Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design
Abstract
1. Introduction
1.1. Research Background
1.1.1. Urban Heat Island and Health
1.1.2. Urban Blue–Green Space
1.1.3. Urban Land Surface Temperatures
1.1.4. Building Morphology and LST
1.2. Research Motivation
1.3. Research Objective
1.4. Research Contribution
2. Materials and Methods
2.1. Research Framework
2.2. Data Collection and Processing
2.2.1. Urban Environment Input Map
2.2.2. Urban LST Output Map
2.2.3. Input–Output Image Processing
2.3. GAN Architecture
2.3.1. GAN Architecture and Principles
2.3.2. Pix2PixHD Architecture and Parameter Configuration
2.3.3. Optimization Strategies and Training Protocol
2.4. Neural Network Training
2.4.1. The Loss Dynamics and Optimization Strategies of the Generator and Discriminator
2.4.2. Generated Image Characteristics and Training Termination
3. Results and Discussion
3.1. Accuracy Analysis
3.1.1. Qualitative Analysis
3.1.2. Quantitative Analysis
3.2. Precision Analysis of GAN-Assisted Urban Design
3.2.1. Scenario 1: Optimizing Cooling Effects Through Blue–Green Space Ratios Under Fixed Total Area
3.2.2. Scenario 2: Determining Cooling Activation Thresholds for Blue Spaces via Pixel Cluster Size Optimization Under Fixed Total Area
3.2.3. Scenario 3: How Do Different Blue–Green Space Layouts Affect Localized Cooling Under Fixed BGS Ratios, and What Is the Optimal Strategy?
3.2.4. Scenario 4: How Do Vegetation Species Configurations Within Green Spaces Influence LST Under Fixed BGS Ratios (3:7) and Clustered–Linear Layouts?
3.2.5. Scenario 5: Consistency of Optimal Configuration Across Neighborhood Typologies and Key Influencing Factors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, B.; Zhang, Y.; Zhao, S.; Zhao, L.; Wang, M.; Pei, H. Urban Heat Island Effect in Different Sizes from a 3D Perspective: A Case Study in the Beijing–Tianjin–Hebei Region. Land 2025, 14, 463. [Google Scholar] [CrossRef]
- Kim, K.K.; Choi, Y.S.; Lee, H.J.; Rodrigazo, S.A.; Yeon, J. Enhanced Thermal Resistance and Mechanical Performance of Methyl Methacrylate-Based Pavement Coatings for Urban Heat Mitigation. Polymers 2025, 17, 586. [Google Scholar] [CrossRef] [PubMed]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef]
- Tziampou, N.; Coupe, S.J.; Sañudo-Fontaneda, L.A.; Newman, A.P.; Castro-Fresno, D. Fluid transport within permeable pavement systems: A review of evaporation processes, moisture loss measurement and the current state of knowledge. Constr. Build. Mater. 2020, 243, 118179. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, Y. SWMM simulation of the storm water volume control performance of permeable pavement systems. J. Hydrol. Eng. 2015, 20, 06014010. [Google Scholar] [CrossRef]
- Qiu, L.; Wu, Y.; Yu, M.; Shi, Z.; Yin, X.; Song, Y.; Sun, K. Contributions of vegetation restoration and climate change to spatiotemporal variation in the energy budget in the loess plateau of china. Ecol. Indic. 2021, 127, 107780. [Google Scholar] [CrossRef]
- Sailor, D.J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol. 2011, 31, 189–199. [Google Scholar] [CrossRef]
- Zhang, Y.; Murray, A.T.; Turner Ii, B. Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landsc. Urban Plan. 2017, 165, 162–171. [Google Scholar] [CrossRef]
- Klein, T.; Anderegg, W.R. A vast increase in heat exposure in the 21st century is driven by global warming and urban population growth. Sustain. Cities Soc. 2021, 73, 103098. [Google Scholar] [CrossRef]
- Yang, J.; Yin, P.; Sun, J.; Wang, B.; Zhou, M.; Li, M.; Tong, S.; Meng, B.; Guo, Y.; Liu, Q. Heatwave and mortality in 31 major Chinese cities: Definition, vulnerability and implications. Sci. Total Environ. 2019, 649, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qi, J.; Yin, P.; Liu, W.; He, C.; Gao, Y.; Zhou, L.; Zhu, Y.; Kan, H.; Chen, R.; et al. Rising cause-specific mortality risk and burden of compound heatwaves amid climate change. Nat. Clim. Change 2024, 14, 1201–1209. [Google Scholar] [CrossRef]
- Ho, J.Y.; Shi, Y.; Lau, K.K.; Ng, E.Y.; Ren, C.; Goggins, W.B. Urban heat island effect-related mortality under extreme heat and non-extreme heat scenarios: A 2010–2019 case study in Hong Kong. Sci. Total Environ. 2023, 858, 159791. [Google Scholar] [CrossRef]
- Xi, D.; Liu, L.; Zhang, M.; Huang, C.; Burkart, K.G.; Ebi, K.; Zeng, Y.; Ji, J.S. Risk factors associated with heatwave mortality in Chinese adults over 65 years. Nat. Med. 2024, 30, 1489–1498. [Google Scholar] [CrossRef]
- Lüthi, S.; Fairless, C.; Fischer, E.M.; Scovronick, N.; Armstrong, B.; Coelho, M.D.S.Z.S.; Guo, Y.L.; Guo, Y.; Honda, Y.; Huber, V.; et al. Rapid increase in the risk of heat-related mortality. Nat. Commun. 2023, 14, 4894. [Google Scholar] [CrossRef]
- Magli, S.; Lodi, C.; Lombroso, L.; Muscio, A.; Teggi, S. Analysis of the urban heat island effects on building energy consumption. Int. J. Energy Environ. Eng. 2015, 6, 91–99. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy 2019, 174, 407–419. [Google Scholar] [CrossRef]
- Tao, C.; Zhang, Q.; Huo, S.; Ren, Y.; Han, S.; Wang, Q.; Wang, W. PM2. 5 pollution modulates the response of ozone formation to VOC emitted from various sources: Insights from machine learning. Sci. Total Environ. 2024, 916, 170009. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Z.; Han, J. The relationship between urban heat island and air pollutants and them with influencing factors in the Yangtze River Delta, China. Ecol. Indic. 2021, 129, 107976. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, X.; Yu, M.; Yuan, Y.; Li, B. PM2. 5 reduces the daytime/nighttime urban heat island intensity over mainland China. Sustain. Cities Soc. 2025, 118, 106001. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision, Online Edition; UN DESA: New York, NY, USA, 2018; Available online: https://population.un.org/wup/ (accessed on 26 February 2025).
- Sun, L.; Chen, J.; Li, Q.; Huang, D. Dramatic uneven urbanization of large cities throughout the world in recent decades. Nat. Commun. 2020, 11, 5366. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Sinha, S.; Kumari, M.; Mishra, V.N.; Hasher, F.F.B.; Szostak, M.; Zhran, M. Spatio-Temporal Influences of Urban Land Cover Changes on Thermal-Based Environmental Criticality and Its Prediction Using CA-ANN Model over Kolkata (India). Remote Sens. 2025, 17, 1082. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, R.; Ma, Q.; He, T.; Fang, X.; Xiao, L.; Hu, Y.; Li, J.; Shao, L.; Gao, J. Spatio-temporal patterns and population exposure risks of urban heat island in megacity Shanghai, China. Sustain. Cities Soc. 2024, 108, 105500. [Google Scholar] [CrossRef]
- Rahimi, D.; Kii, M.; Shimadera, H.; Causone, F. Exploring Seasonal and Diurnal Variations of the Thermal Environment in Metropolitan Scale Analysis Based on Remote Sensing Data. Remote Sens. 2025, 17, 1210. [Google Scholar] [CrossRef]
- Han, M.; Zhang, T.; Si, Z. Optimizing urban blue-green space in climate adaptive planning: A systematic review of threshold value of efficiency thresholds. Landsc. Ecol. 2025, 40, 13. [Google Scholar] [CrossRef]
- Fang, Y.; Zhao, L. Exploring the supply-demand match and drivers of blue-green spaces cooling in Wuhan Metropolis. Urban Clim. 2024, 58, 102194. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Yin, J.; Ramanpong, J.; Chang, J.; Wu, C.D.; Chao, P.H.; Yu, C.P. Effects of blue space exposure in urban and natural environments on psychological and physiological responses: A within-subject experiment. Urban For. Urban Green. 2023, 87, 128066. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Q.; Yao, S.; Qian, J.; Gao, J.; Wu, J. How to optimize urban blue space to maximize its cooling benefits? A case study in megacity of Beijing. Build. Environ. 2025, 270, 112502. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Zhai, W.; He, Z.; Shi, W.; Li, Y.; Zhao, C. How does Blue-Green Infrastructure affect the urban thermal environment across various functional zones? Urban For. Urban Green. 2025, 105, 128698. [Google Scholar] [CrossRef]
- Chen, Y.; La Rosa, D.; Yue, W. Does urban sprawl lessen green space exposure? Evidence from Chinese cities. Landsc. Urban Plan. 2025, 257, 105319. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Hou, H.; Murayama, Y.; Wang, R.; Hu, T. Quantifying the cooling effect and scale of large inner-city lakes based on landscape patterns: A case study of Hangzhou and Nanjing. Remote Sens. 2021, 13, 1526. [Google Scholar] [CrossRef]
- Yao, L.; Sailor, D.J.; Zhang, X.; Wang, J.; Zhao, L.; Yang, X. Diurnal pattern and driving mechanisms of the thermal effects of an urban pond. Sustain. Cities Soc. 2023, 91, 104407. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, H.; Yao, X.; Yang, C.; Yang, L. Exploring the relationship between thermal environmental factors and land surface temperature of a “furnace city” based on local climate zones. Build. Environ. 2023, 243, 110732. [Google Scholar] [CrossRef]
- Hao, T.; Zhao, Q.; Huang, J. Optimization of tree locations to reduce human heat stress in an urban park. Urban For. Urban Green. 2023, 86, 128017. [Google Scholar] [CrossRef]
- Cheng, K.Y.; Lau, K.; Shek, Y.T.; Liu, Z.; Ng, E. Evaluation on the performance of tree view factor in a high-density subtropical city: A case study in Hong Kong. Build. Environ. 2023, 239, 110431. [Google Scholar] [CrossRef]
- Sarfo, I.; Bi, S.; Xu, X.; Yeboah, E.; Kwang, C.; Batame, M.; Addai, F.K.; Adamu, U.W.; Appea, E.A.; Djan, M.A.; et al. Planning for cooler cities in Ghana: Contribution of green infrastructure to urban heat mitigation in Kumasi Metropolis. Land Use Policy 2023, 133, 106842. [Google Scholar] [CrossRef]
- Di Marino, M.; Cucca, R.; Thaler, T.; Bügelmayer-Blaschek, M. Interlinking the silos: How to stimulate a new debate on more greenery in cities. Urban For. Urban Green. 2023, 87, 128065. [Google Scholar] [CrossRef]
- Abd-Elmabod, S.K.; Gui, D.; Liu, Q.; Liu, Y.; Al-Qthanin, R.N.; Jiménez-González, M.A.; Jones, L. Seasonal environmental cooling benefits of urban green and blue spaces in arid regions. Sustain. Cities Soc. 2024, 115, 105805. [Google Scholar] [CrossRef]
- Fu, W.; Li, Y.; Halik, Ü.; Tian, A.; Ainiwaer, A.; Liu, Y.; Wei, Z.; Shi, L.; Welp, M. Selection and performance evaluation of roof materials in arid oasis cities: The advantages of white polymer materials. Build. Environ. 2025, 267, 112282. [Google Scholar] [CrossRef]
- Zhuo, S.; Zhou, W.; Fang, P.; Ye, J.; Luo, H.; Li, H.; Wu, C.; Chen, W.; Liu, Y. Cost-effective pearlescent pigments with high near-infrared reflectance and outstanding energy-saving ability for mitigating urban heat island effect. Appl. Energy 2024, 353, 122051. [Google Scholar] [CrossRef]
- Basyouni, Y.A.; Mahmoud, H. Affordable green materials for developed cool roof applications: A review. Renew. Sustain. Energy Rev. 2024, 202, 114722. [Google Scholar] [CrossRef]
- Lau, T.K.; Tsai, P.C.; Ou, H.Y.; Lin, T.P. Efficient and cost-effective method for identifying urban ventilation corridors using a heuristic search algorithm. Sustain. Cities Soc. 2024, 101, 105144. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Chen, Y.; Liu, J. Identification and integration of ventilation corridors in Shijiazhuang City, China. Sustain. Cities Soc. 2024, 112, 105543. [Google Scholar] [CrossRef]
- Liu, J.; She, X.; Wang, J. Comprehensive optimization of urban building cluster morphology based on microclimate: A two-level optimization approach. Sustain. Cities Soc. 2024, 100, 105005. [Google Scholar] [CrossRef]
- Lai, Z.; He, J.; Li, Y. Potential zones identification for district cooling system: A GIS-based multi-criteria assessment method incorporating cooling demand mapping. Sustain. Cities Soc. 2024, 105, 105327. [Google Scholar] [CrossRef]
- Wikipedia. Million Tree Initiative; Wikipedia: San Francisco, CA, USA, 2025; Available online: https://en.wikipedia.org/wiki/Million_Tree_Initiative (accessed on 26 February 2025).
- Landscape Performance Institute. Cheonggyecheon Stream Restoration Project. Landscape Performance Series. 2025. Available online: https://www.landscapeperformance.org/case-study-briefs/cheonggyecheon-stream-restoration-project (accessed on 26 February 2025).
- CBD News Australia. City of Melbourne Unveils Next Urban Forest Plan for the CBD; CBD News Australia: Melbourne, Australia, 2025; Available online: https://www.cbdnews.com.au/city-of-melbourne-unveils-next-urban-forest-plan-for-the-cbd (accessed on 26 February 2025).
- Li, Q.; Zheng, H. Prediction of summer daytime land surface temperature in urban environments based on machine learning. Sustain. Cities Soc. 2023, 97, 104732. [Google Scholar] [CrossRef]
- Tanoori, G.; Soltani, A.; Modiri, A. Machine learning for urban heat island (UHI) analysis: Predicting land surface temperature (LST) in urban environments. Urban Clim. 2024, 55, 101962. [Google Scholar] [CrossRef]
- Azhdari, A.; Soltani, A.; Alidadi, M. Urban morphology and landscape structure effect on land surface temperature: Evidence from Shiraz, a semi-arid city. Sustain. Cities Soc. 2018, 41, 853–864. [Google Scholar] [CrossRef]
- Cai, Y.B.; Wu, Z.J.; Chen, Y.H.; Wu, L.; Pan, W.B. Investigate the difference of Cooling effect between water Bodies and green spaces: The study of Fuzhou, China. Water 2022, 14, 1471. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef]
- Cao, S.; Wang, Y.; Ni, Z.; Xia, B. Effects of blue-green infrastructures on the microclimate in an urban residential area under hot weather. Front. Sustain. Cities 2022, 4, 824779. [Google Scholar] [CrossRef]
- Verhagen, W.; Van Teeffelen, A.J.; Baggio Compagnucci, A.; Poggio, L.; Gimona, A.; Verburg, P.H. Effects of landscape configuration on mapping ecosystem service capacity: A review of evidence and a case study in Scotland. Landsc. Ecol. 2016, 31, 1457–1479. [Google Scholar] [CrossRef]
- Budzik, G.; Sylla, M.; Kowalczyk, T. Understanding Urban Cooling of Blue–Green Infrastructure: A Review of Spatial Data and Sustainable Planning Optimization Methods for Mitigating Urban Heat Islands. Sustainability 2025, 17, 142. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Z.; Jim, C.Y.; Li, J.; Deng, J.; Liu, J. Water as an urban heat sink: Blue infrastructure alleviates urban heat island effect in mega-city agglomeration. J. Clean. Prod. 2020, 262, 121411. [Google Scholar] [CrossRef]
- Yan, L.; Jia, W.; Zhao, S. The cooling effect of urban green spaces in metacities: A case study of Beijing, China’s capital. Remote Sens. 2021, 13, 4601. [Google Scholar] [CrossRef]
- Qiu, X.; Kil, S.H.; Jo, H.K.; Park, C.; Song, W.; Choi, Y.E. Cooling effect of urban blue and green spaces: A case study of Changsha, China. Int. J. Environ. Res. Public Health 2023, 20, 2613. [Google Scholar] [CrossRef]
- Du, H.; Cai, Y.; Zhou, F.; Jiang, H.; Jiang, W.; Xu, Y. Urban blue-green space planning based on thermal environment simulation: A case study of Shanghai, China. Ecol. Indic. 2019, 106, 105501. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N. Spatial effects of landscape patterns of urban patches with different vegetation fractions on urban thermal environment. Remote Sens. 2022, 14, 5684. [Google Scholar] [CrossRef]
- Rezaei Rad, H.; Rafieian, M.; Sozer, H. Evaluating the effects of increasing of building height on land surface temperature. Int. J. Urban Manag. Energy Sustain. 2019, 1, 37–42. [Google Scholar]
- Wang, M.; Xu, H. The impact of building height on urban thermal environment in summer: A case study of Chinese megacities. PLoS ONE 2021, 16, e0247786. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Hertel, D.; Schlink, U.; Hu, D.; Qian, J.; Wu, W. Remote sensing-based attribution of urban heat islands to the drivers of heat. IEEE Trans. Geosci. Remote. Sens. 2024, 62, 5002312. [Google Scholar] [CrossRef]
- Wan, Y.; Du, H.; Yuan, L.; Xu, X.; Tang, H.; Zhang, J. Exploring the influence of block environmental characteristics on land surface temperature and its spatial heterogeneity for a high-density city. Sustain. Cities Soc. 2025, 118, 105973. [Google Scholar] [CrossRef]
- Song, J.; Chen, W.; Zhang, J.; Huang, K.; Hou, B.; Prishchepov, A.V. Effects of building density on land surface temperature in China: Spatial patterns and determinants. Landsc. Urban Plan. 2020, 198, 103794. [Google Scholar] [CrossRef]
- Han, C.; Man, Q.; Dong, P.; Yang, X.; Zhang, B.; Wu, J.; Liu, C.; Zhou, C.; Tan, Z. Exploring the influence of urban morphology on summer daytime and nighttime LST based on SDGSAT-1. Int. J. Digit. Earth 2025, 18, 2482101. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Yang, H.; Ford, A.C.; Dawson, R.J. Impacts of urban densification and vertical growth on urban heat environment: A case study in the 4th Ring Road Area, Zhengzhou, China. J. Clean. Prod. 2023, 410, 137247. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Sun, D.; Jin, C.; Xiao, X. Influence of urban morphological characteristics on thermal environment. Sustain. Cities Soc. 2021, 72, 103045. [Google Scholar] [CrossRef]
- An, H.; Cai, H.; Xu, X.; Qiao, Z.; Han, D. Impacts of urban green space on land surface temperature from urban block perspectives. Remote Sens. 2022, 14, 4580. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, L.; Dang, X.; Sun, D.; Hu, F.; Mu, H. Separate and combined effects of 3D building features and urban green space on land surface temperature. J. Environ. Manag. 2021, 295, 113116. [Google Scholar] [CrossRef]
- Deng, Q.; Xie, M.; Chen, Y. Combined effects of building and tree on the diurnal thermal environment in urban functional zones from 2D and 3D perspectives. Ecol. Front. 2025, 45, 1069–1082. [Google Scholar] [CrossRef]
- Qian, W.; Li, X. A cold island connectivity and network perspective to mitigate the urban heat island effect. Sustain. Cities Soc. 2023, 94, 104525. [Google Scholar] [CrossRef]
- Sheng, S.; Wang, Y. Configuration characteristics of green-blue spaces for efficient cooling in urban environments. Sustain. Cities Soc. 2024, 100, 105040. [Google Scholar] [CrossRef]
- Wang, Y.; Ouyang, W.; Zhang, J. Matching supply and demand of cooling service provided by urban green and blue space. Urban For. Urban Green. 2024, 96, 128338. [Google Scholar] [CrossRef]
- Mazzulla, G.; Pirrone, C.G. Accessibility Measures: From a Literature Review to a Classification Framework. ISPRS Int. J. Geo-Inf. 2024, 13, 450. [Google Scholar] [CrossRef]
- Gong, H.; Cao, Y.; Yao, J.; Xu, N.; Chang, H.; Wu, S.; Hu, L.; Liu, Z.; Liu, T.; Zhang, Z. Factors Influencing Spatiotemporal Changes in the Urban Blue-Green Space Cooling Effect in Beijing–Tianjin–Hebei Based on Multi-Source Remote Sensing Data. Land 2024, 13, 1423. [Google Scholar] [CrossRef]
- McPhearson, P.T. Toward a sustainable New York City: Greening through urban forest restoration. In Sustainability in America’s Cities: Creating the Green Metropolis; Springer: Berlin/Heidelberg, Germany, 2011; pp. 181–203. [Google Scholar]
- Tan, X.; Sun, X.; Huang, C.; Yuan, Y.; Hou, D. Comparison of cooling effect between green space and water body. Sustain. Cities Soc. 2021, 67, 102711. [Google Scholar] [CrossRef]
- Wang, J.; Meng, F.; Lu, H.; Lv, Y.; Jing, T. Individual and combined effects of 3D buildings and green spaces on the urban thermal environment: A case study in Jinan, China. Atmosphere 2023, 14, 908. [Google Scholar] [CrossRef]
- Quan, S.; Li, M.; Li, T.; Liu, H.; Cui, Y.; Liu, M. Nonlinear effects of blue-green space variables on urban cold islands in Zhengzhou analyzed with random forest regression. Front. Ecol. Evol. 2023, 11, 1185249. [Google Scholar] [CrossRef]
- Maneepong, K.; Yamanotera, R.; Akiyama, Y.; Miyazaki, H.; Miyazawa, S.; Akiyama, C.M. Towards High-Resolution Population Mapping: Leveraging Open Data, Remote Sensing, and AI for Geospatial Analysis in Developing Country Cities—A Case Study of Bangkok. Remote Sens. 2025, 17, 1204. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Gonog, L.; Zhou, Y. A review: Generative adversarial networks. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; IEEE: New York, NY, USA, 2019; pp. 505–510. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; PMLR: Cambridge, MA, USA, 2017; pp. 214–223. [Google Scholar]
- Su, H.; Yang, Q.; Ning, Y.; Hu, Z.; Liu, L. Multi-Label Auroral Image Classification Based on CNN and Transformer. IEEE Trans. Image Process. 2025, 34, 1835–1848. [Google Scholar] [CrossRef] [PubMed]
- Nandhini Abirami, R.; Durai Raj Vincent, P.; Srinivasan, K.; Tariq, U.; Chang, C.Y. Deep CNN and deep GAN in computational visual perception-driven image analysis. Complexity 2021, 2021, 5541134. [Google Scholar] [CrossRef]
- Shahriar, S. GAN computers generate arts? A survey on visual arts, music, and literary text generation using generative adversarial network. Displays 2022, 73, 102237. [Google Scholar] [CrossRef]
- Wu, A.N.; Stouffs, R.; Biljecki, F. Generative Adversarial Networks in the built environment: A comprehensive review of the application of GANs across data types and scales. Build. Environ. 2022, 223, 109477. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, H. Forecasting land surface drought in urban environments based on machine learning model. Sustain. Cities Soc. 2025, 118, 106048. [Google Scholar] [CrossRef]
- New York City Open Data. Land Cover Raster Data (2017)—6in Resolution. City of New York. 2017. Available online: https://catalog.data.gov/dataset/land-cover-raster-data-2017-6in-resolution (accessed on 26 February 2025).
- OpenStreetMap. new-york-latest-free.shp.zip. Geofabrik. 2025. Available online: https://download.geofabrik.de/north-america/us/new-york.html (accessed on 26 February 2025).
- NYC OpenData. Building Footprints. City of New York. 2025. Available online: https://github.com/CityOfNewYork/nyc-geo-metadata/blob/main/Metadata/Metadata_BuildingFootprints.md (accessed on 26 February 2025).
- United States Geological Survey. Landsat Collection 2 Surface Temperature; USGS: Reston, VA, USA, 2025. Available online: https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-temperature (accessed on 26 February 2025).
- Python Imaging Library (Pillow). Python Software Foundation. 2025. Available online: https://python-pillow.org (accessed on 26 February 2025).
- He, J.; Zheng, H. Prediction of crime rate in urban neighborhoods based on machine learning. Eng. Appl. Artif. Intell. 2021, 106, 104460. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, Q.; Zhang, L.; Sun, C. Summer cooling island effects of blue-green spaces in severe cold regions: A case study of Harbin, China. Build. Environ. 2024, 257, 111539. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Fan, C.; Xia, B. Thermal environment effects and interactions of reservoirs and forests as urban blue-green infrastructures. Ecol. Indic. 2018, 91, 657–663. [Google Scholar] [CrossRef]
- Yang, G.; Yu, Z.; Jørgensen, G.; Vejre, H. How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustain. Cities Soc. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban Plan. 2019, 184, 44–58. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, W.; Wu, T.; Zhang, T. The win-win interaction between integrated blue and green space on urban cooling. Sci. Total Environ. 2023, 863, 160712. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yu, W.; Wu, T. An alternative method of developing landscape strategies for urban cooling: A threshold-based perspective. Landsc. Urban Plan. 2022, 225, 104449. [Google Scholar] [CrossRef]
- Jung, M.C.; Dyson, K.; Alberti, M. Urban landscape heterogeneity influences the relationship between tree canopy and land surface temperature. Urban For. Urban Green. 2021, 57, 126930. [Google Scholar] [CrossRef]
- Rahman, M.A.; Stratopoulos, L.M.; Moser-Reischl, A.; Zölch, T.; Häberle, K.H.; Rötzer, T.; Pretzsch, H.; Pauleit, S. Traits of trees for cooling urban heat islands: A meta-analysis. Build. Environ. 2020, 170, 106606. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Chang, C.R.; Li, M.H.; Chang, S.D. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Wu, T.; Wang, X.; Xuan, L.; Yan, Z.; Wang, C.; Du, C.; Su, Y.; Duan, J.; Yu, K. How to Plan Urban Parks and the Surrounding Buildings to Maximize the Cooling Effect: A Case Study in Xi’an, China. Land 2024, 13, 1117. [Google Scholar] [CrossRef]
- Gál, T.; Mahó, S.I.; Skarbit, N.; Unger, J. Numerical modelling for analysis of the effect of different urban green spaces on urban heat load patterns in the present and in the future. Comput. Environ. Urban Syst. 2021, 87, 101600. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Qi, R. A study of size threshold for cooling effect in urban parks and their cooling accessibility and equity. Sci. Rep. 2024, 14, 16176. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhao, S. Scale dependence of urban green space cooling efficiency: A case study in Beijing metropolitan area. Sci. Total Environ. 2023, 898, 165563. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Yu, K.; Zeng, X.; Lin, Y.; Ye, B.; Shen, X.; Liu, J. How can urban parks be planned to mitigate urban heat island effect in “Furnace cities”? An accumulation perspective. J. Clean. Prod. 2022, 330, 129852. [Google Scholar] [CrossRef]
- Fan, H.; Yu, Z.; Yang, G.; Liu, T.Y.; Liu, T.Y.; Hung, C.H.; Vejre, H. How to cool hot-humid (Asian) cities with urban trees? An optimal landscape size perspective. Agric. For. Meteorol. 2019, 265, 338–348. [Google Scholar] [CrossRef]
- Myint, S.W.; Zheng, B.; Talen, E.; Fan, C.; Kaplan, S.; Middel, A.; Smith, M.; Huang, H.P.; Brazel, A. Does the spatial arrangement of urban landscape matter? Examples of urban warming and cooling in Phoenix and Las Vegas. Ecosyst. Health Sustain. 2015, 1, 11878989. [Google Scholar] [CrossRef]
- UN-Habitat. New Urban Agenda. 2016. Available online: https://habitat3.org/the-new-urban-agenda/ (accessed on 5 May 2025).
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 5 May 2025).
Input Data | Output Data | |
---|---|---|
Name | New York State Area Map | Summer surface temperature Map |
Composition | OSM Maps + LiDAR data + Building Footprints | Average Summer Daytime LST Map of NYC |
Source | Open Street Map + NYC Open Data | The United States Geological Survey (USGS) |
Coordinate System | WGS 1984 (GCS WGS 1984) | WGS 1984 (GCS WGS 1984) |
Number of Images | (Testing: training = 9:1) | (Testing: training = 9:1) |
Number of Classes | 8 | Continuous |
Class Category | Buildings, Architecture, Natural Features, Points of Interest, Railroads, Roads, Transportation, Traffic, Waterways and Water bodies | 20.51–57.62 °C (Grey scale: 0–255) |
Image Size | 512 × 512 (pixels); 20,000 pixels | 512 × 512 (pixels); 20,000 pixels |
Key Parameter Name | Value |
---|---|
Model Name | pix2pixHD |
Batch Size | 1 |
Beta1 | 0.5 |
Continue Train | True |
Feat Number | 3 |
Fine Size | 512 |
Fp16 | FALSE |
Input_nc | 3 |
Instance Feat | FALSE |
Label Feat | FALSE |
Label_nc | 0 |
Lambda Feat | 10 |
Load Size | 512 |
Load Features | FALSE |
Local Rank | 0 |
Learning Rate | 0.00002 |
Number of Threads | 2 |
Number of Blocks Global | 9 |
Number of Blocks Local | 3 |
Number of Cluster | 10 |
Number of Downsample E | 4 |
Number of Downsample Global | 4 |
Number of Layers D | 3 |
Number of Local Enhancer | 1 |
Ndf | 64 |
Nef | 16 |
NetG | global |
Ngf | 64 |
Niter | 70 |
Niter_decay | 30 |
Niter_fix_global | 0 |
No Flip | TRUE |
No GAN feat Loss | FALSE |
No Html | FALSE |
No Instance | TRUE |
No LsGAN | FALSE |
No_vgg_loss | FALSE |
Norm | Instance |
Number of D | 2 |
Output_nc | 3 |
Resize or crop | None |
Verbose | FALSE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhao, L.; Zheng, H.; Yang, X. Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design. Land 2025, 14, 1393. https://doi.org/10.3390/land14071393
Li Y, Zhao L, Zheng H, Yang X. Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design. Land. 2025; 14(7):1393. https://doi.org/10.3390/land14071393
Chicago/Turabian StyleLi, Yuanyuan, Lina Zhao, Hao Zheng, and Xiaozhou Yang. 2025. "Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design" Land 14, no. 7: 1393. https://doi.org/10.3390/land14071393
APA StyleLi, Y., Zhao, L., Zheng, H., & Yang, X. (2025). Using New York City’s Geographic Data in an Innovative Application of Generative Adversarial Networks (GANs) to Produce Cooling Comparisons of Urban Design. Land, 14(7), 1393. https://doi.org/10.3390/land14071393