Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = low swirl numbers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5629 KB  
Article
A Numerical Investigation of the Flame Characteristics of a CH4/NH3 Blend Under Different Swirl Intensity and Diffusion Models
by Ahmed Adam, Ayman Elbaz, Reo Kai and Hiroaki Watanabe
Energies 2025, 18(15), 3921; https://doi.org/10.3390/en18153921 - 23 Jul 2025
Viewed by 246
Abstract
This study investigates the effects of diffusion modeling and swirl intensity on flow fields and NO emissions in CH4/NH3 non-premixed swirling flames using large eddy simulations (LESs). Simulations are performed for a 50/50 ammonia–methane blend at three global equivalence ratios [...] Read more.
This study investigates the effects of diffusion modeling and swirl intensity on flow fields and NO emissions in CH4/NH3 non-premixed swirling flames using large eddy simulations (LESs). Simulations are performed for a 50/50 ammonia–methane blend at three global equivalence ratios of 0.77, 0.54, and 0.46 and two swirl numbers of 8 and 12, comparing the unity Lewis number (ULN) and mixture-averaged diffusion (MAD) models against the experimental data includes OH-PLIF and ON-PLIF reported in a prior study by the KAUST group. Both models produce similar flow fields, but the MAD model alters the flame structure and species distributions due to differential diffusion (DD) and limitations in its Flamelet library. Notably, the MAD library lacks unstable flame branch solutions, leading to extensive interpolation between extinction and stable branches. This results in overpredicted progress variable source terms and reactive scalars, both within and beyond the flame zone. The ULN model better reproduces experimental OH profiles and localizes NO formation near the flame front, whereas the MAD model predicts broader NO distributions due to nitrogen species diffusion. Higher swirl intensities shorten the flame and shift NO production upstream. While a low equivalence ratio provides enough air for good mixing, lower ammonia and higher NO contents in exhaust gases, respectively. Full article
Show Figures

Figure 1

23 pages, 4820 KB  
Review
Review: Pipeline Layout Effect on the Wall Thinning of Mihama Nuclear Power Plants
by Nobuyuki Fujisawa
J. Nucl. Eng. 2025, 6(2), 19; https://doi.org/10.3390/jne6020019 - 18 Jun 2025
Viewed by 661
Abstract
The subject of the effect of pipeline layout on wall thinning in Mihama nuclear power plants was reviewed in relation to flow-accelerated corrosion (FAC). The pipeline consists of a complex layout with a straight pipe, elbow, curved pipe, orifice, and T-junction. To understand [...] Read more.
The subject of the effect of pipeline layout on wall thinning in Mihama nuclear power plants was reviewed in relation to flow-accelerated corrosion (FAC). The pipeline consists of a complex layout with a straight pipe, elbow, curved pipe, orifice, and T-junction. To understand the mechanism of wall thinning in the pipeline, the basics of FAC, experimental and numerical approaches, and flow and mass transfer studies of the pipeline were reviewed and compared with actual Mihama pipeline data. The results indicate that the wall thinning in the Mihama pipeline was caused by the asymmetric mass transfer phenomenon arising from the pipeline layout effect induced by the swirl flow, resulting in the generation of a spiral flow downstream of the elbow and an increased mass transfer coefficient downstream of the orifice. Swirl flow can be generated by the coupled T-junction and elbow in the upstream pipeline. Furthermore, related topics in flow and mass transfer studies on short elbows and dual and triple elbows were reviewed in relation to wall thinning, which could depend on the elbow curvature, Reynolds number, and surface roughness. The low-frequency flow oscillation in a short elbow, the swirl flow generation in dual and triple elbows, and the influence of wall roughness could be other sources of the increased mass transfer coefficient in the pipeline. Full article
Show Figures

Figure 1

20 pages, 12845 KB  
Article
Study on Swirling Flow and Spray Characteristics of Central Stage Direct Injection Combustor
by Wenjie Jiang, Ziyu Qi, Jinhu Yang, Deqing Mei, Kaixing Wang, Yushuai Liu, Shaolin Wang, Fuqiang Liu, Yong Mu, Cunxi Liu and Gang Xu
Energies 2025, 18(11), 2926; https://doi.org/10.3390/en18112926 - 3 Jun 2025
Viewed by 706
Abstract
To investigate the physical phenomena interactions between airstream and liquid injection or droplets within a complex multi-stage swirl flow field, this study investigated the flow field and spray characteristics in a central stage direct injection combustor with a variety of optical diagnostic techniques, [...] Read more.
To investigate the physical phenomena interactions between airstream and liquid injection or droplets within a complex multi-stage swirl flow field, this study investigated the flow field and spray characteristics in a central stage direct injection combustor with a variety of optical diagnostic techniques, including using time-resolved particle image velocimetry (PIV) to measure the swirl flow field, using time-resolved planar Mie scattering (PMie) to measure the spray pattern, and using a laser particle size analyzer (LPSA) to measure the spray droplet size and its distribution. The results indicate that the lip recirculation zone (LRZ) and the swirl jet zone (SJZ) significantly influence droplet spatial and size distribution characteristics, such as spray penetration, cone angle, and droplet size. Due to the unique characteristics of the dual-stage swirl atomizer, the spray cone angle and penetration do not increase monotonically with the gas Weber number (Weg). For the pilot stage, at a constant Weg, both the spray cone angle and penetration increase with higher fuel injection velocity. At different fuel injection velocities, the spray penetration increases with rising Weg. When the fuel injection velocity is low, the cone angle initially increases and then decreases as Weg grows. The results about the effect of Weg on droplet size distribution further support this conclusion. The Sauter mean diameter (SMD) of the main and pilot stage decreases with increasing relative pressure drop of air until reaching a stable state. The aerodynamic shear of the swirling airstream is sufficient to promote thorough fuel atomization, ensuring that the SMD remains low at the whole operating condition. Therefore, for the dual-stage swirl atomizer investigated in this study, good atomization can be achieved under low operating conditions, which provides a theoretical foundation and data support for the improvement and design of a low-emission, high-performance atomizer. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process II)
Show Figures

Figure 1

21 pages, 8873 KB  
Article
Research on the Aerodynamic–Propulsion Coupling Characteristics of a Distributed Propulsion System
by Xiaojun Yang, Tao Liu and Wei Jia
Appl. Sci. 2025, 15(7), 3536; https://doi.org/10.3390/app15073536 - 24 Mar 2025
Cited by 1 | Viewed by 459
Abstract
In recent years, the distributed propulsion system has received extensive attention due to its advantages such as high propulsion efficiency, low noise, high safety redundancy, and good flexibility and maneuverability. However, the interaction between the internal and external flow can limit the aerodynamic [...] Read more.
In recent years, the distributed propulsion system has received extensive attention due to its advantages such as high propulsion efficiency, low noise, high safety redundancy, and good flexibility and maneuverability. However, the interaction between the internal and external flow can limit the aerodynamic performance of the ducted fan. To investigate the influence of the internal and external flow interaction on the aerodynamic–propulsion coupling characteristics of the distributed propulsion system, an over-wing symmetric configuration with five distributed ducted fans was constructed, and numerical simulations were performed using a method based on the body force model. Results show that as the flight Mach number increases, the lift obtained by the wing increases, while the stall angle of attack decreases, and the stall angle of attack at a Mach number of 0.5 is reduced by 15° compared with a Mach number of 0.2. At large angles of attack, the edge fans have the strongest ability to resist airflow separation, while the middle fan has the weakest ability to resist airflow separation, and its fan performance index drops the fastest. When the Mach number is 0.4, the mass flow rate and thrust of the middle fan are reduced by 16% and 28%, respectively, compared with those when the Mach number is 0.2. The higher the flight Mach number, the larger the intake distortion degree of the ducted fans. The middle fan is most affected by total pressure distortion and least affected by swirl distortion, whereas the edge fans are least affected by total pressure distortion and most affected by swirl distortion. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

16 pages, 4559 KB  
Article
Experimental Investigation of Flame Characteristics of H2-Enriched Biogas Under Different Swirl Numbers
by Gulzira Ainadinovna Koldassova, Karlygash Sadyrovna Idrissova, Aitbala Aitenovna Tumanova, Alma Saparovna Tussupbekova, Abay Mukhamediyarovich Dostiyarov and Dias Raybekovich Umyshev
Energies 2025, 18(6), 1446; https://doi.org/10.3390/en18061446 - 15 Mar 2025
Viewed by 751
Abstract
Biogas, derived from human waste or industrial byproducts, is considered one of the most environmentally acceptable fuels. However, such fuels often exhibit relatively low efficiency, making it essential to develop technologies that facilitate their effective combustion. This article investigates the combustion of biogas [...] Read more.
Biogas, derived from human waste or industrial byproducts, is considered one of the most environmentally acceptable fuels. However, such fuels often exhibit relatively low efficiency, making it essential to develop technologies that facilitate their effective combustion. This article investigates the combustion of biogas with the addition of hydrogen at varying degrees of flow swirling. For this purpose, a burner was used in which methane, hydrogen and CO2 were mixed in a mixer. The studies revealed that increasing the proportion of hydrogen in biogas leads to an average 15% rise in the NOx concentration. Additionally, an increase in the degree of swirling has a positive effect on NOx generation. On the other hand, a higher proportion of hydrogen reduces the concentration of CO in the exhaust gases. The presence of ballast gases, such as CO2, generally results in relatively low NOx levels when combined with a high swirling number. The analysis of combustion products for CO2 indicates a 14% increase in CO2 proportion. The highest concentrations of CO2 were observed in biogas with the highest CO2 ballast content. In terms of reducing NOx and CO, SW = 1.3 is the most successful. On the other hand, this angle leads to an increase in the CO2 concentration. Full article
Show Figures

Figure 1

32 pages, 12239 KB  
Review
A Comprehensive Review of Mixed Convective Heat Transfer in Tubes and Ducts: Effects of Prandtl Number, Geometry, and Orientation
by Mohd Farid Amran, Sakhr M. Sultan and C. P. Tso
Processes 2024, 12(12), 2749; https://doi.org/10.3390/pr12122749 - 3 Dec 2024
Viewed by 3000
Abstract
This paper presents a comprehensive review of mixed convective heat transfer phenomena involving fluids with varying Prandtl numbers, specifically focusing on their behavior in different geometries and orientations. This study systematically explores heat transfer characteristics for fluids with low, medium, and high Prandtl [...] Read more.
This paper presents a comprehensive review of mixed convective heat transfer phenomena involving fluids with varying Prandtl numbers, specifically focusing on their behavior in different geometries and orientations. This study systematically explores heat transfer characteristics for fluids with low, medium, and high Prandtl numbers across a range of tube geometries, including circular, rectangular, triangular, and elliptical cross-sections, and examines their effects in both horizontal and vertical tube orientations. By consolidating existing research findings and analyzing various experimental and numerical studies, this review elucidates the complex interactions between fluid properties, tube geometry, and flow orientation that influence mixed convection heat transfer. Key insights are provided into the mechanisms driving heat transfer enhancements or degradations in different scenarios. In view of the findings from this paper, more than 84% of studies were conducted in a horizontal orientation and circular cross-section with a tendency to use medium-to-high Prandtl numbers as the working fluid for the past 10 years. This paper also identifies critical gaps in current knowledge and suggests future research directions to advance the understanding and application of mixed convective heat transfer in diverse engineering systems. Furthermore, apart from having different geometries applied in industrial applications, there is still room for improvement through the addition of passive methods to the heat transfer system, including helical coils, corrugations, swirl generators, and ribs. Overall, from the literature review, it is found that there are few relevant numerical simulations and experimental studies concentrating on middle Prandtl number fluids. Hence, it is recommended to perform more research on medium Prandtl number fluids that can be used as energy storage systems (ESS) in concentrating solar power plants, nuclear reactors, and geothermal systems. Full article
(This article belongs to the Special Issue Applications of Nanofluids and Nano-PCMs in Heat Transfer)
Show Figures

Figure 1

17 pages, 12091 KB  
Article
Genetic Optimization of Twin-Web Turbine Disc Cavities in Aeroengines
by Yueteng Guo, Suofang Wang and Wenjie Shen
Energies 2024, 17(17), 4346; https://doi.org/10.3390/en17174346 - 30 Aug 2024
Cited by 2 | Viewed by 1081
Abstract
Twin-web turbine discs have been the subject of research recently in an effort to lighten weight and boost aeroengine efficiency. In the past, the cooling design of turbine discs was generally constrained to optimizing a single structural parameter, which hindered the enhancement of [...] Read more.
Twin-web turbine discs have been the subject of research recently in an effort to lighten weight and boost aeroengine efficiency. In the past, the cooling design of turbine discs was generally constrained to optimizing a single structural parameter, which hindered the enhancement of the optimization impact. Therefore, this article proposes a twin-web turbine disc system with a high radius pre-swirl. Driven by the database produced through the numerical simulation, a backpropagation network surrogate model is constructed, and the angles of the pre-swirl nozzles and receiver holes are optimized by a genetic algorithm to enhance the cooling efficiency of the turbine disc. Evaluation was based on the highest disc temperature, disc temperature uniformity, and Nusselt number. The results demonstrate that the suggested surrogate model effectively optimizes the structural characteristics of the twin-web turbine disc by aiming for the specified cooling performance indexes. The cooling effect of the turbine disc is significantly improved in different operating environments. Specifically, the optimized model produces the largest temperature drop in the disc rim temperature. Both axial and radial temperature uniformity have led to a notable enhancement. The alteration in coolant flow within the cavity results in a notable decrease in the area with low heat transfer efficiency and a substantial increase in the Nusselt number. Full article
Show Figures

Figure 1

18 pages, 9403 KB  
Article
Learning-Based Super-Resolution Imaging of Turbulent Flames in Both Time and 3D Space Using Double GAN Architectures
by Chenxu Zheng, Weiming Huang and Wenjiang Xu
Fire 2024, 7(8), 293; https://doi.org/10.3390/fire7080293 - 21 Aug 2024
Viewed by 1289
Abstract
This article presents a spatiotemporal super-resolution (SR) reconstruction model for two common flame types, a swirling and then a jet flame, using double generative adversarial network (GAN) architectures. The approach develops two sets of generator and discriminator networks to learn topographic and temporal [...] Read more.
This article presents a spatiotemporal super-resolution (SR) reconstruction model for two common flame types, a swirling and then a jet flame, using double generative adversarial network (GAN) architectures. The approach develops two sets of generator and discriminator networks to learn topographic and temporal features and infer high spatiotemporal resolution turbulent flame structure from supplied low-resolution counterparts at two time points. In this work, numerically simulated 3D turbulent swirling and jet flame structures were used as training data to update the model parameters of the GAN networks. The effectiveness of our model was then thoroughly evaluated in comparison to other traditional interpolation methods. An upscaling factor of 2 in space, which corresponded to an 8-fold increase in the total voxel number and a double time frame acceleration, was used to verify the model’s ability on a swirling flame. The results demonstrate that the assessment metrics, peak signal-to-noise ratio (PSNR), overall error (ER), and structural similarity index (SSIM), with average values of 35.27 dB, 1.7%, and 0.985, respectively, in the spatiotemporal SR results, can reach acceptable accuracy. As a second verification to highlight the present model’s potential universal applicability to flame data of diverse types and shapes, we applied the model to a turbulent jet flame and had equal success. This work provides a different method for acquiring high-resolution 3D structure and further boosting repeat rate, demonstrating the potential of deep learning technology for combustion diagnosis. Full article
(This article belongs to the Special Issue Combustion Diagnostics)
Show Figures

Figure 1

22 pages, 6842 KB  
Article
Experimental Investigation of a H2O2 Hybrid Rocket with Different Swirl Injections and Fuels
by Manuel Stella, Lucia Zeni, Luca Nichelini, Nicolas Bellomo, Daniele Pavarin, Mario Tindaro Migliorino, Marco Fabiani, Daniele Bianchi, Francesco Nasuti, Christian Paravan, Luciano Galfetti, Attilio Cretella, Rocco Carmine Pellegrini, Enrico Cavallini and Francesco Barato
Appl. Sci. 2024, 14(13), 5625; https://doi.org/10.3390/app14135625 - 27 Jun 2024
Cited by 3 | Viewed by 2007
Abstract
Hybrid rockets have very interesting characteristics like simplicity, reliability, safety, thrust modulation, environmental friendliness and lower costs, which make them very attractive for several applications like sounding rockets, small launch vehicles, upper stages, hypersonic test-beds and planetary landers. In recent years, advancements have [...] Read more.
Hybrid rockets have very interesting characteristics like simplicity, reliability, safety, thrust modulation, environmental friendliness and lower costs, which make them very attractive for several applications like sounding rockets, small launch vehicles, upper stages, hypersonic test-beds and planetary landers. In recent years, advancements have been made to increase hybrid motor performance, and two of the most promising solutions are vortex injection and paraffin-based fuels. Moreover, both technologies can be also used to tailor the fuel regression rate, in the first case varying the swirl intensity, and in the second case with the amount and type of additives. In this way, it is possible not only to design high-performing hybrid motors, but also to adjust their grain and chamber geometries to different mission requirements, particularly regarding thrust and burning time. In this paper, the knowledge about these two technical solutions and their coupling is extended. Three sets of experimental campaigns were performed in the frame of the Italian Space Agency-sponsored PHAEDRA program. The first one investigated a reference paraffin fuel with axial and standard vortex injection. The second campaign tested vortex injection with low values of swirl numbers down to 0.5 with a conventional plastic fuel, namely polyethylene. Finally, the last campaign tested another, lower regressing, paraffin-based fuel with the same low swirl numbers as the second campaign. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

18 pages, 8508 KB  
Article
Modal Decomposition Study of the Non-Reactive Flow Field in a Dual-Swirl Combustor
by Xiangzhou Feng, Jianqin Suo, Qiandong Li and Longxi Zheng
Energies 2023, 16(17), 6182; https://doi.org/10.3390/en16176182 - 25 Aug 2023
Cited by 4 | Viewed by 1433
Abstract
The modal decomposition study of the non-reactive flow field in a dual-swirl combustor is investigated through the large eddy simulation. The formation mechanism and function of various recirculation zones are elaborated by analyzing the time-averaged and instantaneous velocity contours of the center section. [...] Read more.
The modal decomposition study of the non-reactive flow field in a dual-swirl combustor is investigated through the large eddy simulation. The formation mechanism and function of various recirculation zones are elaborated by analyzing the time-averaged and instantaneous velocity contours of the center section. The precessing vortex core (PVC) is first visualized by the pressure iso-surface, and the evolution process is presented. Different dimensionality reduction methods are adopted to identify the coherent structures from the flow field. The most energetic spatial structure corresponding to the PVC and its second-order harmonic structure is extracted by the classical proper orthogonal decomposition (POD). The coherent structures with high frequency have relatively low energy content. In addition, a spectral proper orthogonal decomposition (SPOD) method, which can implement spatial-temporal decomposition simultaneously, is introduced to obtain the energy-based spatial structures at all characteristic frequencies. A triple-helix with azimuth wave number m = 3 and a quadruple-helix with azimuth wave number m = 4 are discovered as the third-order and the fourth-order harmonics of single-helix, respectively. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

19 pages, 35618 KB  
Article
Research and Development of an Industrial Denitration-Used Burner with Multiple Ejectors via Computational Fluid Dynamics Analysis
by Chengguang Tong, Zuobing Chen, Xin Chen and Qiang Xie
Mathematics 2023, 11(16), 3476; https://doi.org/10.3390/math11163476 - 11 Aug 2023
Cited by 2 | Viewed by 1488
Abstract
Nowadays, since the air pollution problem is becoming global and denitrification is efficient to control nitrogen oxides, research and development of burners with low pollutant emissions in industries are urgent and necessary due to the increasingly severe environmental requirements. Based on the advanced [...] Read more.
Nowadays, since the air pollution problem is becoming global and denitrification is efficient to control nitrogen oxides, research and development of burners with low pollutant emissions in industries are urgent and necessary due to the increasingly severe environmental requirements. Based on the advanced CFD (computational fluid dynamics) numerical analysis technique, this work focuses on developing an industrial denitration-used burner, aiming to decrease the emission of nitrogen oxides. A burner with multiple ejectors is proposed, and the gas premixing and combustion process in the burner are systematically studied. Firstly, for the ejector, the well-known orthogonal experiment method is adopted to reveal the premixing performance under different structural parameters. Results show that the angle and number of swirl blades have significant effects on the CO mixing uniformity. The CO mixing uniformity first decreases and then increases with thr rising swirl blade angle, and it enhances with more swirl blades. Through comparison, a preferred ejector is determined with optimal structure parameters including the nozzle diameter of 75 mm, the ejector suction chamber diameter of 290 mm, the blade swirl angle of 45, and the swirl blade number 16. And then, the burners installed with the confirmed ejector and two types of flues, i.e., a cylindrical and a rectangular one, are simulated and compared. The effects of ejector arrangements on the temperature distributions at the burner outlet are analyzed qualitatively and quantitatively. It is found that the temperature variances at the outlets of R2 and C1 are the smallest, respectively, 13.12 and 23.69, representing the optimal temperature uniformity under each type. Finally, the burner of the R2 arrangement is verified with a satisfied premixing performance and combustion temperature uniformity, meeting the denitration demands in the industry. Full article
(This article belongs to the Special Issue CFD Simulation of Heat Transfer and Applications)
Show Figures

Figure 1

22 pages, 18880 KB  
Article
Performance Study of a Supersonic Swirl Separator
by Yi Liu and Chang Ding
Processes 2023, 11(7), 2218; https://doi.org/10.3390/pr11072218 - 24 Jul 2023
Cited by 3 | Viewed by 2179
Abstract
At present, as a new separation technology, supersonic separators have great potential in the separation of natural gases. However, their system performance is still low. In this paper, a supersonic swirl separator design is proposed with an integration approach of the discrete phase [...] Read more.
At present, as a new separation technology, supersonic separators have great potential in the separation of natural gases. However, their system performance is still low. In this paper, a supersonic swirl separator design is proposed with an integration approach of the discrete phase model (DPM), bi-coupling, and the random walk model, and it is used to predict the flow process of liquid droplets within the device. Such a numerical method is further employed to study the influence of key parameters on system performance. The results show that with an increase in the inlet port number and the ratio of the gas-liquid area, the separation performance decreases. As a result, the expansion, condensation effect, and economy of the separation system are greatly improved. When the deflection angle exceeds 20°, the separation temperature increases greatly. Consequently, this may ruin the condensing environment. The working pressure ranges are: (1) the boost ratio (the dry outlet pressure/total inlet pressure) is less than 0.76; (2) the wet pressure ratio (the wet outlet pressure/total inlet pressure)is less than 0.46. The increase in droplet diameter can improve the separation performance, and the droplets are completely separated as the diameter reaches 1.75 μm. Full article
Show Figures

Figure 1

20 pages, 8253 KB  
Article
Research on the Gas-Liquid Two-Phase Distribution Behavior and Influencing Factors of Swirling Flow in Horizontal Pipe
by Ming Zhang, Jiaqing Chen, Qiangqiang Wang, Lingzhen Kong, Chao Shang, Chunsheng Wang, Guodong Ding, Yipeng Ji and Junyong Lei
Processes 2023, 11(7), 2057; https://doi.org/10.3390/pr11072057 - 10 Jul 2023
Viewed by 2385
Abstract
Gas-liquid two-phase swirling flow is widely used for gas-liquid separation in the power, chemical, petroleum, and nuclear industries. However, the majority of current research on swirling flow focuses on identifying flow patterns and does not pay more attention to topics such as the [...] Read more.
Gas-liquid two-phase swirling flow is widely used for gas-liquid separation in the power, chemical, petroleum, and nuclear industries. However, the majority of current research on swirling flow focuses on identifying flow patterns and does not pay more attention to topics such as the boundary where swirling flow forms. The length and diameter of the central gas core are the main focus of the current studies as well as the distribution patterns of gas-liquid two-phase. Comparative studies on the gas-liquid distribution morphology, such as whether the gas phase is separated and the separation mode, are lacking. In this paper, a combination of visual experimental observations and numerical simulations of Computational Fluid Dynamics (CFD) is used to investigate the formation conditions of gas-liquid two-phase swirling flow in three types of cyclonic components. The results show that the minimum superficial liquid velocity for the formation of swirling flow in the horizontal tube is about 0.375~0.82 m/s when the superficial gas velocity is less than 10 m/s. The formation of swirling flow is almost independent of the geometric swirl number and superficial liquid velocity when the superficial gas velocity is greater than 10 m/s. At low inlet superficial velocities, the tangential velocity determines the transition from swirling flow to stratified flow. However, at higher inlet superficial velocities, the decay of the cyclonic field is mainly affected by the wave amplitude of the gas-liquid interface. In both co-current and counter-current horizontal inline gas-liquid cyclone separators, the flow split is related to the vortex core breakdown of the central gas core. In addition, the numerical simulation results show that the breakdown of the vortex core is related to the pressure distribution inside the separator. This work enriches the study of swirling flow and provides a basis for the performance improvement of inline gas-liquid cyclone separators. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

23 pages, 11491 KB  
Article
Numerical Study of Flow and Heat Transfer Characteristics in a Simplified Dual Fluid Reactor
by Hisham Elgendy and Konrad Czerski
Energies 2023, 16(13), 4989; https://doi.org/10.3390/en16134989 - 27 Jun 2023
Cited by 3 | Viewed by 1943
Abstract
This study presents the design and computational fluid dynamics (CFD) analysis of a mini demonstrator for a dual fluid reactor (DFR). The DFR is a novel concept currently under investigation. The DFR is characterized by the implementation of two distinct liquid loops dedicated [...] Read more.
This study presents the design and computational fluid dynamics (CFD) analysis of a mini demonstrator for a dual fluid reactor (DFR). The DFR is a novel concept currently under investigation. The DFR is characterized by the implementation of two distinct liquid loops dedicated to fuel and coolant. It integrates the principles of molten salt reactors and liquid metal cooled reactors; thus, it operates in a high temperature and fast neutron spectrum, presenting a distinct approach in the field of advanced nuclear reactor design. The mini demonstrator serves as a scaled-down version of the actual reactor, primarily aimed at gaining insights into the CFD analysis intricacies of the reactor while minimizing computational costs. The CFD modeling of the MD intends to add valuable data for the purpose of modeling validation against experiments to be conducted on the MD. These experiments can be used for DFR licensing and design optimization. The coolant and fuel utilized in the mini demonstrator are of low Prandtl number (Pr = 0.01) liquid lead, operating at two distinct inlet temperatures, namely 873 K and 1473 K. The study showed a rapid increase in turbulence due to intense mixing and abrupt changes in flow areas and directions, despite the relatively low inlet velocities. Hot spots characterized by elevated temperatures were identified, analyzed, and justified based on their spatial distribution and flow conditions. Flow swirling within pipes was identified and a remedy approach was suggested. Inconsistent mass flow rates were observed among the fuel pipes, with higher rates observed in the lateral pipes. Although lower fuel temperatures were observed in the lateral pipes, they consistently exhibited higher heat exchange characteristics. The study concludes by giving physical insights into the heat transfer and flow behavior, and proposing design considerations for the dual fluid reactor to enhance structural safety and durability, based on the preliminary analysis conducted. Full article
(This article belongs to the Topic Computational Fluid Dynamics (CFD) and Its Applications)
Show Figures

Figure 1

27 pages, 5972 KB  
Article
Flow Modeling over Airfoils and Vertical Axis Wind Turbines Using Fourier Pseudo-Spectral Method and Coupled Immersed Boundary Method
by Lucas Marques Monteiro and Felipe Pamplona Mariano
Axioms 2023, 12(2), 212; https://doi.org/10.3390/axioms12020212 - 17 Feb 2023
Cited by 5 | Viewed by 2154
Abstract
In the present work, verifying the applicability and potentiality of the IMERSPEC methodology for numerical and computational modeling of two-dimensional flows over airfoils and vertical axis wind turbines is proposed. It is a high-order convergence methodology with low computational cost when compared to [...] Read more.
In the present work, verifying the applicability and potentiality of the IMERSPEC methodology for numerical and computational modeling of two-dimensional flows over airfoils and vertical axis wind turbines is proposed. It is a high-order convergence methodology with low computational cost when compared to other high-order methods, resulting from the coupling of the Fourier pseudo-spectral method and the immersed boundary method. To validate the proposed methodology, flow simulations are carried out over an airfoil NACA 0012 for a Reynolds number equal to 1000. From the spatial discretization procedure, there is convergence and good agreement of the lift and drag coefficients and the Strouhal number in relation to reference works. The behavior of the flows over the airfoil, as a function of the angle of attack, is evaluated by pressure and vorticity fields. From the analyzed flows, it is observed that the formation of different wake modes, constituted by swirling structures that vary their characteristic sizes, is influenced by the angle of attack. A case study is proposed based on the analysis of the main fluid dynamic aspects of flows over wind turbines with a vertical axis of three blades for a Reynolds number equal to 100. For this, a mathematical model responsible for the imposition of the rotational movement on the blades is presented in the turbine. Performance parameters, such as the coefficient of tangential force and normal force, and the analysis of velocity fields on the simulated turbine were presented and compared with other numerical methods. The good level of convergence and the accuracy of the obtained results show the promising capacity of the IMERSPEC methodology in solving problems of this nature. Full article
(This article belongs to the Special Issue Computational and Experimental Fluid Dynamics)
Show Figures

Figure 1

Back to TopTop