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Abstract: In the present work, verifying the applicability and potentiality of the IMERSPEC method-
ology for numerical and computational modeling of two-dimensional flows over airfoils and vertical
axis wind turbines is proposed. It is a high-order convergence methodology with low computational
cost when compared to other high-order methods, resulting from the coupling of the Fourier pseudo-
spectral method and the immersed boundary method. To validate the proposed methodology, flow
simulations are carried out over an airfoil NACA 0012 for a Reynolds number equal to 1000. From
the spatial discretization procedure, there is convergence and good agreement of the lift and drag
coefficients and the Strouhal number in relation to reference works. The behavior of the flows over
the airfoil, as a function of the angle of attack, is evaluated by pressure and vorticity fields. From the
analyzed flows, it is observed that the formation of different wake modes, constituted by swirling
structures that vary their characteristic sizes, is influenced by the angle of attack. A case study
is proposed based on the analysis of the main fluid dynamic aspects of flows over wind turbines
with a vertical axis of three blades for a Reynolds number equal to 100. For this, a mathematical
model responsible for the imposition of the rotational movement on the blades is presented in the
turbine. Performance parameters, such as the coefficient of tangential force and normal force, and
the analysis of velocity fields on the simulated turbine were presented and compared with other
numerical methods. The good level of convergence and the accuracy of the obtained results show the
promising capacity of the IMERSPEC methodology in solving problems of this nature.

Keywords: flow over airfoil; vertical axis wind turbine; immersed boundary method; Fourier
pseudo-spectral method

MSC: 76-10

1. Introduction

Airfoils are the two-dimensional sections of vertical axis turbine blades; they are also
present in aircraft wings, engine blades and fan blades, with different geometric shapes
and specific characteristics. Physically, the flow of a viscous fluid over an airfoil results in a
fluid–structure interaction that promotes the appearance of a resultant force.

In aerodynamics, depending on the application, this force ensures the physical effect
of lift and drag in large aircraft and in the well-known micro-aerial vehicles (MAVs) [1,2].
Among other physical mechanisms, it is also capable of promoting torque in wind turbines,
responsible for maintaining the rotating movement of the blades and transforming the
kinetic energy of the flow into mechanical energy [3]. In general, the design of these struc-
tures and the estimation of aerodynamic forces take into account the conditions imposed
by the flow dynamics. In this sense, Computational Fluid Dynamics (CFD) has emerged as
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a promising technique for research and development in various branches of engineering,
especially in aeronautics, wind power, chemistry, petroleum and the environment.

Through numerical and computational methods, CFD proposes the solution of mathe-
matical models formed by partial differential equations, such as the Navier–Stokes equa-
tions, which physically model the flows of a Newtonian fluid. In airfoils and vertical axis
turbines, the solution of these models makes it possible to predict the performance and
efficiency of these structures, verify the influence of design variables and allow the detailed
visualization of velocity, pressure and vorticity fields [4–6]. They can be used as tools for
systematic optimization procedures [7–10]. Furthermore, these are computational experi-
ments, therefore, eliminating the need for calibrated and high-sensitivity measurement and
control tools and instruments necessary in material experiments [11,12].

The application of CFD methodologies in the design, development and optimization
of micro-air vehicles (MAVs) has shown potential results with physical consistency that are
capable of being executed [13–15]. These flying objects, especially those with oscillating
wings, are inspired by bees and insects and operate efficiently under very low Reynolds
numbers (Re ≤ 103). Low speeds and characteristic small sizes are factors that make them
operational in difficult-to-access environments, allowing excellent maneuverability. In the
case of fluid dynamics, the flows over the airfoils that make up the MAVs present important
aspects to be investigated.

Using the finite volume method, [16] presented an analysis of the influence of the pitch-
ing motion on the formation of leading-edge vortices in an NACA 0012 airfoil subjected to
flows with Re = 3000. A change in the evolution and behavior of the released structures
was observed, implying sensitive variations in the aerodynamic forces applied to the air-
foil. Two-dimensional flows over different symmetric NACA airfoils, with Re = 400–6000,
were modeled by [17,18] using the finite difference method and finite volume method,
respectively. For the entire investigated range, there was evidence of early detachment of
the flow and destruction of the laminar boundary layer, with the subsequent formation
of a separation bubble on the upper surface of the airfoil, under the influence of different
angles of attack. Using low-order convergence methods, [19] studied the dynamic stall
phenomenon on a NACA 0012 airfoil for Re = 1000. Under high angles of attack, the
formation of Kelvin–Helmholtz instabilities is observed, followed by a von-Kárman wake.

There is a trend toward the use of classical methodologies, such as the finite volume
and finite difference method, for fluid dynamic computational modeling in airfoils and
vertical axis turbines. The challenge for researchers is the search and development of
models that are easily programmable, accessible, highly accurate, with low computational
cost and with a high order of convergence. Boundary conditions in flows over airfoils and
vertical axis wind turbines become complex as the industrial and engineering problems
become increasingly sophisticated. Thus, paths are observed that allow the application of
methods of a high order of convergence (q > 2), where q is the order of convergence, in
physical models of this nature, such as the Discontinuous Galerkin method, finite volumes
of high order and spectral methods [20–22]. Unlike low-order convergence methods, it is
possible to simulate complex physical problems, ensuring high accuracy without requiring
very refined meshes, reducing cost and facilitating computational implementation.

Specifically, the Fourier pseudo-spectral method, presented in the present work, seems
to be a method of a high order of convergence and excellent accuracy in relation to other
methods, such as the method of low-order finite volumes, finite elements and finite dif-
ferences. Mainly when applied to the solution of the set of Navier–Stokes equations and
the continuity equation, transformed from physical space to spectral space [23–25]. High
accuracy is guaranteed since spectral methods solve a derivative for a given point in the do-
main using information from all other points. The transformation operations are efficiently
carried out using the Fast Fourier Transform (FFT) algorithm [26] and projection procedure,
the pressure field is decoupled from the Navier–Stokes equations, being able to replace
the solution of the linear system with a vector-matrix product to satisfy the conservation
of mass.
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The use of the FFT requires that the function to be transformed is necessarily peri-
odic [27]. This condition is the biggest limitation of the Fourier pseudo-spectral method,
especially for fluid dynamics problems. Flows over airfoils and mobile geometries, such
as the vertical turbine blades under rotating motion or flows over deformable geome-
tries, require the imposition of any boundary conditions different from periodic conditions.
Therefore, for the modeling of flows with non-periodic conditions using the pseudo-spectral
method, it is necessary to apply additional mathematical and numerical tools. Thus, the ap-
plication of the immersed boundary method [28,29] is proven to be an efficient alternative
with low computational cost to overcome this limitation compared with other methods
that make use of unstructured meshes.

The ability of the boundary-immersed methods in complex models and mobile ge-
ometries allows its application in problems involving flows over airfoils and vertical axis
wind turbines. A fluid–structure problem was proposed by [30] based on a flow over an
oscillating airfoil. It was observed in the results that despite the complexity of the problem,
the modeling presented an economy in its computational cost by the use of the immersed
boundary method. Two-dimensional and three-dimensional flow simulations over an
NACA 0012 airfoil were performed by [31] using different types of immersed boundary
methods associated with the finite volume method. The presented results validated the
applicability of the immersed boundary method to represent, with reliability and good
levels of detail, the complex movement of a flapping wing flight. Refs. [32–34] studied the
application of the immersed boundary method, associated with the large-eddy simulation
model (LES), in simulations of flows over airfoils and vertical axis turbines. The complexity
and non-linearity of the flows, due to the turbulent regime, are well represented, especially
in the wake region, advected and in the regions adjacent to the boundary layer.

The hybridization of the Fourier pseudo-spectral method and the immersed boundary
method resulted in the IMERSPEC methodology [25,35,36]. This coupling added the
advantages of both methods, with emphasis on the modeling of flows over complex
and mobile geometries using a Cartesian mesh under non-periodic boundary conditions;
the decoupling of pressure-velocity variables, eliminating the need to solve the Poisson
equation; post-processing for the recovery of the pressure field, satisfying the continuity
equation with round-off errors.

Based on this approach, the present work proposes the evaluation of the applicability
and potentiality of the IMERSPEC methodology for the solution of two-dimensional and
incompressible flows over airfoils and blades of vertical axis turbines in rotating motion
under low Reynolds numbers (Re ≤ 103). For this, it presents the development of a specific
subroutine capable of modeling the rotating movement of the blades. Associated with
the IMERSPEC methodology, the complete model is capable of contemplating the fluid–
structure interaction between a turbine and flow. It also proposes numerical procedures
that allow the calculation of the main performance parameters of airfoils and vertical
axis turbines, among which the following stand out: coefficient of lift, drag, normal
and tangential.

2. Mathematical Modeling

This section aims to detail the IMERSPEC methodology [25], used in this work as a nu-
merical and computational tool for modeling and simulating flows over airfoils and blades
of vertical axis turbines. Initially, the mathematical modeling of fluid flows in physical
space is addressed. Then, using Fourier’s pseudo-spectral method, the transformation of
the equations from the physical space to the spectral space is presented, and the formulation
of the immersed boundary method, based on the interactive process of Multi-Direct Forcing
(MDF). Finally, the development of the mathematical model that imposes movement to the
blades of a vertical axis turbine is shown, simulating the rotating effect of the rotor.
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2.1. Mathematical Modeling of Fluid Flows

The fluid dynamic behavior of flows over airfoils and vertical axis turbine blades is
described by a differential mathematical model composed of the continuity equation, given
by Equation (1), and by the Navier–Stokes equations, given by Equation (2). This model is
presented in tensorial notation, valid for t ≥ 0,

∂uj

∂xj
= 0, (1)

∂ui
∂t

+
∂(uiuj)

∂xj
= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fi, (2)

where t is the time, ui(x, t) are the components of the velocity vector in (m/s), x is the
position vector of a point in the Eulerian domain, p = p∗/ρ, where p∗ is the static pressure
field in (N/m2), ρ is the specific mass of the fluid in (kg/m3) and ν is the kinematic viscosity
of the fluid in (m2/s). The term fi = fi

∗/ρ is used to model the components of any force
field applied to the flow, where fi

∗ is shown in (N/m3). These force fields are due to
fluid–structure and fluid–fluid interactions, due to electromagnetic effects, gravitational
effects or other physical effects internal to fluid particles.

Using the immersed boundary method, the term fi virtually models the immersed
interface of airfoils and vertical turbine blades. In the present work, the mathematical
model is restricted to two-dimensional, incompressible, isothermal flows, Newtonian fluids
and constant fluid physical properties.

2.2. Fourier Pseudo-Spectral Method

The Fourier pseudo-spectral method is responsible for transforming the primitive vari-
ables of fluid dynamics (velocity and pressure) from physical space to spectral space using the
direct Fourier transform, Equation (3), and the inverse Fourier transform, Equation (4),

σ̂(k, t) =
(

1
2π

)2 ∫ ∞

−∞
σ(x, t)e−ιkxdx, (3)

σ(x, t) =
(

1
2π

)2 ∫ ∞

−∞
σ̂(k, t)eιkxdk, (4)

where σ̂(k, t) is the field of the transformed variable, σ(x, t) is the untransformed variable
field, k is the wavenumber vector and ι =

√
−1 is the imaginary number. Equation (3) ob-

tains the field of the variable in the spectral space σ̂(k, t), transformed from physical space.
By Equation (4), we obtain the field of the variable in physical space σ(x, t), transformed
from the spectral space.

Fourier’s pseudo-spectral method, therefore, allows the transformation of the dif-
ferential mathematical model, described in Section 2.1, from physical space to spectral
space (Fourier space). Thus, applying Equation (3) to the continuity equation, Equation (1),
we have,

ιk jûj = 0, (5)

where û(k, t) is the velocity field in spectral space.
The transformation of Equation (2) to Fourier space is given by,

∂ûi
∂t

+ ιk j (̂uiuj) = −ιki p̂− νk2ûi + f̂i, (6)

where k2 = k jk j is the squared norm of the vector wavenumber k.

In spectral space, the non-linear term ιk j (̂uiuj) is given by the product of two trans-

formed functions (̂uiuj). Formally, solving this term requires solving a convolution integral,
such that the transformed non-linear term becomes,
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ιk jûiuj(k) = ιk j

∫
k=r+s

ûi(r)ûj(k− r)dr, (7)

where k = r + s, gives the triadic interactions between the vector’s wavenumber k, r e s.
One can, therefore, rewrite Equation (6),

[
∂

∂t
+ νk2

]
ûi(k, t) = ℘im

 f̂m(k, t)− ιk j

∫
k=r+s

ûm(r, t)ûj(k− r, t)dr

, (8)

where ℘im is the projection tensor, defined by,

℘ij(k) = δij −
kik j

k2 , (9)

where

δij =

{
1 se i = j
0 se i 6= j

, (10)

is the Kronecker delta. The tensor ℘ij projects any vector on the plane π. This is the plane
of zero divergence defined in the spectral space, perpendicular to the vector k. For more
details, see the works [25,37].

Note that the pressure term in spectral space −ιki p̂ becomes null, projected by the
tensor ℘im. This way, the pressure-velocity coupling is eliminated and, consequently, the
need to solve the Poisson equation, commonly proposed in classical numerical methods,
such as the finite volume method [38]. The velocity field is now determined without
necessarily solving the pressure field, and mass conservation is guaranteed by a vector-
matrix product, which is computationally cheaper compared to the interactive procedure
of the Poisson equation, which requires the solution of a linear system.

The recovery of the pressure field is given through post-processing, from which it is
calculated by,

p̂(k) =
ιkm

k2

− f̂m(k) + ιk j

∫
k=r+s

ûm(r)ûj(k− r)dr

. (11)

In addition to the projection procedure, another computational procedure used in
the methodology is the elimination of the need to solve the convolution integral of the
non-linear term in the spectral space, shown in Equation (7). The solution of this integral
requires the application and implementation of numerical integration schemes, making the
proposed methodology onerous. To overcome this drawback, ensuring the accuracy of the
methodology, the calculation of the integral is replaced by the product of two functions in
physical space and only then is the direct Fourier transform applied to the product. This
way, the non-linear term of the Navier–Stokes equations is solved pseudo-spectrally.

Therefore, it is avoided to calculate the product, in the spectral space, of two individu-
ally transformed functions, which mathematically requires a solution of the convolution
integral. For example, given a function g(x, t) and h(x, t), in the physical space, the prod-
uct is made in such a way that: b(x, t) = g(x, t)h(x, t). We apply Equation (3) in b(x, t),
obtaining b̂(k, t). The same treatment is applied to the non-linear term.

With this procedure, the accuracy of the spectral method is maintained since the
derivatives are still calculated in the spectral space, and the low computational cost acquired
with the pressure field projection procedure is maintained. However, the number of times
the direct and inverse Fourier transform is applied to the variables is increased at each
time step, especially when treating the non-linear term in the antisymmetric form [23], as
performed in the present work. The non-linear term in its antisymmetric form is given
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from an arithmetic mean of the conservative and non-conservative form and guarantees
greater numerical stability.

The Fourier pseudo-spectral method is based on the application of Equations (3) and (4),
in their discrete versions, by using the Fast Fourier Transform (FFT) [26]. This requires that
the functions to be transformed are necessarily periodic. The immersed boundary method-
ology proved to be an efficient computational alternative to circumvent this limitation,
from which the flow can be well resolved and the continuity equation satisfied in complex
regions of the geometry without becoming onerous and computationally expensive.

2.3. Immersed Boundary Method

The immersed boundary method uses two simultaneous and independent calculation
domains, the Eulerian domain (Ω), fixed and Cartesian, and the domain that delimits the
interface immersed in the flow, called the Lagrangian domain (Γ), as shown in Figure 1.

Figure 1. Representation of the Eulerian domain (Ω) and the Lagrangian domain (Γ), where x is the
position vector of any point in the Eulerian domain and X is the position vector of any point in the
Lagrangian domain.

The mathematical model presented in Section 2.1 is solved and valid for the entire
Eulerian domain, including the region delimited by the Lagrangian domain. In the present
work, as it is a two-dimensional analysis, the Lagrangian domain is represented by the
contour lines that model the geometry of the airfoil and the blades of a vertical turbine,
constituted by discrete points.

The coupling procedure between the Eulerian and Lagrangian domains is given
mathematically by calculating the force term fi, presented in Equation (2). From this
calculation, using previously determined Lagrangian points as a reference, the interface
immersed in the Eulerian domain is virtually modeled. It is, therefore, the imposition of
boundary conditions on a frontier, informing the flow of the presence of a body immersed
in it.

The contribution of the term fi is important near the interface, determined by a discon-
tinuous function. Thus, over every Eulerian domain, fi is zero except when approaching
the Lagrangian points,

fi(x, t) = ∑
Γ

Dh(x− X)Fi(X, t)∆s2, (12)

where Fi(X, t) is the Lagrangian force, ∆s is the spacing between the discretized Lagrangian
points and Dh(x− X) is a distribution function,

Dh(x− X) =
1

∆x2 Wh(rx)Wh
(
ry
)
, (13)
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where rx = x−X
∆x , ry = y−Y

∆y , ∆x and ∆y are the spacing between the discretized Eule-
rian points in the x and y directions, respectively, and Wh is the “hat” weight function,
calculated by,

Wh(r) =
{

1− |r|, se 0 ≤ |r| ≤ 1
0, se 1 < |r| . (14)

The complexity of the geometric shapes of the airfoils makes it difficult to coincide
between the Lagrangian points and the Eulerian points. Therefore, the Lagrangian force
distribution procedure becomes necessary. We calculate the Lagrangian force field Fi(X, t),
which is distributed to the nearest neighboring Eulerian points using Equation (12), together
with Equations (13) and (14).

The choice of the appropriate weight function guarantees the high accuracy and order
of convergence of the numerical solutions. Other functions can be found in [28,39]. In
simulations of flows over airfoils, the results obtained by the “hat” function were more
accurate, to the detriment of the other functions. These results are explained due to the use
of only three points in the support function. While other functions require at least five points.
As the geometry of an airfoil is slender, especially at the trailing edge, there is no space for
weight functions that require many points for the respective velocity interpolations and
force distributions.

The immersed boundary methodology, based on multiple direct force imposition,
requires the calculation of the Lagrangian force Fi(X, t).

Starting from Equation (2), one isolates fi,

fi(x, t) =
ui

t+∆t − ui
∗ + ui

∗ − ui
t

∆t
+ rhsi

t, (15)

where ui
t+∆t is the velocity component of an Eulerian point at the current instant of time

t + ∆t, ui
t is the velocity component of an Eulerian point at the previous instant of time t,

ui
∗ is the estimated Eulerian point velocity component, ∆t is the discretized time step and

rhsi is the sum of the diffusive, advective (non-linear term) and pressure gradient terms,
which set Equation (2).

Two details presented by Equation (15) are worth highlighting. First, the time deriva-
tive was discretized by the explicit Euler method. This choice was merely explanatory
and didactic for understanding the modeling. The temporal discretization in the present
work was performed using the fourth-order Runge–Kutta method of six-step temporal
convergence (RK46) [40]. According to the Eulerian velocity ui

∗ is a temporary parameter,
understood as the estimate of the Eulerian velocity field at the current time step without
taking into account the correction by the force source term fi.

Decomposing Equation (15) into two parts,

ui
∗ − ui

t

∆t
+ rhsi

t = 0, (16)

fi(x, t) =
ui

t+∆t − ui
∗

∆t
. (17)

By the continuum hypothesis, Equation (17) can be defined either in the Eulerian
domain (Ω) or in the Lagrangian domain (Γ). Therefore, the Lagrangian force Fi(X, t),

Fi(X, t) =
Ui

t+∆t −Ui
∗

∆t
, (18)

where Ui
t+∆t is the velocity component of the Lagrangian points that models the immersed

boundary in the time step t + ∆t, therefore, Ui
t+∆t = Ui

FI . For the case of flows over
airfoils, Ui

FI = 0 throughout the simulated physical time. For flows over the blades of
vertical axis turbines, Ui

FI is given by a mathematical model that imposes rotary movement
on the interface of the blades.
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Initially, to determine the temporary parameter Ui
∗, Equation (16) is solved. From this

solution, we obtain ui
∗. Then, the opposite process to the distribution of the Lagrangian

force, called velocity interpolation, is carried out ui
∗,

Ui
∗(X, t) = ∑

Ω
Dh(x− X)ui

∗(x, t)∆x2. (19)

By Equation (19), the information of interest of the Eulerian domain ui
∗ is transferred to

the Lagrangian domain. Just like the distribution procedure, in interpolation, the Eulerian
information is passed on to the closest neighboring Lagrangian points, weighted by the
distance between these points. Thus, the Lagrangian points closer to the Eulerian points
present greater contributions to Eulerian information, while the more distant ones present
smaller contributions.

The Lagrangian force field, calculated by Equation (18), is distributed, as shown in
Equations (12)–(14). Rearranging Equation (17), term fi, obtained from the distribution
procedure, is corrected to ui

∗ and is updated to ui
t+∆t,

ui
t+∆t = ui

∗ + ∆t fi. (20)

Thus far, the details described by the method are responsible for ensuring the imposi-
tion of the boundary condition on the immersed interface by the force term, fi. Therefore, in
order to improve the understanding, the steps taken to impose this condition are organized
in sequence:

1. Using Equation (16), we calculate the parameter temporary or Eulerian velocity
field ui

∗;
2. By the interpolation procedure presented by Equation (19), the information from

the Eulerian domain, ui
∗, is transmitted to the Lagrangian domain. Thus, Ui

∗ is
determined;

3. Ui
FI is determined, that is, the velocity that the immersed boundary must have over

the simulated physical time. This velocity is imposed or calculated by some additional
mathematical model. For airfoils, Ui

FI = 0. For vertical axis turbine blades, Ui
FI is

calculated by Equations (25) and (26), described in Section 2.4;
4. Using Equation (18), we calculate the Lagrangian force. In general, this step is about

the application of Newton’s Second Law on the Lagrangian domain. The boundary
condition of the immersed interface, given by UFI , is now guaranteed in terms of the
Lagrangian force;

5. Using Equation (12), we propose the distribution of the Lagrangian force for the points
of the Eulerian domain. The Eulerian force field fi is determined;

6. The Eulerian velocity field ui
∗ is then corrected by the term fi, using Equation (20).

In summary, at the end of step (6), the flow is informed, indirectly, of the velocity
boundary condition, imposed on the boundary in step (3), by the Eulerian force field fi,
which corrects the velocity field ui.

Numerically, the temporal discretization procedures of the IMERSPEC methodology
and the use of the distribution and interpolation functions for the virtual modeling of
the immersed body are responsible for absolutely not satisfying the non-slip condition.
To get around this limitation, an interactive procedure is used to improve the accuracy
of the velocity calculation ui

t+∆t. This iterative procedure is the Multi-Direct Forcing
method [25,29], described by the steps below:

1. Before advancing the time step, ui
t+∆t,it = ui

t+∆t, where it is the interaction of
multiple direct imposition of force;

2. It is interpolated to ui
t+∆t,it, using Equation (19);

3. Obtained from interpolation, the new Lagrangian velocity Ui
t+∆t,it is replaced in

Equation (18). It is calculated as Fit
i ;

4. Using Equations (12)–(14), we distribute Fit
i , and it is obtained as f it

i ;
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5. With the term f it
i , it is corrected to ui

t+∆t,it, and it is estimated as ui
t+∆t,it+1,

ui
t+∆t,it+1 = ui

t+∆t,it + ∆t f it
i ; (21)

6. It is updated to it = it + 1, return to step (1) or advance in time, t + ∆t.

In the present work, the described interactive process is carried out until a maximum
number of interactions (NIT), configured in the initial setup of the IMERSPEC methodology
algorithm, are satisfied. Therefore, when reaching NIT interactions, the interactive loop is
completed, and the model advances in time.

The greater the number of interactions performed, the more accurate the imposition of
the non-slip condition on the surface of the immersed bodies becomes. It results, therefore,
in greater accuracy in determining the performance parameters of airfoils and vertical axis
turbine blades, such as: coefficients of lift, drag, power, normal, tangential, among others.
However, the computational cost of the methodology becomes proportional to the increase
in the number of interactions.

The hybridization of the Fourier pseudo-spectral method and the immersed boundary
method results in the IMERSPEC methodology. Details of the coupling procedure between
the two methodologies are described in [25].

2.4. Mathematical Modeling of Rotary Motion

In the immersed boundary method, the Eulerian domain is Cartesian and remains
fixed throughout the simulated physical time. For fluid dynamic problems involving
rotating boundaries, it is necessary to impose a mathematical model on the Lagrangian
domain that allows calculating, at each time step ∆t, a new position to the Lagrangian
points from their initial positions. In the present work, this model simulates the rotational
movement of vertical wind turbine blades.

The Lagrangian points, which together delimit the interface of the airfoils, assume
new positions at each instant of time due to the speed of rotation ω of the turbine.

In Figure 2, the scheme of the rotational movement of a Lagrangian point is shown,
belonging to the domain Γ. The Lagrangian point, represented by pt0 , at the initial time
t0, is shifted φt, where φt is the angle of rotation promoted by the imposition of ω. Thus,
this point assumes a new position at an instant of time t, represented by pt. The location of
the Lagrangian point in relation to the center of rotation of the turbine, at the instants of
time t0 and t, is given by the position vector Xt0 and Xt, respectively. The axis system xy
established the origin of the Eulerian domain and is positioned at the center of the rotor.

Figure 2. Rotary motion of a Lagrangian point p, imposed by a speed of rotation ω.

To determine the positions of the Lagrangian points, imposed by the rotary motion, is
to locate them by the position vector Xt at every instant of time t. Therefore, the position
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Xt of a given point, starting from the origin of the Eulerian domain, is calculated, starting
from its initial position Xt0 ,

Xt = SφXt0 , (22)

where Sφ is the rotation matrix,

Sφ =

 cos(φt) −sin(φt) 0
sin(φt) cos(φt) 0

0 0 1

. (23)

The matrix, given by Equation (23), accounts for the effect of turbine rotation on a
given Lagrangian point, changing the direction of the initial position vector Xt0 from the
angle of rotation φt,

φt = ω(t− t0), (24)

where ω is the magnitude of the rotation speed of the turbine, positive in the counterclock-
wise direction.

Given a Lagrangian point, subjected to ω, the new position Xt assumed by that point
is displaced φt relative to the starting position Xt0 , and is calculated by Equation (22). This
procedure is performed at each instant of time t for all the Lagrangian points that make
up the airfoils of the blades, simultaneously displacing them in relation to their initial
positions. Physically, this models the rotating motion of the turbine rotor blades.

In addition to speed ω, another input data for the calculation of the new positions is
the pre-determination of the initial position of all Lagrangian points Xt0 . In the computa-
tional platform, the insertion of these data is carried out in the configuration phase of the
simulation parameters.

The calculation of the Lagrangian force, Equation (18), requires the determination
of the tangential velocity components UFI of each Lagrangian point that represents the
immersed boundary, shown in Figure 3b and calculated by

UFI
x = −ωXsin(ϕFI), (25)

UFI
y = ωXcos(ϕFI), (26)

where X =
√

Xp
2 + Yp

2 is the magnitude of the position vector X, in which Xp is the
coordinate of X in the x-direction and Yp is the coordinate of X in the y-direction. The angle
ϕFI is positive counterclockwise,

ϕFI(θ) =


180◦ + tan−1

(
Yp

Xp

)
, se 0◦ ≤ θ ≤ 180◦

tan−1
(

Yp

Xp

)
, se 180◦ < θ ≤ 360◦

, (27)

and estimated as a function of the azimuthal position θ, where the Lagrangian point lies,
illustrated in Figure 3a.

In the present work, the origin of the Eulerian domain is positioned at the center of
the rotor. Then, note that determining UFI is similar to the procedure for estimating the
tangential blade velocity as a function of the turbine radius R. However, in the presented
modeling, the calculation of the tangential velocity is given point by point, in a localized
way, at the level of Lagrangian points, weighted by the position X of each one of them.
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(a) (b)

Figure 3. (a) Top view of the rotor of a three-blade vertical axis turbine: azimuthal angle variation θ.
(b) Imposition of the tangential velocity on a Lagrangian point belonging to the blade of a vertical
axis turbine.

As this is a two-dimensional analysis, Figure 4 shows the two vector components
of the Lagrangian force, Fx and Fy, that act in the x and y directions, respectively. These
forces are calculated by Equation (18) from the tangential velocity components over each
Lagrangian point, determined by Equations (25) and (26). The decomposition of forces Fx
and Fy, from angle ϕFI , results in the calculation of the tangential force Ft acting in direction
t and at normal force Fn acting in the direction n. In magnitude, it is calculated by,

Ft = −Fxsin(ϕFI) + Fycos(ϕFI), (28)

Fn = Fxcos(ϕFI) + Fysin(ϕFI), (29)

respectively.

Figure 4. Decomposition of the components of the Lagrangian force: tangential force Ft and normal
force Fn applied to a Lagrangian point.
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Using Equations (28) and (29), it is proposed to calculate the components of tangential
and normal forces individually on each Lagrangian point. The global contributions, that is,
the net effect of the force components applied to the immersed body, are represented in
Figure 5. In vertical axis turbines, we know the tangential force applied to the blade FT is
fundamental to evaluating the necessary torque responsible for the transformation of the
kinetic energy of the fluid into mechanical energy. Through normal force FN , the structural
loads under which the turbine must withstand due to the interaction of the blades with
the flow are evaluated, as shown in Figure 5a. In flows over airfoils, Figure 5b, without
imposing rotational motion at the boundary, two global performance forces are important:
the lift force FL and the drag force FD.

(a) (b)

Figure 5. (a) Components of the forces applied to the blade of a vertical axis turbine, subjected to a
flow with free stream velocity U0. (b) Components of the forces applied to an airfoil, where α is the
angle of attack.

Mathematically, in the immersed boundary method, the global contributions FT , FN ,
FL and FD are obtained by,

Fci = −ρ
NIT

∑
it=1

NL

∑
p=1

Fi
p(X, t)∆x∆s, (30)

where Fci is calculated, in [N], by the sum of a given force component Fi
p (Fn, Ft, Fx or Fy)

applied over all Lagrangian points, along all Multi-Direct Forcing interactions and NL is
the number of Lagrangian points that model the discretized embedded interface. Note that
the length of the third direction is unity.

The magnitudes of these force components are quantified by their respective dimen-
sionless coefficients, calculated by,

Ci =
2Fci

ρU0
2c(1)

(31)

where U0 is the free stream velocity of the flow in (m/s) and c is the chord of the airfoil or
blade of a vertical axis turbine in (m).

Therefore, to determine FT and FN on the blade of a turbine at a given instant in time
t, the calculation is carried out using Ft and Fn for each Lagrangian point and along each
Multi-Direct Forcing interaction, using Equations (28) and (29), respectively. These parcels
are then added to Equation (30). To determine FD and FL, applied to an airfoil, the same
procedure is performed, in which the sum is given by the individual contributions of the
Lagrangian forces Fx and Fy on each point, respectively, calculated by Equation (18).
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3. Numerical and Computational Modeling

The transformation of the primitive variables of the mathematical model (pressure
and velocity) from the physical domain to the spectral domain is numerically performed
by the Discrete Fourier Transform (DFT) version using the Fast Fourier Transform (FFT)
algorithm [26].

The FFT efficiently operates by the bit rotation procedure, which decreases the number
of bit operations O(N2) to O(Nlog2N), where N is the number of collocation points of
the discrete Eulerian domain. In the present work, we use the two-dimensional version of
FFTE, which is available in [41]. The algorithm was written in FORTRAN 77 programming
language.

In the physical domain, the variables of the mathematical model are spatial. In the
spectral domain, the transformed variables are defined as a function of k, wavenumber
vectors, defined by,

ki(n) =

{
2π
Li
(n− 1) 1 6 n 6 Ni

2 + 1
2π
Li
(n− 1− Ni)

Ni
2 + 2 6 n 6 Ni

, (32)

where ki is component i of the wave number vector, N is the number of placement nodes in
a given direction, L is the physical length of the domain in that given direction and n is the
position in the vector in a given direction of the domain.

Temporal discretization is performed by the fourth-order Runge–Kutta method of tem-
poral convergence, with six steps (RK46), presented by [40]. It is a high-order convergence
method, optimized, with reduced variable storage cost, low dispersion and low numerical
dissipation. The time increment ∆t is calculated in a variable way,

∆t = CFL.min

[
min

[
∆x

max[|u|] ;
∆y

max[|v|]

]
;

2
ν

(
1

∆x2 +
1

∆y2

)−1
]

, (33)

where CFL is a parameter between 0 and 1, configured in the initial setup of the program
according to the type of flow being analyzed.

The CFL parameters established in the present work, CFL = 0.25 to flows over airfoil
and CFL = 0.10 to flows over vertical axis turbine, are well below the limits of accuracy
and stability proposed by the temporal discretization procedure, as shown by [40]. This
means minimizing the temporal errors present in the results as much as possible. Therefore,
these results are allowed to present errors, mainly arising from the spatial discretization
procedure.

4. Validation

In this section, the present work proposes to evaluate the ability of the IMERSPEC
methodology to model a fluid dynamic problem based on incompressible flows over
an airfoil.

4.1. Calculation Domain

Figure 6 shows the domain used for simulations of flows over a NACA 0012 airfoil.
This domain is divided into two main regions: the calculation domain (ΩP) and the
physical domain (ΩnP). The boundary ΓP delimits ΩP, where the periodic boundary
conditions required by the Fourier pseudo-spectral method are imposed. The physical
domain, delimited by the boundary ΓnP is, in fact, where the fluid dynamics of the flow
are simulated, and the results of the physical problem are obtained. In the boundary Γ1,
formed by the Lagrangian points that represent the airfoil, the no-slip boundary condition
is imposed by the term fi(~x, t), with UFI

i = 0, 00 (m/s).
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Figure 6. Calculation domain for the solution of flows over an airfoil.

Domain dimensions are dimensionalized by the airfoil chord, c = 1.00 (m). The
imposition of the periodic boundary condition on the output region of the domain leads to
the reinjection of physical instabilities in the input region of the calculation domain. These
instabilities are smoothed out by the buffer zone [25]. In addition, the domain contains
the forcing zone that guarantees the alignment of the flow in the entrance region of the
physical domain and directs the entrance velocity profile horizontally [25]. The imposition
of the velocity in the forcing zone is performed by the term fi(~x, t). Together, the buffer
zone and the forcing zone have a length of LBZ = 4c. The physical domain has a length of
LnP = 28c. The total length of the calculation domain is Lx = 32c.

The simulations are performed for a NACA 0012 airfoil with a rounded trailing edge.
The Reynolds number of the flow is equal to Re = 1000. The kinematic viscosity of the fluid
is calculated by ν = U0c/Re, in (m2/s). The specific mass of the fluid is equal to ρ = 1.00
(kg/m3). The airfoil is subjected to a free stream velocity U0 = 1.00 (m/s).

The time increment ∆t is defined by CFL = 0.25; see Equation (33). The total range of
simulated physical time is t∗ = [0 : 100], where t∗ = tU0/c is dimensionless time.

4.2. Eulerian Domain Refinement

The Eulerian domain mesh refinement test is performed for three meshes: Nx =
512 × Ny = 256, Nx = 1024 × Ny = 512 and Nx = 2048 × Ny = 1024, where Nx is
the number of colocation points that discretizes the length Lx and Ny is the number of
colocation points that discretizes the length Ly. The airfoil is discretized into NL = 300
Lagrangian points, spaced by the ∆s variable. The maximum number of interactions is
NIT = 50. The airfoil is positioned at angles of attack α = 10◦ and 16◦. The influence of
mesh refinement on the lift and drag coefficients is analyzed and presented in Figure 7.

Mesh refinement imposes a significant change in the transient behavior of Cl and Cd.
In Figure 7a,b, it is observed that finer meshes lead to a reduction in the amplitude of Cl ,
decreasing the distance between the minimum and maximum points. In relation to Cd,
presented in Figure 7c,d, it is evident that the mesh 512× 256 overestimates the coefficient
in relation to the other levels of refinement. There is a trend toward the convergence of
Cd × t∗ as the domain is refined, starting from the mesh 1024× 512. For the simulated re-
finement levels, no convergence was observed when analyzing Cl × t∗. Moreover, between
α = 10◦ and 16◦, it is noted that the influence of refinement on the transient behavior of the
coefficients is independent of the angle of attack.
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(a) (b)

(c) (d)

Figure 7. Influence of mesh refinement on Cl × t∗: (a) 10◦ and (b) 16◦. Influence of mesh refinement
on Cd × t∗: (c) 10◦ and (d) 16◦.

The mean coefficients Cl and Cd, to α = 10◦ and 16◦, are presented in Tables 1 and 2,
respectively. It is observed that Cl and Cd tend to approach the reference results [42,43],
from the mesh 2048 × 1024. The trend toward convergence observed in the transient
behavior of Cd is also observed in its average values as the domain is refined. In relation
to mean Cl , to α = 16◦, there is an oscillation of the coefficient and an undefined behavior
around the results of [42,43]. This indicates the need to perform one more simulation,
increasing the level of refinement. This evidence is confirmed by the results presented by
the mesh 4096× 2048, which shows good agreement in relation to the reference works.

Table 1. Influence of mesh refinement: mean coefficients Cl and Cd, obtained in the interval time
t∗ = [70 : 100], for α = 10◦.

Mesh Cl Cd

512× 256 0.5897 0.3670
1024× 512 0.5264 0.2287

2048× 1024 0.4173 0.1881
[44] 0.4184 0.1661

Table 2. Influence of mesh refinement: mean coefficients Cl e Cd, obtained in the interval time
t∗ = [70 : 100], for α = 16◦.

Mesh Cl Cd

512× 256 0.7644 0.5369
1024× 512 0.7209 0.4238

2048× 1024 0.8023 0.3594
4096× 2048 0.7100 0.3221

[42] 0.7263 0.3075
[43] 0.7594 0.3147
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In Figure 8a, the order of spatial convergence is presented as a function of the relative
percentage difference of mean Cd, calculated in relation to the work of [42]. To α = 10◦, a
decay to the second order of convergence is observed. To α = 16◦, the order of convergence
is diminished, tending toward the first order. This decrease can be explained by the
intensification of the physical effects associated with the increase in the angle of attack,
especially the detachment of the flow due to the strong adverse pressure gradient, which,
in turn, promotes changes in the pressure field around the airfoil. The good representation
of these phenomena depends on well-discretized domains.

The spatial convergence order can also be evaluated from the horizontal Lagrangian
velocity. For this, the norm L2 is calculated, used as a measure of numerical solution error,

L2(Ui) =

√√√√√√
NL
∑

p=1

(
Ui −UFI

i
)2

NL
, (34)

where Ui is the calculated Lagrangian point velocity and UFI
i is zero for flows over airfoils.

(a) (b)

Figure 8. Order of spatial convergence. (a) Decay as a function of the relative percentage difference
of mean Cd in relation to the work of [42]. (b) Decay as a function of the time average of the L2 norm
of the horizontal Lagrangian velocity.

Note, as shown in Figure 8b, the decay of the norm L2 tends to the first order of
convergence α = 10◦ and 16◦. It is known that the Fourier pseudo-spectral method, when
coupled with the immersed boundary method, loses accuracy, reducing the high order of
convergence associated with spectral methods. Furthermore, the choice of the distribution
and interpolation function is essential for the accuracy of the results obtained. There are
functions that are more accurate than the “hat” function, such as the cubic function [45].
However, in the present work, the “hat” function becomes more appropriate due to the
slenderness of the trailing edge of the airfoil.

From the results presented, it is observed that the need to propose simulations for one
or two more levels of refinement greater than 4096 × 2048 is needed in order to guarantee
not only the trend but the mesh independence in the proposed problem. However, the
biggest limitation of these simulations refers to the high computational cost of modeling
(CPU time). In simulations of flow over a step, for Re = 400, using the IMERSPEC
methodology, [25] observes a linear increase of approximately five times in CPU time when
the number of collocation points of the Eulerian mesh is increased by four times, which
means that the computational time increases on the order of NlogN, as expected for the
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Fourier pseudo-spectral method. Nevertheless, this includes the need for computers with
excellent processing levels, including the need to use simulation parallelization techniques.
Furthermore, by the L2 norm (Figure 8b), a first-order spatial convergence decay is verified.
This fact, associated with the high computational cost, is also responsible for reducing the
cost-effectiveness of proposing simulations with very refined meshes.

4.3. Influence of the Number of NIT Interactions of Multi-Direct Forcing

To analyze the influence of the maximum number of interactions (NIT) of Multi-
Direct Forcing, this paper proposes to analyze Cl and Cd, varying NIT = 1 up to 100. The
calculation domain has been refined to a mesh of 2048× 1024, and the airfoil is positioned
at α = 16◦.

The time evolution of Cl and Cd are shown in Figure 9a,b for different values of NIT.
There is a notable difference in the transient behavior of Cl and Cd to NIT = 1 in relation
to the others. Numerically, the analysis of the temporal evolution of Cl and Cd reflects the
accuracy of transient modeling of fluid dynamic effects on the airfoil. Between NIT = 30
and NIT = 50, the convergence of the temporal evolution of Cl and Cd are obtained,
including, in the initial moments of the flow, between t∗ = 0 and t∗ = 6. In this interval, in
which the flow is not yet fully developed, a greater number of interactions is expected to
guarantee the non-slip condition over the immersed boundary.

(a) (b)

Figure 9. Temporal evolution of (a) Cl and (b) Cd for different NIT values.

The variation in means Cl and Cd, obtained in the interval t∗ = [70 : 100], in the
function of NIT, is shown in Figure 10a. The influence of NIT on the results of Cl is more
noticeable than in relation to the results of Cd. Varying NIT = 1 to NIT = 10, it is evident
that few interactions are already enough to reach the convergence of the average results
of Cl , remaining practically constant from NIT = 30. The coefficient of Cd undergoes a
slight influence when varying NIT = 1 to NIT = 10. From then on, it remains constant
for the entire simulated range. Taking the average into account, the transient effects of Cd
are attenuated for small values of NIT. It is observed that the divergence of the temporal
evolution of Cd to NIT = 1 in relation to the others, presented in Figure 9b, was not
reflected in the average of Cd at the same level of interaction. The convergence of average
results does not guarantee the convergence of transient results.



Axioms 2023, 12, 212 18 of 27

(a) (b)

Figure 10. (a) Variation of mean Cl and Cd as a function of the number of NIT interactions. (b) Tem-
poral mean of the L2 norm of horizontal Lagrangian velocity as a function of NIT.

The norm L2 of the horizontal Lagrangian velocity is presented as a function of the
variation of NIT in Figure 10b. From NIT = 10, the norm L2 decays to NIT = 100 almost
linearly. The increase in NIT reflects on the accuracy of imposing the no-slip condition
on the immersed interface. Therefore, the Lagrangian velocity calculated at its respective
Lagrangian point tends to get closer and closer to the velocity imposed at the airfoil
boundary, reducing the norm L2.

4.4. Influence of Angle of Attack

This section evaluates the influence of the angle of attack variation (α) in the dimen-
sionless coefficients of the airfoil and highlights the fluid dynamic phenomena of the flow
by analyzing the fields of velocity, pressure and vorticity. The simulations are performed
for the 2048× 1024 mesh, and the maximum number of Multi-Direct Forcing interactions is
NIT = 50. The mean of the coefficients is performed over the interval t∗ = [70 : 100], in
which the flow is already fully developed.

The increase in Cl as a function of α is shown in Figure 11a. There is good agreement
with the results presented by [42,43]. In general, the increase in Cl is due to the intensifica-
tion of the low-pressure region in the upper forward part of the airfoil downstream of the
leading edge, leading to increased lift force, FL. From the curve presented, it is possible to
determine the occurrence of the stall, a phenomenon where there is a sharp drop in the lift
force and a drastic increase in the drag force. Note that the stall angle occurs for α = 28◦, in
accordance with [43,46].

The present work proposes the simulation of flows with a low Reynolds number
(Re ≤ 103), and there is no direct imposition of disturbances and noise on the input bound-
ary condition. These factors hinder the transition from the laminar boundary layer to the
turbulent one over the surface, which leads, therefore, to the early detachment of the flow.
Under these conditions, [12] shows, experimentally, that airfoils subjected to such flows
do not stall. However, the immersed boundary method, when associated with the Fourier
pseudo-spectral method, decreases the accuracy of the spectral method. The IMERSPEC
methodology presents numerical and computational errors that intensify smoothly with
the increase in α, as shown in Figure 8. These errors are the source of noise in the solu-
tion, capable of leading to the flow transition and, consequently, to the appearance of the
phenomenon, as observed in α = 28◦.
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(a) (b)

Figure 11. (a) Mean Cl variation as a function of attack angle (α). (b) Mean Cd variation as a function
of the angle of attack (α).

For α < 10◦, the drag force, FD is mainly composed of the frictional effects of the
boundary layer, minimally influencing the increase in Cd, as shown in Figure 11b. As
α increases, there is an intensification of the adverse pressure gradient downstream of
the flow. Therefore, for α > 10◦, pressure drag due to surface flow detachment becomes
dominant over the airfoil, leading to a significant increase in Cd. It can be seen that despite
the good agreement, α > 10◦, a small distance is noticeable from Cd regarding the results
of [42,43]. The separation of the flow increases its complexity and demands greater accuracy
from the methodology for the representation of the physical model.

In the pressure field for α = 0◦, represented in Figure 12a, it is observed that the
pressure distribution is equal on the upper and lower surface, a condition that occurs due
to the symmetry of the airfoil, subjected to a zero angle of attack. The low-pressure region
in the extraction, just after the leading edge, evolves and intensifies with increasing α, as
shown in Figure 12b–d. In this region, the flow accelerates to pass and remains attached to
the surface of the airfoil, reducing the pressure. Therefore, a net distribution of pressure is
promoted, which is physically responsible for the appearance of FL in the upward direction.
The increase in α shifts the flow separation point closer to the leading edge, causing the
low-pressure region to occupy less space on the airfoil surface. For all angles, shown in
Figure 12, a region of high pressure occurs at the stagnation point.

The streamlines of the mean velocity fields for different values of α are shown in
Figure 13. For α = 0◦ (Figure 13a), the flow is aligned and does not show the formation
of swirling structures. For α = 5◦ (Figure 13b), the flow shows the formation of the first
recirculations on the suction side of the airfoil, close to the trailing edge. For this angle,
therefore, part of the flow is already detached from the surface due to the adverse pressure
gradient.

By the streamlines shown in Figure 13c–f, it can be seen that the increase in the angle
of attack is responsible for the displacement of the flow separation point toward the leading
edge. Therefore, the detachment of the flow and the winding of the separated shear layer
is anticipated. This is one of the causes that justifies the linear increase in Cl , shown in
Figure 11a and experimentally observed in [12]. The separation region tends to occupy a
large part of the suction side, with an increase in size characteristic of the swirling structures
that are formed and are, subsequently, advected upstream.
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(a) (b)

(c) (d)

Figure 12. Isolines of pressure fields, at t∗ = 80: (a) α = 0◦, (b) α = 10◦, (c) α = 16◦ and (d) α = 20◦.

(a) (b)

(c) (d)

(e) (f)

Figure 13. Streamlines of mean velocity fields: (a) α = 0◦, (b) α = 5◦, (c) α = 10◦, (d) α = 16◦,
(e) α = 25◦ and (f) α = 30◦.
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The frequency of the release of turbulent structures due to flow detachment is quanti-
fied by analyzing the Strouhal number, calculated by,

St =
frc
U0

(35)

where fr is the oscillation frequency of the maximum amplitude of Cl in the spectral domain.
Figure 14 shows the variation in St for different angles of attack. The results presented

are in good agreement with [43]. It is observed that St is sensitized by the release of swirling
structures, from α > 5◦, imposed by the intensification of the detachment of the flow. In
α = 10◦, there is an overestimation of St in relation to the reference work. Increasing the
angle of attack leads to a decrease in St, and the frequency of release of the structures,
responsible for the greater amplitude of Cl , is reduced. For α = 25◦, there is a decrease in St,
followed by a smooth recovery to α = 30◦, due to the occurrence of the stall phenomenon.

Figure 14. Variation of St as a function of α.

For α = 0◦ and 5◦, as shown in Figure 15a,b, respectively, the adverse pressure gradient
is zero or minimal, keeping the flow attached to practically the entire surface of the airfoil.
As a result, an aligned flow is obtained, with the absence of recirculations. For α = 10◦

(Figure 15c) and α = 16◦ (Figure 15d) it is possible to observe the detachment of a pair of
swirling structures from the trailing edge, alternating, forming the von Kármán wake.

For α = 25◦ (Figure 15e), there is a wake pattern formed by two pairs of alternating
structures, where each of the pairs, individually, forms independent wake regions with
different characteristics downstream of the airfoil. It is a chaotic, transient wake pattern
present in a short range of angles of attack. This justifies the sharp drop in St to α = 25◦,
as shown in Figure 14, evidencing the approach of the stall phenomenon. For α = 30◦

(Figure 15f), while pairs of counterclockwise swirling structures are detached downstream
in a downward direction, a row of small clockwise structures is formed at the top.
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(a) (b)

(c) (d)

(e) (f)

Figure 15. Instantaneous vorticity fields −1 ≤ wzc/U0 ≤ 1 over the NACA 0012 airfoil for different
α values.

5. Flow over a Vertical Axis Turbine

The present work proposes the modeling of a two-dimensional and incompressible
flow, using the IMERSPEC methodology, on a vertical axis wind turbine, represented by
a three-bladed rotor. The blades are constituted by the NACA 0015 airfoil. The domain
dimensions, dimensionalized by the airfoil chord c = 1.00 (m), are presented in Figure 16.

Figure 16. Calculation domain for the solution of flows over the vertical axis turbine.

It can be seen in Figure 16 that in the physical domain delimited by the boundary ΓnP,
there are three immersed boundaries, Γ1, Γ2 and Γ3, formed by the Lagrangian points that
model the airfoil NACA 0015. Each airfoil is discretized into NL = 300 Lagrangian points.
Together, these boundaries geometrically model the radius turbine rotor R = 2c. Under the
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Lagrangian points, the no-slip boundary condition is imposed by the term fi(~x, t), from
the calculation of the tangential velocity, given by Equations (25) and 26. The calculation
domain (Eulerian domain) is discretized into Nx = 2048× Ny = 1024 colocation points.

The Reynolds number of the flow is equal to Re = 100, as proposed in the works
of [20] and [33]. Therefore, the turbine is subjected to laminar flow, with free stream velocity
U0 = 0.50 (m/s), indirectly applied in the domain force zone. The kinematic viscosity of
the fluid is calculated by ν = U0c/Re, shown in (m2/s). The specific mass of the fluid is
equal to ρ = 1.00 (kg/m3). In the interactive process of Multi-Direct Forcing, the maximum
number of interactions was set to NIT = 100.

The turbine blades are subjected to a rotation speed of ω = 0.50 (rad/s). Thus, the tip
speed ratio (TSR) of the rotor is λ = 2.0. Regarding the time increment ∆t, it is defined as
CFL = 0.1. The simulations were performed on a computer with an Intel Xeon processor
(E3-1270) with 3, 50 (GHz) of speed and 16.0 (GiB) of RAM memory.

In Figure 17, the coefficients of tangential force Ct and normal force Cn were analyzed,
according to the azimuthal position θ, calculated by Equation (31), on a single blade. The
results were compared with work in [20,33]. By the coefficients obtained, the magnitude
of Ct turns out to be smaller than the magnitude of Cn. Furthermore, there is a greater
sensitivity of Ct about Cn subject to more fluctuations. The oscillations and the small
amplitude of Ct about Cn, show the importance of applying numerical methods with
a high order of convergence to solve problems of this nature. Through the IMERSPEC
methodology, it is, therefore, possible to capture, with a good level of detail, fluctuations in
Ct, suppressed by the results presented by [20,33] and hardly sensitized in real experiments.

(a) (b)

Figure 17. (a) Variation of Ct as a function of azimuth position θ of a single blade. (b) Variation of Cn

as a function of the azimuthal position θ of a single blade.

It is observed in Figure 17a,b that the results of Ct and Cn show good agreement with
the work of [20,33]. Even so, a slight divergence of Ct in relation to the results of [20] is
verified. In the downstream region (540◦ ≤ θ ≤ 720◦), there is a greater distance from the
results of Ct and Cn in relation to the reference results. This behavior is due to the interaction
effects between the blades and the wake region, which become intense in this portion of
the rotor, which is also responsible for reducing the magnitude of Ct. Downstream, it
is also observed that Ct is subject to greater fluctuations. These variations are caused
by a change in the pressure field around the blades, which is intensified by the release
of turbulent structures arising from the detachment of the flow from the surfaces of the
blades upstream, and which are advected to the center of the rotor. In the upstream region



Axioms 2023, 12, 212 24 of 27

(360◦ ≤ θ ≤ 540◦), these effects are not intense on the blades, ensuring the convergence of
the results in this portion.

The isolines of the absolute velocity field on the turbine rotor, at θ = 720◦, represented
in Figure 18, are in good agreement with the velocity field presented by [33] under the
same simulation conditions. A low-velocity region formed at the rear of the turbine rotor
is observed due to the advection of swirling structures in the wake, originating from
the detachment of the flow over the surface of the blades. Detachment becomes intense,
especially for low Reynolds numbers, due to the low linear momentum of the flow. The
blades are, therefore, subjected to a strong dynamic stall throughout the rotational motion.
In addition, the low Reynolds number of the flow, proposed in this case study, prevents the
promotion of positive mean values of Ct, impeding the factor of the ability of the simulated
turbine to transform the kinetic energy of the flow into mechanical power.

(a) (b)

Figure 18. Isolines of the absolute velocity field over the turbine in θ = 720◦. (a) Present work.
(b) [33].

6. Conclusions

In the present study, the application of the IMERSPEC methodology for numerical and
computational simulation of two-dimensional flows over airfoils and vertical axis wind
turbines was presented.

The validation procedure of the IMERSPEC methodology is based on the analysis
of quantitative results and on the analysis of the physical phenomena derived from the
modeling of flows over an airfoil NACA 0012 to Re ≤ 103. The dimensions analyzed, Cl ,
Cd and the Strouhal number, show good agreement with the reference results from the
mesh Nx = 2048× Ny = 1024. The average percentage difference in Cd in relation to the
reference works shows a decay to the second order of spatial convergence for angles of
attack smaller than 10◦. It is observed, by the norm L2 of the horizontal Lagrangian velocity,
that decay to the first order of spatial convergence is independent of the angle of attack.

The analysis of the NIT variation, used in the multiple force imposition procedure,
reveals the importance of the interactive method since a few interactions are already enough
to guarantee the convergence of the average and transient results of Cd and Cl in relation
to the reference results. The increase in NIT reflects a greater precision of the imposition
of the no-slip boundary condition, observed by the decay of the norm L2 from NIT = 10.
The visualization of pressure fields, vorticity and streamlines for different angles of attack
reliably models the expected physical phenomena.

The applicability of the methodology is extended to the modeling of two-dimensional
flows over vertical axis turbine blades, now under the imposition of a rotational movement.
To model the rotational movement of the turbine blades, a computational subroutine was
developed based on a mathematical model, and added to the calculation platform of
the IMERSPEC methodology. The procedure was carried out in two steps: updating the
Lagrangian domain and calculating the tangential velocity imposed on the domain, as a
function of the turbine rotational speed, at each time step.
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For flows under low Reynolds numbers, Re = 100, the results of the tangential force
and normal force coefficients, as well as the qualitative visualization of the flow through the
velocity fields, are within the expected range in relation to other numerical methodologies.
Therefore, it is indicated that the communication between the IMERSPEC methodology and
the modeling of the rotational movement of the blades is being satisfied. The IMERSPEC
methodology is, therefore, a potential and promising technique for solving problems of
this nature.

More detailed investigations must be carried out to estimate the accuracy of the
methodology for flows under high Reynolds numbers. The implementation of three-
dimensional flows and turbulence models are options to be investigated, which are not
available in the version proposed by the IMERSPEC methodology. However, it can be
implemented for testing and obtaining future results.
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