tm1c), where exon 3 is flanked by two loxP sites allowing conditional, cell-specific Lpar1 inactivation; and a complete KO strain of Lpar1 (tm1d), where exon 3 has been deleted. The generated strains are novel genetic tools, that can have various applications in studying LPA-LPAR1 signaling and its role in normal physiology and disease. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 3872 KB  
Article
Evaluation of Lysophosphatidic Acid Effects and Its Receptors During Bovine Embryo Development
by Bo Yu, Shuying Dai, Lei Cheng, Qirong Lu, Qing Liu and Hongbo Chen
Int. J. Mol. Sci. 2025, 26(6), 2596; https://doi.org/10.3390/ijms26062596 - 13 Mar 2025
Viewed by 1298
Abstract
Lysophosphatidic acid (LPA) is a small bioactive phospholipid which plays an important role during embryonic development and promotes developmental potential of in-vitro-produced (IVP) embryos in several species, including sheep and pigs. In bovines, LPA accelerates IVP blastocyst formation through the Hippo/YAP pathway. However, [...] Read more.
Lysophosphatidic acid (LPA) is a small bioactive phospholipid which plays an important role during embryonic development and promotes developmental potential of in-vitro-produced (IVP) embryos in several species, including sheep and pigs. In bovines, LPA accelerates IVP blastocyst formation through the Hippo/YAP pathway. However, other LPA effects and its potential receptors during bovine embryo development are less clear. In this study, we used enzyme-linked immunosorbent assay (ELISA) to assess the presence of LPA in bovine oviductal fluid and determine cell apoptosis in embryos after LPA stimulation by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and quantitative reverse transcription polymerase chain reaction (qRT-PCR). We further evaluated potential receptors of LPA through molecular docking, RNA-seq data analysis and quantitative RT-PCR. LPA was found to be present in oviductal fluid. An increase in total cell number and a decrease in apoptosis levels were detected in day 7 blastocysts after LPA treatment. Among eight LPA receptors (LPARs), GPR87 and LPAR2 showed the highest affinity with LPA and their transcripts were expressed in embryos after the 16-cell stage in RNA-seq and qRT-PCR analysis. However, only the expression of LPAR2 was significantly increased in day 6 blastocysts after LPA stimulation, indicating its potential role in LPA-mediated signaling pathways. Our data highlight the positive effects of LPA on embryos and enrich information of related signaling mediators of LPA during embryonic development. Full article
(This article belongs to the Special Issue Molecular Research on Embryo Developmental Potential)
Show Figures

Figure 1

10 pages, 876 KB  
Communication
Application of Minimally Invasive Oral Swab Samples for qPCR-Based Sexing in Neognathae Birds
by Maria-Carmen Turcu, Anamaria Ioana Paștiu, Lucia-Victoria Bel, Anca-Alexandra Doboși and Dana Liana Pusta
Vet. Sci. 2025, 12(1), 73; https://doi.org/10.3390/vetsci12010073 - 20 Jan 2025
Cited by 2 | Viewed by 2182
Abstract
Birds are inherently social creatures that rely on pairing to enhance their well-being. Since many bird species lack obvious physical differences between females and males, sex identification is essential for ensuring their welfare. Additionally, early determination of the sexes of birds is crucial [...] Read more.
Birds are inherently social creatures that rely on pairing to enhance their well-being. Since many bird species lack obvious physical differences between females and males, sex identification is essential for ensuring their welfare. Additionally, early determination of the sexes of birds is crucial for their breeders, especially considering that most companion birds do not display clear sexual characteristics. Molecular genetic sexing has been demonstrated to be the most reliable method for determining the sexes of monomorphic birds. The objective of the present study was to demonstrate rapid, effective, and precise identification of sex in birds through quantitative real-time PCR (qPCR) using samples obtained via a minimally invasive technique (oral swabs). This qPCR method assesses variations in gene copy numbers within conserved Z-specific genes such as CHRNA6, DDX4, VPS13A, LPAR1, and TMEM161B, which are absent from the W chromosome. A total of 34 samples were included in this study from the following 17 bird species: domestic pigeon (Columba livia domestica), domestic chicken (Gallus gallus domesticus), domestic goose (Anser anser f domesticus), domestic duck (Anas platyrhynchos domesticus), Mute swan (Cygnus olor), Budgerigar (Melopsittacus undulatus), Lovebird (Agapornis roseicollis), Cockatiel (Nymphicus hollandicus), Red-rumped parrot (Psephotus haematonotus), Rose-ringed parakeet (Psittacula krameri), African grey parrot (Psittacus erithacus), domestic Canary (Serinus canaria forma domestica), Goldfinch (Carduelis carduelis major), Gouldian Finch (Chloebia gouldiae), Red Siskin (Carduelis cucullata), Australian Zebra Finch (Taeniopygia castanotis), and Common buzzard (Buteo buteo). The results proved that the CHRNA6, DDX4, VPS13A, LPAR1, and TMEM161B genes can reveal the sexes in the Neognath birds tested. Full article
Show Figures

Figure 1

21 pages, 7426 KB  
Article
Structure-Based Discovery of MolPort-137: A Novel Autotaxin Inhibitor That Improves Paclitaxel Efficacy
by Prateek Rai, Christopher J. Clark, Vandana Kardam, Carl B. Womack, Joshua Thammathong, Derek D. Norman, Gábor J. Tigyi, Kevin Bicker, April M. Weissmiller, Kshatresh Dutta Dubey and Souvik Banerjee
Int. J. Mol. Sci. 2025, 26(2), 597; https://doi.org/10.3390/ijms26020597 - 12 Jan 2025
Viewed by 2820
Abstract
The autotaxin–lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies [...] Read more.
The autotaxin–lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies highlight the promise of ATX/LPAR inhibitors in combination with conventional chemotherapeutic drugs to overcome some forms of this resistance, representing a novel therapeutic strategy. In the current study, we employed structure-based virtual screening, integrating pharmacophore modeling and molecular docking, to identify MolPort-137 as a novel ATX inhibitor with an IC50 value of 1.6 ± 0.2 μM in an autotaxin enzyme inhibition assay. Molecular dynamics simulations and binding free energy calculations elucidated the binding mode of MolPort-137 and its critical amino acid interactions. Remarkably, MolPort-137 exhibited no cytotoxicity as a single agent but enhanced the effectiveness of paclitaxel in 4T1 murine breast carcinoma cells and resensitized taxol-resistant cells to paclitaxel treatment, which highlights its potential in combination therapy. Full article
Show Figures

Graphical abstract

19 pages, 19488 KB  
Article
RNA-Seq Profiling in Chicken Spleen and Thymus Infected with Newcastle Disease Virus of Varying Virulence
by Xiaoquan Wang, Xiaolong Lu, Mingzhu Wang, Qiwen Zhou, Xiyue Wang, Wenhao Yang, Kaituo Liu, Ruyi Gao, Tianxing Liao, Yu Chen, Jiao Hu, Min Gu, Shunlin Hu, Xiufan Liu and Xiaowen Liu
Vet. Sci. 2024, 11(11), 569; https://doi.org/10.3390/vetsci11110569 - 15 Nov 2024
Cited by 2 | Viewed by 2075
Abstract
Newcastle disease virus (NDV), known as avian paramyxovirus-1, poses a significant threat to poultry production worldwide. Vaccination currently stands as the most effective strategy for Newcastle disease control. However, the mesogenic vaccine strain Mukteswar has been observed to evolve into a velogenic variant [...] Read more.
Newcastle disease virus (NDV), known as avian paramyxovirus-1, poses a significant threat to poultry production worldwide. Vaccination currently stands as the most effective strategy for Newcastle disease control. However, the mesogenic vaccine strain Mukteswar has been observed to evolve into a velogenic variant JS/7/05/Ch during poultry immunization. Here, we aimed to explore the mechanisms underlying virulence enhancement of the two viruses. Pathogenically, JS/7/05/Ch mediated stronger virulence and pathogenicity in vivo compared to Mukteswar. Comparative transcriptome analysis revealed 834 differentially expressed genes (DEGs), comprising 339 up-regulated and 495 down-regulated genes, in the spleen, and 716 DEGs, with 313 up-regulated and 403 down-regulated genes, in the thymus. Gene Ontology (GO) analysis indicated that these candidate targets primarily participated in cell and biological development, extracellular part and membrane composition, as well as receptor and binding activity. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis unveiled a substantial portion of candidate genes predominantly involved in cellular processes, environmental information processing, metabolism, and organismal systems. Additionally, five DEGs (TRAT1, JUP, LPAR4, CYB561A3, and CXCR5) were randomly identified through RNA-seq analysis and subsequently confirmed via quantitative real-time polymerase chain reaction (qRT-PCR). The findings revealed a marked up-regulation in the expression levels of these DEGs induced by JS/7/05/Ch compared to Mukteswar, with CYB561A3 and CXCR5 exhibiting significant increases. The findings corroborated the sequencing accuracy, offering promising research directions. Taken together, we comprehensively evaluated transcriptomic alterations in chicken immune organs infected by NDV strains of diverse virulence. This study establishes a basis and direction for NDV virulence research. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

13 pages, 2241 KB  
Article
The Effect of Ionizing Irradiation on the Autotaxin-Lysophasphatidic Acid Axis and Interleukin-6/8 Secretion in Different Breast Cancer Cell Lines
by Theresa Promny, Isabell Scherrer, Sheetal Kadam, Rafael Schmid, Tina Jost, Luitpold V. Distel, Andreas Arkudas, Raymund E. Horch and Annika Kengelbach-Weigand
J. Pers. Med. 2024, 14(9), 968; https://doi.org/10.3390/jpm14090968 - 12 Sep 2024
Cited by 1 | Viewed by 1794
Abstract
Background: The Autotaxin (ATX)-lysophosphatidic acid (LPA) axis is involved in decreasing radiation sensitivity of breast tumor cells. This study aims to further elucidate the effect of irradiation on the ATX-LPA axis and cytokine secretion in different breast cancer cell lines to identify suitable [...] Read more.
Background: The Autotaxin (ATX)-lysophosphatidic acid (LPA) axis is involved in decreasing radiation sensitivity of breast tumor cells. This study aims to further elucidate the effect of irradiation on the ATX-LPA axis and cytokine secretion in different breast cancer cell lines to identify suitable breast cancer subtypes for targeted therapies. Methods: Different breast cancer cell lines (MCF-7 (luminal A), BT-474 (luminal B), SKBR-3 (HER2-positive), MDA-MB-231 and MDA-MB-468 (triple-negative)) and the breast epithelial cell line MCF-10A were irradiated. The influence of irradiation on LPA receptor (LPAR) expression, ATX expression, and Interleukin (IL)-6 and IL-8 secretion was analyzed. Further, the effect of IL-6 and IL-8 on ATX expression of adipose-derived stem cells (ADSC) was investigated. Results: Irradiation increased ATX and LPAR2 expression in MDA-MB-231 cells. Additionally, IL-6 secretion was enhanced in MDA-MB-231, and IL-8 secretion in MDA-MB-231 and MDA-MB-468. Stimulation of ADSC with IL-6 and IL-8 increased ATX expression in ADSC. Conclusions: Targeting ATX or its downstream signaling pathways might enhance the sensitivity of triple-negative breast cancer cells to radiation. Further exploration of the interplay between irradiation, the ATX-LPA axis, and inflammatory cytokines may elucidate novel pathways for overcoming radioresistance and improving individual treatment outcomes. Full article
Show Figures

Figure 1

22 pages, 6913 KB  
Article
Novel Autotaxin Inhibitor ATX-1d Significantly Enhances Potency of Paclitaxel—An In Silico and In Vitro Study
by Prateek Rai, Christopher J. Clark, Carl B. Womack, Curtis Dearing, Joshua Thammathong, Derek D. Norman, Gábor J. Tigyi, Subhabrata Sen, Kevin Bicker, April M. Weissmiller and Souvik Banerjee
Molecules 2024, 29(18), 4285; https://doi.org/10.3390/molecules29184285 - 10 Sep 2024
Viewed by 3265
Abstract
The development of drug resistance in cancer cells poses a significant challenge for treatment, with nearly 90% of cancer-related deaths attributed to it. Over 50% of ovarian cancer patients and 30–40% of breast cancer patients exhibit resistance to therapies such as Taxol. Previous [...] Read more.
The development of drug resistance in cancer cells poses a significant challenge for treatment, with nearly 90% of cancer-related deaths attributed to it. Over 50% of ovarian cancer patients and 30–40% of breast cancer patients exhibit resistance to therapies such as Taxol. Previous literature has shown that cytotoxic cancer therapies and ionizing radiation damage tumors, prompting cancer cells to exploit the autotaxin (ATX)–lysophosphatidic acid (LPA)–lysophosphatidic acid receptor (LPAR) signaling axis to enhance survival pathways, thus reducing treatment efficacy. Therefore, targeting this signaling axis has become a crucial strategy to overcome some forms of cancer resistance. Addressing this challenge, we identified and assessed ATX-1d, a novel compound targeting ATX, through computational methods and in vitro assays. ATX-1d exhibited an IC50 of 1.8 ± 0.3 μM for ATX inhibition and demonstrated a significant binding affinity for ATX, as confirmed by MM-GBSA, QM/MM-GBSA, and SAPT in silico methods. ATX-1d significantly amplified the potency of paclitaxel, increasing its effectiveness tenfold in 4T1 murine breast carcinoma cells and fourfold in A375 human melanoma cells without inducing cytotoxic effects as a single agent. Full article
Show Figures

Figure 1

Back to TopTop