Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,946)

Search Parameters:
Keywords = low-density lipoprotein (LDL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 535 KiB  
Article
Real-World Effectiveness of Rosuvastatin–Ezetimibe Single Pill (Rovazet®) in Korean Dyslipidemia Patients
by Hack-Lyoung Kim, Hyun Sung Joh, Sang-Hyun Kim and Myung-A Kim
J. Clin. Med. 2025, 14(15), 5480; https://doi.org/10.3390/jcm14155480 - 4 Aug 2025
Abstract
Background: Fixed-dose combinations of rosuvastatin and ezetimibe are increasingly used in clinical practice, but real-world data on their effectiveness and safety in large populations remain limited. Methods: This prospective, single-group, open-label, non-interventional observational study was conducted in the Republic of Korea to evaluate [...] Read more.
Background: Fixed-dose combinations of rosuvastatin and ezetimibe are increasingly used in clinical practice, but real-world data on their effectiveness and safety in large populations remain limited. Methods: This prospective, single-group, open-label, non-interventional observational study was conducted in the Republic of Korea to evaluate the effectiveness and safety of Rovazet® (a fixed-dose combination of rosuvastatin and ezetimibe). Patients were prospectively enrolled from 235 institutions (50 general hospitals and 185 private clinics) as part of routine clinical practice over a five-year period. Lipid profiles and medication compliance questionnaire results were collected at baseline, 12 weeks, and 24 weeks of treatment. Results: A total of 5527 patients with dyslipidemia, the majority were men (53.0%), and the mean age was 60.4 years. Rovazet® significantly reduced low-density lipoprotein cholesterol (LDL-C) by 23.5% at 12 weeks (from 117.47 ± 50.65 mg/dL to 81.14 ± 38.20 mg/dL; p < 0.0001) and by 27.4% at 24 weeks (from 117.47 ± 50.65 mg/dL to 74.52 ± 33.36 mg/dL; p < 0.0001). Total cholesterol was significantly reduced by 17.7% at 12 weeks and by 19.8% at 24 weeks. Rovazet® treatment reduced triglycerides by 4.1% at 12 weeks and by 7.2% at 24 weeks. High-density lipoprotein cholesterol increased by 4.5% at 12 weeks and by 7.9% at 24 weeks following Rovazet® treatment. These changes in lipid profiles were consistent, regardless of cardiovascular risk profiles. By 24 weeks of treatment with Rovazet®, 91.8% of patients had reached their target LDL-C goals. Adverse drug reactions were reported in 2.81% of patients, most of which were minor, indicating that Rovazet® was well tolerated. Conclusions: Rovazet® was effective in improving lipid profiles and well tolerated in Korean adults with dyslipidemia. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

22 pages, 5182 KiB  
Article
Effects of High-Phenolic Extra Virgin Olive Oil (EVOO) on the Lipid Profile of Patients with Hyperlipidemia: A Randomized Clinical Trial
by Christos Kourek, Emmanouil Makaris, Prokopios Magiatis, Virginia Zouganeli, Vassiliki Benetou, Alexandros Briasoulis, Andrew Xanthopoulos, Ioannis Paraskevaidis, Eleni Melliou, Georgios Koudounis and Philippos Orfanos
Nutrients 2025, 17(15), 2543; https://doi.org/10.3390/nu17152543 - 2 Aug 2025
Viewed by 500
Abstract
Background/Objectives: Hyperlipidemia is a major risk factor for cardiovascular disease and atherosclerosis. Polyphenols found in polyphenol-rich extra virgin olive oil (EVOO) have been shown to possess strong antioxidant, anti-inflammatory, and cardioprotective properties. The present study aimed to assess the effects of two types [...] Read more.
Background/Objectives: Hyperlipidemia is a major risk factor for cardiovascular disease and atherosclerosis. Polyphenols found in polyphenol-rich extra virgin olive oil (EVOO) have been shown to possess strong antioxidant, anti-inflammatory, and cardioprotective properties. The present study aimed to assess the effects of two types of EVOO with different polyphenol content and dosages on the lipid profile of hyperlipidemic patients. Methods: In this single-blind, randomized clinical trial, 50 hyperlipidemic patients were randomized to receive either a higher-dose, lower-phenolic EVOO (414 mg/kg phenols, 20 g/day) or a lower-dose, higher-phenolic EVOO (1021 mg/kg phenols, 8 g/day), for a period of 4 weeks. These doses were selected to ensure equivalent daily polyphenol intake in both groups (~8.3 mg of total phenols/day), based on chemical analysis performed using NMR spectroscopy. The volumes used (8–20 g/day) reflect typical daily EVOO intake and were well tolerated by participants. A group of 20 healthy individuals, separated into two groups, also received the two types of EVOO, respectively, for the same duration. Primary endpoints included blood levels of total blood cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, lipoprotein-a (Lpa), and apolipoproteins A1 and B. Measurements were performed at baseline and at the end of the 4-week intervention. Linear mixed models were performed for the data analysis. Results: The higher-phenolic, lower-dose EVOO group showed a more favorable change in total blood cholesterol (p = 0.045) compared to the lower-phenolic, higher-dose group. EVOO intake was associated with a significant increase in HDL (p < 0.001) and reduction in Lp(a) (p = 0.040) among hyperlipidemic patients in comparison to healthy individuals. Conclusions: EVOO consumption significantly improved the lipid profile of hyperlipidemic patients. Higher-phenolic EVOO at lower dosages appears to be more effective in improving the lipid profile than lower-phenolic EVOO in higher dosages. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

19 pages, 1376 KiB  
Article
The Effect of Short-Term Healthy Ketogenic Diet Ready-To-Eat Meals Versus Healthy Ketogenic Diet Counselling on Weight Loss in Overweight Adults: A Pilot Randomized Controlled Trial
by Melissa Hui Juan Tay, Qai Ven Yap, Su Lin Lim, Yuki Wei Yi Ong, Victoria Chantel Hui Ting Wee and Chin Meng Khoo
Nutrients 2025, 17(15), 2541; https://doi.org/10.3390/nu17152541 - 1 Aug 2025
Viewed by 252
Abstract
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net [...] Read more.
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net carbohydrate intake to 50 g per day, prioritizing unsaturated fats, and reducing saturated fat intake. However, adherence to the HKD remains a challenge in urban, time-constrained environments. Therefore, this pilot randomized controlled trial aimed to investigate the effects of Healthy Ketogenic Diet Ready-To-Eat (HKD-RTE) meals (provided for the first month only) versus HKD alone on weight loss and metabolic parameters among overweight adults. Methods: Multi-ethnic Asian adults (n = 50) with a body mass index (BMI) ≥ 27.5 kg/m2 were randomized into the HKD-RTE group (n = 24) and the HKD group (n = 26). Both groups followed the HKD for six months, with the HKD-RTE group receiving HKD-RTE meals during the first month. Five in-person workshops and mobile health coaching through the Nutritionist Buddy Keto app helped to facilitate dietary adherence. The primary outcome was the change in body weight at 6 months. Linear regression was performed on the change from baseline for each continuous outcome, adjusting for demographics and relevant covariates. Logistic regression was performed on binary weight loss ≥ 5%, adjusting for demographics and relevant covariates. Results: In the HKD group, participants’ adherence to the 50 g net carbohydrate target was 15 days, while that in the HKD-RTE group was 19 days over a period of 30 days. Participants’ adherence to calorie targets was 21 days in the HKD group and 23 days in the HKD-RTE. The average compliance with the HKD-RTE meals provided in the HKD-RTE group was 55%. The HKD-RTE group experienced a greater percentage weight loss at 1 month (−4.8 ± 3.0% vs. −1.8 ± 6.2%), although this was not statistically significant. This trend continued up to 6 months, with the HKD-RTE group showing a greater percentage weight reduction (−8.6 ± 6.8% vs. −3.9 ± 8.6%; p = 0.092). At 6 months, the HKD-RTE group had a greater reduction in total cholesterol (−0.54 ± 0.76 mmol/L vs. −0.05 ± 0.56 mmol/L; p = 0.283) and LDL-C (−0.43 ± 0.67 mmol/L vs. −0.03 ± 0.52 mmol/L; p = 0.374) compared to the HKD group. Additionally, the HKD-RTE group exhibited greater reductions in systolic blood pressure (−8.3 ± 9.7 mmHg vs. −5.3 ± 11.0 mmHg), diastolic blood pressure (−7.7 ± 8.8 mmHg vs. −2.0 ± 7.0 mmHg), and HbA1c (−0.3 ± 0.5% vs. −0.1 ± 0.4%) than the HKD group (not statistically significant for any). Conclusions: Both HKD-RTE and HKD led to weight loss and improved metabolic profiles. The HKD-RTE group tended to show more favorable outcomes. Short-term HKD-RTE meal provision may enhance initial weight loss, with sustained long-term effects. Full article
Show Figures

Figure 1

21 pages, 2807 KiB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 318
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

27 pages, 2593 KiB  
Review
Mobile Health Interventions for Individuals with Type 2 Diabetes and Overweight or Obesity—A Systematic Review and Meta-Analysis
by Carlos Gomez-Garcia, Carol A. Maher, Borja Sañudo and Jose Manuel Jurado-Castro
J. Funct. Morphol. Kinesiol. 2025, 10(3), 292; https://doi.org/10.3390/jfmk10030292 - 29 Jul 2025
Viewed by 414
Abstract
Background: Type 2 diabetes (T2D) and overweight or obesity are strongly associated, with a high prevalence of these concomitant conditions contributing significantly to global healthcare costs. Given this burden, there is an urgent need for effective interventions. Mobile health (mHealth) technologies represent [...] Read more.
Background: Type 2 diabetes (T2D) and overweight or obesity are strongly associated, with a high prevalence of these concomitant conditions contributing significantly to global healthcare costs. Given this burden, there is an urgent need for effective interventions. Mobile health (mHealth) technologies represent a promising strategy to address both conditions simultaneously. Objectives: This systematic review and meta-analysis aimed to evaluate the effectiveness of mHealth-based interventions for the management of adults with T2D and overweight/obesity. Specifically, it assessed the quantitative impact of these interventions on glycosylated hemoglobin (HbA1c), body weight, triglycerides, total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) levels. Methods: A systematic search was conducted in PubMed, Web of Science, and Scopus databases from inception to 9 July 2025. The inclusion criteria focused on randomized controlled trials (RCTs) using mHealth interventions in adults with T2D and overweight/obesity, reporting HbA1c or weight as primary or secondary outcomes. The risk of bias was assessed using the Cochrane Risk of Bias tool 2. A total of 13 RCTs met the inclusion criteria. Results: Meta-analysis indicated significant improvements after 6–12 months of intervention in HbA1c (MD −0.23; 95% CI −0.36 to −0.10; p < 0.001; I2 = 72%), body weight (MD −2.47 kg; 95% CI −3.69 to −1.24; p < 0.001; I2 = 79%), total cholesterol (MD −0.23; 95% CI −0.39 to −0.07; p = 0.004; I2 = 0%), and LDL (MD −0.27; 95% CI −0.42 to −0.12; p < 0.001; I2 = 0%). Conclusions: mHealth interventions are effective and scalable for managing T2D and obesity, particularly when incorporating wearable technologies to improve adherence. Future research should focus on optimizing personalization, engagement strategies, and long-term implementation. Full article
Show Figures

Figure 1

14 pages, 839 KiB  
Article
Biochemical Profile Variations Among Type 2 Diabetic Patients Stratified by Hemoglobin A1c Levels in a Saudi Cohort: A Retrospective Study
by Abdulrahman Alshalani, Nada AlAhmari, Hajar A. Amin, Abdullah Aljedai and Hamood AlSudais
J. Clin. Med. 2025, 14(15), 5324; https://doi.org/10.3390/jcm14155324 - 28 Jul 2025
Viewed by 370
Abstract
Background: The global increase in type 2 diabetes mellitus (T2DM) cases necessitates the need for early detection of metabolic changes. This study investigated variations in liver enzymes, renal markers, electrolytes, and lipid profiles among T2DM patients stratified by hemoglobin A1c (HbA1c) categories [...] Read more.
Background: The global increase in type 2 diabetes mellitus (T2DM) cases necessitates the need for early detection of metabolic changes. This study investigated variations in liver enzymes, renal markers, electrolytes, and lipid profiles among T2DM patients stratified by hemoglobin A1c (HbA1c) categories to support early identification and better management of diabetes-related complications. Methods: A retrospective observational study at King Khalid University Hospital (KKUH), Riyadh, included 621 adult patients diagnosed with T2DM categorized into four HbA1c groups: normal (<5.7%), prediabetes (5.7–6.4%), controlled diabetes (6.5–7.9%), and uncontrolled diabetes (≥8.0%). Biochemical parameters included the liver profile: alkaline phosphatase (ALP) and bilirubin, renal profile: creatinine, blood urea nitrogen (BUN), glucose, sodium, and chloride, and lipid profile: cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides. Regression models identified predictors of ALP, cholesterol, and LDL. Results: ALP was higher in uncontrolled diabetes (89.0 U/L, Q1–Q3: 106.3–72.0) than in the prediabetes group (75.0 U/L, Q1–Q3: 96.8–62.3). Sodium and chloride were lower in uncontrolled diabetes (Na: 138.3 mmol/L, Q1–Q3: 140.3–136.4; Cl: 101.1 mmol/L, Q1–Q3: 102.9–99.4) compared to the normal group (Na: 139.5 mmol/L, Q1–Q3: 142.4–136.9; Cl: 103.5 mmol/L, Q1–Q3: 106.1–101.7). LDL was lower in uncontrolled diabetes (2.1 mmol/L, Q1–Q3: 2.8–1.7) than in the normal group (2.8 mmol/L, Q1–Q3: 3.7–2.2), while triglycerides were higher in patients with uncontrolled diabetes compared to the normal group (1.45 mmol/L, Q1–Q3: 2.02–1.11 vs. 1.26 mmol/L, Q1–Q3: 1.44–0.94). Regression models showed low explanatory power (R2 = 2.1–7.3%), with weight, age, and sex as significant predictors of select biochemical markers. Conclusions: The study observed biochemical variations across HbA1c categories in T2DM patients, likely reflecting insulin resistance. Monitoring these markers in conjunction with HbA1c can enhance early detection and improve the management of complications. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

25 pages, 1329 KiB  
Review
Research Progress and Prospects of Flavonoids in the Treatment of Hyperlipidemia: A Narrative Review
by Xingtong Chen, Jinbiao Yang, Yunyue Zhou, Qiao Wang, Shuang Xue, Yukun Zhang and Wenying Niu
Molecules 2025, 30(15), 3103; https://doi.org/10.3390/molecules30153103 - 24 Jul 2025
Viewed by 527
Abstract
Hyperlipidemia (HLP) is a disorder of human lipid metabolism or transport, primarily characterized by abnormally elevated levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) in the blood. It is a key factor contributing to the development of non-alcoholic fatty [...] Read more.
Hyperlipidemia (HLP) is a disorder of human lipid metabolism or transport, primarily characterized by abnormally elevated levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) in the blood. It is a key factor contributing to the development of non-alcoholic fatty liver disease, obesity, diabetes, atherosclerosis, and cardiovascular and cerebrovascular diseases. Statistics show that the prevalence of dyslipidemia among Chinese adults is as high as 35.6%, and it has shown a trend of younger onset in recent years, posing a serious threat to public health. Therefore, the prevention and treatment of dyslipidemia carry significant social significance. The pathogenesis of hyperlipidemia is complex and diverse, and currently used medications are often accompanied by side effects during treatment, making the research and development of new therapeutic approaches a current focus. Numerous studies have shown that flavonoids, which are abundant in most medicinal plants, fruits, and vegetables, exert effects on regulating lipid homeostasis and treating hyperlipidemia through a multi-target mechanism. These compounds have demonstrated significant effects in inhibiting lipid synthesis, blocking lipid absorption, promoting cholesterol uptake, enhancing reverse cholesterol transport, and suppressing oxidative stress, inflammation, and intestinal microbiota disorders. This article reviews the latest progress in the mechanisms of flavonoids in the treatment of hyperlipidemia, providing a theoretical basis for future research on drugs for hyperlipidemia. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

17 pages, 1774 KiB  
Article
A Randomized Double-Blind Trial of the Effect of Liupao Tea on Metabolic Parameters, Body Composition, and Gut Microbiota in Adults with Metabolic Syndrome
by Yuyang Wang, Qiang Hu, Qiliu Jiang, Jiamin Jiang, Biandi Li and Defu Ma
Nutrients 2025, 17(14), 2371; https://doi.org/10.3390/nu17142371 - 19 Jul 2025
Viewed by 626
Abstract
Background: Metabolic syndrome (MetS) represents a significant global health challenge. Liupao tea (LPT), a post-fermented dark tea, has shown potential metabolic benefits, but clinical evidence remains limited. Objectives: This study aimed to investigate the effects of LPT with varying aging durations [...] Read more.
Background: Metabolic syndrome (MetS) represents a significant global health challenge. Liupao tea (LPT), a post-fermented dark tea, has shown potential metabolic benefits, but clinical evidence remains limited. Objectives: This study aimed to investigate the effects of LPT with varying aging durations on clinical parameters, body composition and gut microbiota in individuals with MetS. Methods: In a randomized, double-blind trial, patients with MetS were randomly assigned to intervention groups, receiving 6 g/day of LPT aged for 1, 4, 7, or 10 years, respectively, over a 90-day intervention period. Blood pressure, lipid and glucose levels, body weight, body composition, and gut microbiota were assessed at baseline and post-intervention. Results: A total of 71 participants, with a mean age of 53.5 years, were included. At the final assessment, significant reductions in both systolic and diastolic blood pressure were observed in the 10-year-aged groups (p < 0.05). In terms of lipid profiles, the 1-year-aged group showed a significant decrease in total cholesterol (TC), while low-density lipoprotein cholesterol (LDL-C) levels significantly decreased in the 1-, 4-, 7-, and 10-year-aged groups (p < 0.05). All intervention groups showed significant reductions in body weight, body fat mass (BFM), along with an increase in muscle mass (MM) (p < 0.05). A decrease in the Firmicutes/Bacteroides (F/B) ratio was observed in the 10-year-aged group. No significant differences in clinical parameters or body composition regulation were observed between groups with varying aging durations (p > 0.05). Conclusions: LPT intervention effectively improves metabolic health and modulates gut microbiota in MetS patients, irrespective of aging duration. These findings support LPT as a functional beverage for the management of MetS. Full article
Show Figures

Figure 1

25 pages, 1538 KiB  
Review
Lipid Hormones at the Intersection of Metabolic Imbalances and Endocrine Disorders
by Maria-Zinaida Dobre, Bogdana Virgolici and Ruxandra Cioarcă-Nedelcu
Curr. Issues Mol. Biol. 2025, 47(7), 565; https://doi.org/10.3390/cimb47070565 - 18 Jul 2025
Viewed by 534
Abstract
Lipid hormone imbalances involving glucocorticoids, thyroid hormones (THs), and sex hormones have widespread metabolic consequences, contributing to the global increase in obesity and insulin resistance. This review examines the complex role of disrupted lipid hormone pathways in the development of metabolic disorders, particularly [...] Read more.
Lipid hormone imbalances involving glucocorticoids, thyroid hormones (THs), and sex hormones have widespread metabolic consequences, contributing to the global increase in obesity and insulin resistance. This review examines the complex role of disrupted lipid hormone pathways in the development of metabolic disorders, particularly metabolic dysfunction-associated steatotic liver disease (MASLD). Endocrine disorders such as hypercortisolism, hypothyroidism, and polycystic ovary syndrome (PCOS) are closely linked to MASLD through shared metabolic pathways. Mechanisms include glucocorticoid-induced gluconeogenesis and lipolysis, impaired lipid clearance in hypothyroidism, and the hyperandrogenism-induced downregulation of hepatic low-density lipoprotein (LDL) receptors. PCOS-related factors—such as central obesity, adipocyte hypertrophy, low adiponectin levels, and genetic predisposition—further promote hepatic steatosis. Thyroid dysfunction may also impair the hepatic deiodination of T4, contributing to lipid accumulation and inflammation. Given the overlapping pathophysiology among endocrine, hepatic, and reproductive disorders, multidisciplinary collaboration is essential to optimize diagnosis, treatment, and long-term cardiometabolic outcomes. Full article
Show Figures

Figure 1

11 pages, 2539 KiB  
Article
Relationship Between Frontal QRS-T Angle and Non-Alcoholic Fatty Liver Disease (NAFLD) Fibrosis Score in Patients with Stable Angina Pectoris
by Ali Gökhan Özyıldız, Afag Özyıldız, Hüseyin Durak, Nadir Emlek and Mustafa Çetin
J. Clin. Med. 2025, 14(14), 5117; https://doi.org/10.3390/jcm14145117 - 18 Jul 2025
Viewed by 307
Abstract
Aim: The frontal QRS-T (fQRS-T) angle serves as an electrocardiography indicator that visually represents the disparity between the frontal QRS axis and the T axis. The heterogeneity between cardiac depolarization and repolarization rises with an increase in the fQRS-T angle. Prior research has [...] Read more.
Aim: The frontal QRS-T (fQRS-T) angle serves as an electrocardiography indicator that visually represents the disparity between the frontal QRS axis and the T axis. The heterogeneity between cardiac depolarization and repolarization rises with an increase in the fQRS-T angle. Prior research has demonstrated a relationship between the fQRS-T angle and the extent of atherosclerosis, along with the risk of cardiovascular mortality. The non-alcoholic fatty liver disease fibrosis score (NFS) is a non-invasive scoring tool used to quantify the degree of liver fibrosis in individuals with non-alcoholic fatty liver disease (NAFLD). Non-alcoholic fatty liver disease increases the risk of atherosclerotic cardiovascular disease, which can be predicted using the NFS. The objective of this study is to examine the potential correlation between the fQRS-T angle and NFS in patients with stable angina pectoris. Materials and Methods: This cross-sectional study included 177 (48 women) non-alcoholic patients who underwent coronary angiography due to stable angina pectoris. Individual NFS values were calculated using clinical and laboratory data. Patients were categorized into two groups based on a NFS threshold value of 0.67. Following a minimum fasting period of 12 h, biochemical laboratory parameters were acquired using a peripheral venous sample, and electrocardiographic data were recorded. Results: The univariate logistic regression analysis revealed significant associations between hypertension (p = 0.018), coronary artery disease (p = 0.014), neutrophil (p = 0.024), hemoglobin (p = 0.038), and low-density lipoprotein (LDL, p = 0.007) with the NFS. The electrocardiographic variables related to the score included the QRS duration (p = 0.015), Pmax (p = 0.026), QTC interval (p = 0.02), and fQRS-T angle (p < 0.001). In the multivariate logistic regression analysis, NFS was independently associated with LDL (OR: 0.984, 95% CI: 0.970–0.998, p = 0.024) and fQRS-T angle (OR: 3.472, 95% CI: 1.886–6.395, p < 0.001). Conclusions: The FQRS-T angle may exhibit a distinct correlation with NAFLD. Extensive investigations should validate this link, since the fibrosis score can serve as an effective tool for monitoring patients prior to the onset of clinical symptoms associated with liver fibrosis. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

23 pages, 1809 KiB  
Review
Pediatric Familial Hypercholesterolemia: Targeting Intestinal Absorption and Other Therapeutic Strategies
by Konstantinos Arvanitakis, Elena Chatzikalil, Christina Antza, Christos Topalidis, Georgios Kalopitas, Elena Solomou, Vasilios Kotsis, Georgios Germanidis, Theocharis Koufakis and Michael Doumas
Nutrients 2025, 17(14), 2357; https://doi.org/10.3390/nu17142357 - 18 Jul 2025
Viewed by 1262
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder marked by significantly elevated levels of low-density lipoprotein cholesterol (LDL-C) since childhood, substantially increasing the risk of premature atherosclerosis and cardiovascular disease. While dysfunction of hepatic LDL-C receptors is the main underlying cause, the gastrointestinal tract [...] Read more.
Familial hypercholesterolemia (FH) is a genetic disorder marked by significantly elevated levels of low-density lipoprotein cholesterol (LDL-C) since childhood, substantially increasing the risk of premature atherosclerosis and cardiovascular disease. While dysfunction of hepatic LDL-C receptors is the main underlying cause, the gastrointestinal tract plays a key role in cholesterol homeostasis and represents an important therapeutic target. Inhibition of intestinal cholesterol absorption has emerged as an effective strategy in the management of pediatric FH, particularly in patients for whom statins may not be the ideal first-line treatment. Ezetimibe, an inhibitor of the Niemann-Pick C1-like 1 (NPC1L1) protein, has been shown to reduce LDL-C levels in children with FH, with a greater efficacy observed when used in combination with statins. Bile acid sequestrants also enhance cholesterol excretion but are often limited by gastrointestinal side effects, while dietary interventions, such as phytosterol supplementation and fiber-enriched diets, provide additional benefits in lowering LDL-C and are generally well tolerated. Emerging therapies, including microbiota-targeted strategies and novel cholesterol absorption inhibitors, show promise for expanding future treatment options. This review explores the mechanisms of intestinal cholesterol absorption and their relevance to pediatric FH. We examine key pathways, including dietary cholesterol uptake through NPC1L1, bile acid reabsorption, and cholesterol efflux mediated by ATP-binding cassette transporters, while also discussing clinical and experimental evidence on pharmacological and dietary interventions that modulate these pathways. A deeper understanding of cholesterol metabolism, the emerging role of the gut microbiota, and innovative therapeutic agents can support the development of more effective and personalized approaches to the treatment of children with FH. Full article
Show Figures

Figure 1

10 pages, 551 KiB  
Article
Cross-Sectional Retrospective Observational Study on Lipid-Lowering Therapy for Secondary Prevention in Patients with Peripheral Arterial Disease: LEONIDA Registry
by Ilaria Radano, Fabrizio Delnevo, Tiziana Claudia Aranzulla, Salvatore Piazza, Catia De Rosa, Silvia Muccioli, Maria Chiara Ferrua Trucco, Andrea Ricotti, Simone Quaglino, Michelangelo Ferri, Giuseppe Patti, Andrea Gaggiano and Giuseppe Musumeci
J. Vasc. Dis. 2025, 4(3), 27; https://doi.org/10.3390/jvd4030027 - 17 Jul 2025
Viewed by 233
Abstract
Background and aim: Low-density lipoprotein cholesterol (LDL-C) is an important and well-established modifiable risk factor for cardiovascular disease, including peripheral artery disease (PAD). We aimed at evaluating the lipid profile at admission in PAD patients with an indication for invasive treatment. Methods: Among [...] Read more.
Background and aim: Low-density lipoprotein cholesterol (LDL-C) is an important and well-established modifiable risk factor for cardiovascular disease, including peripheral artery disease (PAD). We aimed at evaluating the lipid profile at admission in PAD patients with an indication for invasive treatment. Methods: Among patients with PAD diagnosis admitted to the vascular surgery department, those receiving statins and those with LDL-C values in the recommended target (<55 mg/dL) were identified. The correlation of LDL-C values with different clinical variables was investigated. Results: Of the 399 patients, 259 (65%) were on statin therapy. According to multivariate linear regression analysis, diabetes (p = 0.004), previous CAD history (p < 0.001), and statin therapy (p < 0.001) were independently associated with LDL-C levels. Patients with LDL-C < 55 mg/dL at admission were 89 (22% of the overall cohort). Among these patients, diabetes (48.3% versus 35.8%, p = 0.036), CAD history (52.8% versus 30%, p < 0.001), and statin use (91% versus 57.4%, p < 0.001) were more frequent as compared with patients not at target. Conclusion: Despite the very high cardiovascular risk of our group, the rate of statin prescription was very low and far from ideal. Only a small percentage of patients achieved target LDL-C values. Patients with coexistent diabetes and CAD had lower LDL-C values, suggesting management by specialists with greater attention to lipid profile and pointing out an urgent need for information on cardiovascular disease management. Full article
(This article belongs to the Section Peripheral Vascular Diseases)
Show Figures

Figure 1

12 pages, 510 KiB  
Article
Application of Machine Learning Models in Predicting Non-Alcoholic Fatty Liver Disease Among Inactive Chronic Hepatitis B Patients: A Cross-Sectional Analysis
by Abdullah M. Al-Alawi, Amna S. Al-Balushi, Halima H. Al-Shuaili, Dalia A. Mahmood and Said A. Al-Busafi
J. Clin. Med. 2025, 14(14), 5042; https://doi.org/10.3390/jcm14145042 - 16 Jul 2025
Viewed by 385
Abstract
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) represents significant health challenges, especially among patients with chronic hepatitis B (CHB). This study uses machine learning models to predict NAFLD in patients with inactive CHB. It builds on previous research by employing classification algorithms to [...] Read more.
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) represents significant health challenges, especially among patients with chronic hepatitis B (CHB). This study uses machine learning models to predict NAFLD in patients with inactive CHB. It builds on previous research by employing classification algorithms to analyze demographic, clinical, and laboratory data to identify NAFLD predictors. Methods: A single-center cross-sectional study was conducted, including 450 inactive CHB patients from Sultan Qaboos University Hospital. Five ML models were developed: Logistic Regression, Random Forest, Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). Results: The prevalence of NAFLD was 50.22%. Among the machine learning models, Random Forest achieved the highest performance with an ROC AUC of 0.983 (95% CI: 0.952–0.999), followed by XGBoost at 0.977 (95% CI: 0.938–0.999) and MLP at 0.963 (95% CI: 0.915–0.995). SVM also showed strong performance with an AUC of 0.949 (95% CI: 0.897–0.985), while Logistic Regression demonstrated comparatively lower discrimination with an AUC of 0.886 (95% CI: 0.799–0.952). Key predictive features identified included platelet count, low-density lipoprotein (LDL), hemoglobin, and alanine aminotransferase (ALT). Logistic Regression highlighted platelet count as the most significant negative predictor, while LDL and ALT were positive contributors. Conclusions: This study shows the utility of ML in improving the identification and management of NAFLD in CHB patients, enabling targeted interventions. Future research should expand on these findings, integrating genetic and lifestyle factors to enhance predictive accuracy across diverse populations. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

27 pages, 2385 KiB  
Review
Butyrate Produced by Gut Microbiota Regulates Atherosclerosis: A Narrative Review of the Latest Findings
by Leon M. T. Dicks
Int. J. Mol. Sci. 2025, 26(14), 6744; https://doi.org/10.3390/ijms26146744 - 14 Jul 2025
Viewed by 622
Abstract
Atherosclerosis (AS), a progressive inflammatory disease of coronary arteries, the aorta, and the internal carotid artery, is considered one of the main contributors to cardiovascular disorders. Blood flow is restricted by accumulating lipid-rich macrophages (foam cells), calcium, fibrin, and cellular debris into plaques [...] Read more.
Atherosclerosis (AS), a progressive inflammatory disease of coronary arteries, the aorta, and the internal carotid artery, is considered one of the main contributors to cardiovascular disorders. Blood flow is restricted by accumulating lipid-rich macrophages (foam cells), calcium, fibrin, and cellular debris into plaques on the intima of arterial walls. Butyrate maintains gut barrier integrity and modulates immune responses. Butyrate regulates G-protein-coupled receptor (GPCR) signaling and activates nuclear factor kappa-B (NF-κB), activator protein-1 (AP-1), and interferon regulatory factors (IFRs) involved in the production of proinflammatory cytokines. Depending on the inflammatory stimuli, butyrate may also inactivate NF-κB, resulting in the suppression of proinflammatory cytokines and the stimulation of anti-inflammatory cytokines. Butyrate modulates mitogen-activated protein kinase (MAPK) to promote or suppress macrophage inflammation, muscle cell growth, apoptosis, and the uptake of oxidized low-density lipoprotein (ox-LDL) in macrophages. Activation of the peroxisome proliferator-activated receptor γ (PPARγ) pathway plays a role in lipid metabolism, inflammation, and cell differentiation. Butyrate inhibits interferon γ (IFN-γ) signaling and suppresses NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) involved in inflammation and scar tissue formation. The dual role of butyrate in AS is discussed by addressing the interactions between butyrate, intestinal epithelial cells (IECs), endothelial cells (ECs) of the main arteries, and immune cells. Signals generated from these interactions may be applied in the diagnosis and intervention of AS. Reporters to detect early AS is suggested. This narrative review covers the most recent findings published in PubMed and Crossref databases. Full article
Show Figures

Figure 1

21 pages, 749 KiB  
Review
HDL Function Versus Small Dense LDL: Cardiovascular Benefits and Implications
by Claudiu Stoicescu, Cristina Vacarescu and Dragos Cozma
J. Clin. Med. 2025, 14(14), 4945; https://doi.org/10.3390/jcm14144945 - 12 Jul 2025
Viewed by 631
Abstract
High-density lipoprotein (HDL) and small dense low-density lipoprotein (sdLDL) represent two critical yet contrasting components in lipid metabolism and cardiovascular risk modulation. While HDL has traditionally been viewed as cardioprotective due to its role in reverse cholesterol transport and anti-inflammatory effects, emerging evidence [...] Read more.
High-density lipoprotein (HDL) and small dense low-density lipoprotein (sdLDL) represent two critical yet contrasting components in lipid metabolism and cardiovascular risk modulation. While HDL has traditionally been viewed as cardioprotective due to its role in reverse cholesterol transport and anti-inflammatory effects, emerging evidence emphasizes that HDL functionality—rather than concentration alone—is pivotal in atheroprotection. Conversely, sdLDL particles are increasingly recognized as highly atherogenic due to their enhanced arterial penetration, oxidative susceptibility, and prolonged plasma residence time. This review critically examined the physiological roles, pathological implications, and therapeutic interventions targeting HDL function and sdLDL burden. Lifestyle modifications, pharmacologic agents including statins, fibrates, PCSK9 inhibitors, and novel therapies such as icosapent ethyl were discussed in the context of their effects on HDL quality and sdLDL reduction. Additionally, current clinical guidelines were analyzed, highlighting a paradigm shift away from targeting HDL-C levels toward apoB-driven risk reduction. Although HDL-targeted therapies remain under investigation, the consensus supports focusing on lowering apoB-containing lipoproteins while leveraging lifestyle strategies to improve HDL functionality. In the setting of heart failure, particularly with preserved ejection fraction (HFpEF), alterations in HDL composition and elevated sdLDL levels have been linked to endothelial dysfunction and systemic inflammation, further underscoring their relevance beyond atherosclerosis. A comprehensive understanding of HDL and sdLDL dynamics is essential for optimizing cardiovascular prevention strategies. Full article
(This article belongs to the Special Issue Clinical Management of Patients with Heart Failure—2nd Edition)
Show Figures

Figure 1

Back to TopTop