Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (615)

Search Parameters:
Keywords = low-rise buildings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8377 KiB  
Article
Investigation of Wind Pressure Dynamics on Low-Rise Buildings in Sand-Laden Wind Environments
by Di Hu, Teng Zhang and Qiang Jin
Buildings 2025, 15(15), 2779; https://doi.org/10.3390/buildings15152779 - 6 Aug 2025
Abstract
To enhance the structural safety in wind-sand regions, this study employs the Euler-Lagrange numerical method to investigate the wind pressure characteristics of typical low-rise auxiliary buildings in a strong wind-blown sand environment. The results reveal that sand particle motion dissipates wind energy, leading [...] Read more.
To enhance the structural safety in wind-sand regions, this study employs the Euler-Lagrange numerical method to investigate the wind pressure characteristics of typical low-rise auxiliary buildings in a strong wind-blown sand environment. The results reveal that sand particle motion dissipates wind energy, leading to a slight reduction in average wind speed, while the increase in small-scale vortex energy enhances fluctuating wind speed. In the sand-laden wind field, the average wind pressure coefficient shows no significant change, whereas the fluctuating wind pressure coefficient increases markedly, particularly in the windward region of the building. Analysis of the skewness and kurtosis of wind pressure reveals that the non-Gaussian characteristics of wind pressure are amplified in the sand-laden wind, thereby elevating the risk of damage to the building envelope. Consequently, it is recommended that the design fluctuating wind load for envelopes and components of low-rise buildings in wind-sand regions be increased by 10% to enhance structural resilience. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 5068 KiB  
Article
Estimating Household Green Space in Composite Residential Community Solely Using Drone Oblique Photography
by Meiqi Kang, Kaiyi Song, Xiaohan Liao and Jiayuan Lin
Remote Sens. 2025, 17(15), 2691; https://doi.org/10.3390/rs17152691 - 3 Aug 2025
Viewed by 145
Abstract
Residential green space is an important component of urban green space and one of the major indicators for evaluating the quality of a residential community. Traditional indicators such as the green space ratio only consider the relationship between green space area and total [...] Read more.
Residential green space is an important component of urban green space and one of the major indicators for evaluating the quality of a residential community. Traditional indicators such as the green space ratio only consider the relationship between green space area and total area of the residential community while ignoring the difference in the amount of green space enjoyed by household residents in high-rise and low-rise buildings. Therefore, it is meaningful to estimate household green space and its spatial distribution in residential communities. However, there are frequent difficulties in obtaining specific green space area and household number through ground surveys or consulting with property management units. In this study, taking a composite residential community in Chongqing, China, as the study site, we first employed a five-lens drone to capture its oblique RGB images and generated the DOM (Digital Orthophoto Map). Subsequently, the green space area and distribution in the entire residential community were extracted from the DOM using VDVI (Visible Difference Vegetation Index). The YOLACT (You Only Look At Coefficients) instance segmentation model was used to recognize balconies from the facade images of high-rise buildings to determine their household numbers. Finally, the average green space per household in the entire residential community was calculated to be 67.82 m2, and those in the high-rise and low-rise building zones were 51.28 m2 and 300 m2, respectively. Compared with the green space ratios of 65.5% and 50%, household green space more truly reflected the actual green space occupation in high- and low-rise building zones. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Figure 1

34 pages, 7297 KiB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 - 2 Aug 2025
Viewed by 339
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

39 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 - 30 Jul 2025
Viewed by 179
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

28 pages, 3635 KiB  
Article
Optimizing Energy Performance of Phase-Change Material-Enhanced Building Envelopes Through Novel Performance Indicators
by Abrar Ahmad and Shazim Ali Memon
Buildings 2025, 15(15), 2678; https://doi.org/10.3390/buildings15152678 - 29 Jul 2025
Viewed by 797
Abstract
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation [...] Read more.
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation study introduces a methodology that simultaneously optimizes PCM integration for storage efficiency, indoor thermal comfort, and energy savings. Two new indicators are proposed: overall storage efficiency (ECn), which consolidates heating and cooling-efficiency ratios into a single value, and the performance factor (PF), which quantifies the PCM’s effectiveness in maintaining thermal comfort. Using EnergyPlus v8.9 coupled with DesignBuilder, a residential ASHRAE 90.1 mid-rise apartment was modeled in six warm-temperate (Cfb) European cities for the summer period from June 1 to August 31. Four paraffin PCMs (RT-22/25/28/31 HC, 20 mm thickness) were tested under natural and controlled ventilation strategies, with windows opening 50% when outdoor air was at least 2 °C cooler than indoors. Simulation outputs were validated against experimental cubicle data, yielding a mean absolute indoor temperature error ≤ 4.5%, well within the ±5% tolerance commonly accepted for building thermal simulations. The optimum configuration—RT-25 HC with temperature-controlled ventilation—achieved PF = 1.0 (100% comfort compliance) in all six cities and delivered summer cooling-energy savings of up to 3376 kWh in Paris, the highest among the locations studied. Carbon-emission reductions reached 2254 kg CO2-e year−1, and static payback periods remained below the assumed 50-year building life at a per kg PCM cost of USD 1. The ECn–PF framework, therefore, provides a transparent basis for selecting cost-effective, energy-efficient, and low-carbon PCM solutions in warm-temperate buildings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 5813 KiB  
Article
Integrated Lighting and Solar Shading Strategies for Energy Efficiency, Daylighting and User Comfort in a Library Design Proposal
by Egemen Kaymaz and Banu Manav
Buildings 2025, 15(15), 2669; https://doi.org/10.3390/buildings15152669 - 28 Jul 2025
Viewed by 197
Abstract
This research proposes an integrated lighting and solar shading strategy to improve energy efficiency and user comfort in a retrofit project in a temperate-humid climate. The study examines a future library addition to an existing faculty building in Bursa, featuring highly glazed façades [...] Read more.
This research proposes an integrated lighting and solar shading strategy to improve energy efficiency and user comfort in a retrofit project in a temperate-humid climate. The study examines a future library addition to an existing faculty building in Bursa, featuring highly glazed façades (77% southwest, 81% northeast window-to-wall ratio), an open-plan layout, and situated within an unobstructed low-rise campus environment. Trade-offs between daylight availability, heating, cooling, lighting energy use, and visual and thermal comfort are evaluated through integrated lighting (DIALux Evo), climate-based daylight (CBDM), and energy simulations (DesignBuilder, EnergyPlus, Radiance). Fifteen solar shading configurations—including brise soleil, overhangs, side fins, egg crates, and louvres—are evaluated alongside a daylight-responsive LED lighting system that meets BS EN 12464-1:2021. Compared to the reference case’s unshaded glazing, optimal design significantly improves building performance: a brise soleil with 0.4 m slats at 30° reduces annual primary energy use by 28.3% and operational carbon emissions by 29.1% and maintains thermal comfort per ASHRAE 55:2023 Category II (±0.7 PMV; PPD < 15%). Daylight performance achieves 91.5% UDI and 2.1% aSE, with integrated photovoltaics offsetting 129.7 kWh/m2 of grid energy. This integrated strategy elevates the building’s energy class under national benchmarks while addressing glare and overheating in the original design. Full article
(This article belongs to the Special Issue Lighting in Buildings—2nd Edition)
Show Figures

Figure 1

20 pages, 8104 KiB  
Article
Energy Consumption Analysis of Using Mashrabiya as a Retrofit Solution for a Residential Apartment in Al Ain Square, Al Ain, UAE
by Lindita Bande, Anwar Ahmad, Saada Al Mansoori, Waleed Ahmed, Amna Shibeika, Shama Anbrine and Abdul Rauf
Buildings 2025, 15(14), 2532; https://doi.org/10.3390/buildings15142532 - 18 Jul 2025
Viewed by 271
Abstract
The city of Al Ain is a fast-developing area. With building typology varying from low-rise to mid-rise, sustainable design in buildings is needed. As the majority of the city’s population is Emirati Citizens, the percentage of expats is increasing. The expats tend to [...] Read more.
The city of Al Ain is a fast-developing area. With building typology varying from low-rise to mid-rise, sustainable design in buildings is needed. As the majority of the city’s population is Emirati Citizens, the percentage of expats is increasing. The expats tend to live in mid-rise buildings. One of the central midrise areas is AL Ain Square. This study aims to investigate how an optimized mashrabiya pattern can impact the energy and the Predicted Mean Vote (PMV) in a 3-bedroom apartment, fully oriented to the south, of an expat family. The methodology is as follows: case study selection, Weather analysis, Modeling/Validation of the base case scenario, Optimization of the mashrabiya pattern, Simulation of various scenarios, and Results. Analyzing the selected case study is the initial step of the methodology. This analysis begins with the district, building typology, and the chosen apartment. The weather analysis is relevant for using the mashrabiya (screen device) and the need to improve energy consumption and thermal comfort. The modeling of the base case shall be performed in Rhino Grasshopper. The validation is based on a one-year electricity bill provided by the owner. The optimization of mashrabiya patterns is an innovative process, where various designs are compared and then optimized to select the most efficient pattern. The solutions to the selected scenarios will then yield the results of the optimal scenario. This study is relevant to industry, academia, and local authorities as an innovative approach to retrofitting buildings. Additionally, the research presents a creative vision that suggests optimized mashrabiya patterns can significantly enhance energy savings, with the hexagonal grid configuration demonstrating the highest efficiency. This finding highlights the potential for geometry-driven shading optimization tailored to specific climatic and building conditions. Contrasting earlier mashrabiya studies that assess one static pattern, we couple a geometry-agnostic evolutionary solver with a utility-calibrated EnergyPlus model to test thousands of square, hexagonal, and triangular permutations. This workflow uncovers a previously undocumented non-linear depth perforation interaction. It validates a hexagonal screen that reduces annual cooling energy by 12.3%, establishing a replicable, grid-specific retrofit method for hot-arid apartments. Full article
Show Figures

Figure 1

24 pages, 1816 KiB  
Article
Efficient Swell Risk Prediction for Building Design Using a Domain-Guided Machine Learning Model
by Hani S. Alharbi
Buildings 2025, 15(14), 2530; https://doi.org/10.3390/buildings15142530 - 18 Jul 2025
Viewed by 344
Abstract
Expansive clays damage the foundations, slabs, and utilities of low- and mid-rise buildings, threatening daily operations and incurring billions of dollars in costs globally. This study pioneers a domain-informed machine learning framework, coupled with a collinearity-aware feature selection strategy, to predict soil swell [...] Read more.
Expansive clays damage the foundations, slabs, and utilities of low- and mid-rise buildings, threatening daily operations and incurring billions of dollars in costs globally. This study pioneers a domain-informed machine learning framework, coupled with a collinearity-aware feature selection strategy, to predict soil swell potential solely from routine index properties. Following hard-limit filtering and Unified Soil Classification System (USCS) screening, 291 valid samples were extracted from a public dataset of 395 cases. A random forest benchmark model was developed using five correlated features, and a multicollinearity analysis, as indicated by the variance inflation factor, revealed exact linear dependence among the Atterberg limits. A parsimonious two-variable model, based solely on plasticity index (PI) and clay fraction (C), was retained. On an 80:20 stratified hold-out set, this simplified model reduced root mean square error (RMSE) from 9.0% to 6.8% and maximum residuals from 42% to 16%. Bootstrap analysis confirmed a median RMSE of 7.5% with stable 95% prediction intervals. Shapley Additive Explanations (SHAP) analysis revealed that PI accounted for approximately 75% of the model’s influence, highlighting the critical swell surge beyond PI ≈ 55%. This work introduces a rule-based cleaning pipeline and collinearity-aware feature selection to derive a robust, two-variable model balancing accuracy and interpretability, a lightweight, interpretable tool for foundation design, GIS zoning, and BIM workflows. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

31 pages, 16050 KiB  
Article
Biomimetic Opaque Ventilated Façade for Low-Rise Buildings in Hot Arid Climate
by Ahmed Alyahya, Simon Lannon and Wassim Jabi
Buildings 2025, 15(14), 2491; https://doi.org/10.3390/buildings15142491 - 16 Jul 2025
Viewed by 428
Abstract
Enhancing the thermal performance of building façades is vital for reducing energy demand in hot desert climates, where envelope heat gain increases cooling loads. This study investigates the integration of biomimicry into opaque ventilated façade (OVF) systems as a novel approach to reduce [...] Read more.
Enhancing the thermal performance of building façades is vital for reducing energy demand in hot desert climates, where envelope heat gain increases cooling loads. This study investigates the integration of biomimicry into opaque ventilated façade (OVF) systems as a novel approach to reduce façade surface temperatures. Thirteen bio-inspired façade configurations, modeled after strategies observed in nature, were evaluated using computational fluid dynamics simulations to assess their effectiveness in increasing airflow and reducing inner skin surface temperatures. Results show that all proposed biomimetic solutions outperformed the baseline OVF in terms of thermal performance, with the wide top mound configuration achieving the greatest temperature reduction—up to 5.9 °C below the baseline OVF and 16.4 °C below an unventilated façade. The study introduces an innovative methodology that derives façade design parameters from nature and validates them through simulation. These findings highlight the potential of nature-based solutions to improve building envelope performance in extreme climates. Full article
Show Figures

Figure 1

23 pages, 841 KiB  
Article
Green Investment Strategies and Pricing Decisions in a Supply Chain Considering Blockchain Technology
by Songshi Shao, Yutong Li, Xu Cheng and Jinzhu Qu
Sustainability 2025, 17(14), 6491; https://doi.org/10.3390/su17146491 - 16 Jul 2025
Viewed by 331
Abstract
With rising environmental awareness, numerous firms are transitioning to green investment, such as low-carbon production. However, the consumer adoption of low-carbon products remains low due to transparency concerns. Many firms are leveraging blockchain to address information asymmetry in the supply chain, thereby building [...] Read more.
With rising environmental awareness, numerous firms are transitioning to green investment, such as low-carbon production. However, the consumer adoption of low-carbon products remains low due to transparency concerns. Many firms are leveraging blockchain to address information asymmetry in the supply chain, thereby building consumer confidence in low-carbon products. The purpose of this work is to provide decision support for business firms by analyzing the strategic choices regarding the manufacturer’s green investment and the e-retailer’s adoption of blockchain technology. Three strategy combinations are considered, including the baseline strategy combination without green investment and blockchain technology (NN), the strategy combination with only green investment (LN), and the strategy combination with both green investment and blockchain technology (LB). The optimal pricing and green level decisions are derived, and the conditions under which green investment and blockchain technology are beneficial to the supply chain members are examined. The findings suggest that the e-retailer can obtain the highest profit without adopting blockchain technology if it holds a substantial or extremely low market share, if the consumers’ low-carbon preference is at a low to medium level, or if the consumer green trust coefficient is high when the manufacturer implements the green investment strategy. When consumers exhibit a weak preference for low-carbon products, the strategy combination NN is optimal for the supply chain members. The strategy combination LB becomes optimal if the consumer green trust coefficient is near or below the moderate threshold, if the market share of a channel is neither extremely high nor low, or if consumers exhibit a strong preference for low-carbon products. Full article
Show Figures

Figure 1

16 pages, 3611 KiB  
Article
Study on the Effectiveness of Multi-Dimensional Approaches to Urban Flood Risk Assessment
by Hyung Jun Park, Su Min Song, Dong Hyun Kim and Seung Oh Lee
Appl. Sci. 2025, 15(14), 7777; https://doi.org/10.3390/app15147777 - 11 Jul 2025
Viewed by 334
Abstract
Increasing frequency and severity of urban flooding, driven by climate change and urban population growth, present major challenges. Traditional flood control infrastructure alone cannot fully prevent flood damage, highlighting the need for a comprehensive and multi-dimensional disaster management approach. This study proposes the [...] Read more.
Increasing frequency and severity of urban flooding, driven by climate change and urban population growth, present major challenges. Traditional flood control infrastructure alone cannot fully prevent flood damage, highlighting the need for a comprehensive and multi-dimensional disaster management approach. This study proposes the Flood Risk Index for Building (FRIB)—a building-level assessment framework that integrates vulnerability, hazard, and exposure. FRIB assigns customized risk levels to individual buildings and evaluates the effectiveness of a multi-dimensional method. Compared to traditional indicators like flood depth, FRIB more accurately identifies high-risk areas by incorporating diverse risk factors. It also enables efficient resource allocation by excluding low-risk buildings, focusing efforts on high-risk zones. For example, in a case where 5124 buildings were targeted based on 1 m flood depth, applying FRIB excluded 24 buildings with “low” risk and up to 530 with “high” risk, reducing unnecessary interventions. Moreover, quantitative metrics like entropy and variance showed that as FRIB levels rise, flood depth distributions become more balanced—demonstrating that depth alone does not determine risk. In conclusion, while qualitative labels such as “very low” to “very high” aid intuitive understanding, FRIB’s quantitative, multi-dimensional approach enhances precision in urban flood management. Future research may expand FRIB’s application to varied regions, supporting tailored flood response strategies. Full article
Show Figures

Figure 1

23 pages, 15159 KiB  
Article
TBFH: A Total-Building-Focused Hybrid Dataset for Remote Sensing Image Building Detection
by Lin Yi, Feng Wang, Guangyao Zhou, Niangang Jiao, Minglin He, Jingxing Zhu and Hongjian You
Remote Sens. 2025, 17(13), 2316; https://doi.org/10.3390/rs17132316 - 6 Jul 2025
Viewed by 434
Abstract
Building extraction plays a crucial role in a variety of applications, including urban planning, high-precision 3D reconstruction, and environmental monitoring. In particular, the accurate detection of tall buildings is essential for reliable modeling and analysis. However, most existing building-detection methods are primarily trained [...] Read more.
Building extraction plays a crucial role in a variety of applications, including urban planning, high-precision 3D reconstruction, and environmental monitoring. In particular, the accurate detection of tall buildings is essential for reliable modeling and analysis. However, most existing building-detection methods are primarily trained on datasets dominated by low-rise structures, resulting in degraded performance when applied to complex urban scenes with high-rise buildings and severe occlusions. To address this limitation, we propose TBFH (Total-Building-Focused Hybrid), a novel dataset specifically designed for building detection in remote sensing imagery. TBFH comprises a diverse collection of tall buildings across various urban environments and is integrated with the publicly available WHU Building dataset to enable joint training. This hybrid strategy aims to enhance model robustness and generalization across varying urban morphologies. We also propose the KTC metric to quantitatively evaluate the structural integrity and shape fidelity of building segmentation results. We evaluated the effectiveness of TBFH on multiple state-of-the-art models, including UNet, UNetFormer, ABCNet, BANet, FCN, DeepLabV3, MANet, SegFormer, and DynamicVis. Our comparative experiments conducted on the Tall Building dataset, the WHU dataset, and TBFH demonstrated that models trained with TBFH significantly outperformed those trained on individual datasets, showing notable improvements in IoU, F1, and KTC scores as well as in the accuracy of building shape delineation. These findings underscore the critical importance of incorporating tall building-focused data to improve both detection accuracy and generalization performance. Full article
Show Figures

Figure 1

32 pages, 58845 KiB  
Article
Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design
by Yuanyuan Li, Lina Zhao, Hao Zheng and Xiaozhou Yang
Land 2025, 14(7), 1393; https://doi.org/10.3390/land14071393 - 2 Jul 2025
Cited by 1 | Viewed by 528
Abstract
Urban blue–green space (UBGS) plays a critical role in mitigating the urban heat island (UHI) effect and reducing land surface temperatures (LSTs). However, existing research has not sufficiently explored the optimization of UBGS spatial configurations or their interactions with urban morphology. This study [...] Read more.
Urban blue–green space (UBGS) plays a critical role in mitigating the urban heat island (UHI) effect and reducing land surface temperatures (LSTs). However, existing research has not sufficiently explored the optimization of UBGS spatial configurations or their interactions with urban morphology. This study takes New York City as a case and systematically investigates small-scale urban cooling strategies by integrating multiple factors, including adjustments to the blue–green ratio, spatial layouts, vegetation composition, building density, building height, and layout typologies. We utilize multi-source geographic data, including LiDAR derived land cover, OpenStreetMap data, and building footprint data, together with LST data retrieved from Landsat imagery, to develop a prediction model based on generative adversarial networks (GANs). This model can rapidly generate visual LST predictions under various configuration scenarios. This study employs a combination of qualitative and quantitative metrics to evaluate the performance of different model stages, selecting the most accurate model as the final experimental framework. Furthermore, the experimental design strictly controls the study area and pixel allocation, combining manual and automated methods to ensure the comparability of different ratio configurations. The main findings indicate that a blue–green ratio of 3:7 maximizes cooling efficiency; a shrub-to-tree coverage ratio of 2:8 performs best, with tree-dominated configurations outperforming shrub-dominated ones; concentrated linear layouts achieve up to a 10.01% cooling effect; and taller buildings exhibit significantly stronger UBGS cooling performance, with super-tall areas achieving cooling effects approximately 31 percentage points higher than low-rise areas. Courtyard layouts enhance airflow and synergistic cooling effects, whereas compact designs limit the cooling potential of UBGS. This study proposes an innovative application of GANs to address a key research gap in the quantitative optimization of UBGS configurations and provides a methodological reference for sustainable microclimate planning at the neighborhood scale. Full article
Show Figures

Figure 1

34 pages, 8670 KiB  
Article
Assessing Climate Impact on Heritage Buildings in Trentino—South Tyrol with High-Resolution Projections
by Camille Luna Stella Blavier, Elena Maines, Piero Campalani, Harold Enrique Huerto-Cardenas, Claudio Del Pero and Fabrizio Leonforte
Atmosphere 2025, 16(7), 799; https://doi.org/10.3390/atmos16070799 - 1 Jul 2025
Viewed by 511
Abstract
Climate variations impact the preservation of heritage buildings, necessitating a strategic understanding of potential effects to effectively guide preservation efforts. This study analyzes temperature- and precipitation-dependent climate-heritage indices in Trentino–South Tyrol using EURO-CORDEX regional climate models for the period 1971–2100 under RCP 4.5 [...] Read more.
Climate variations impact the preservation of heritage buildings, necessitating a strategic understanding of potential effects to effectively guide preservation efforts. This study analyzes temperature- and precipitation-dependent climate-heritage indices in Trentino–South Tyrol using EURO-CORDEX regional climate models for the period 1971–2100 under RCP 4.5 and RCP 8.5 scenarios. The selected indices were calculated with climdex-kit and relied on bias-adjusted temperature and precipitation data with a 1 km spatial resolution. The obtained results indicate a geographically punctuated increase in biomass accumulation on horizontal surfaces, a slight decreasing trend in freeze–thaw events, an increase in growing degree days indicating a small, heightened insect activity, and a rise in heavy precipitation days. The Scheffer Index shows a significantly increased potential for wood degradation, particularly under the RCP 8.5 scenario, while the Wet-Frost Index remains consistently low. Finally, according to each identified hazard, adaptive solutions are suggested. These findings provide critical insights into future climate impacts on heritage buildings in the region, aiding stakeholders in planning targeted interventions. The study emphasizes the crucial role of integrating detailed climate data into heritage preservation strategies, advocating for the inclusion of future risk analysis in the “knowledge path” in order to enhance the resilience of buildings. Full article
(This article belongs to the Special Issue Climate Change Challenges for Heritage Architecture)
Show Figures

Figure 1

32 pages, 1613 KiB  
Review
Ultra-Processed Diets and Endocrine Disruption, Explanation of Missing Link in Rising Cancer Incidence Among Young Adults
by Almir Fajkić, Orhan Lepara, Rijad Jahić, Almira Hadžović-Džuvo, Andrej Belančić, Alexander Chupin, Doris Pavković and Emina Karahmet Sher
Cancers 2025, 17(13), 2196; https://doi.org/10.3390/cancers17132196 - 29 Jun 2025
Viewed by 1069
Abstract
The global increase in early-onset cancers among adolescents and young adults has happened at the same time as the rise in the consumption of ultra-processed foods (UPFs). Far beyond their poor nutritional quality, UPFs are increasingly seen as Trojan horses, complex biological agents [...] Read more.
The global increase in early-onset cancers among adolescents and young adults has happened at the same time as the rise in the consumption of ultra-processed foods (UPFs). Far beyond their poor nutritional quality, UPFs are increasingly seen as Trojan horses, complex biological agents that interfere with many functions of the human organism. In this review, we utilise the Trojan horse model to explain the quiet and building health risks from UPFs as foods that seem harmless, convenient, and affordable while secretly delivering endocrine-disrupting chemicals (EDCs), causing chronic low-grade inflammation, altering the microbiome, and producing epigenetic alterations. We bring together new proof showing that UPFs mess up hormonal signals, harm the body’s ability to fight off harmful germs, lead to an imbalance of microbes, and cause detrimental changes linked to cancer. Important components, such as bisphenols and phthalates, can migrate from containers into food, while additional ingredients and effects from cooking disrupt the normal balance of cells. These exposures are especially harmful during vulnerable developmental periods and may lay the groundwork for disease many years later. The Trojan horse model illustrates the hidden nature of UPF-related damage, not through a sudden toxin but via chronic dysregulation of metabolic, hormonal, and genetic control. This model changes focus from usual diet worries to a bigger-picture view of UPFs as causes of life-disrupting damage. Ultimately, this review aims to identify gaps in current knowledge and epidemiological approaches and highlight the need for multi-omics, long-term studies and personalised nutrition plans to assess and reduce the cancer risk associated with UPFs. Recognising UPFs as a silent disruptor is crucial in shaping public health policies and cancer prevention programs targeting younger people. Full article
(This article belongs to the Special Issue Lifestyle Choices and Endocrine Dysfunction on Cancer Onset and Risk)
Show Figures

Figure 1

Back to TopTop