Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,165)

Search Parameters:
Keywords = low quality land

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

19 pages, 1447 KiB  
Article
Soil Quality Indicators for Different Land Uses in the Ecuadorian Amazon Rainforest
by Thony Huera-Lucero, Antonio Lopez-Piñeiro and Carlos Bravo-Medina
Forests 2025, 16(8), 1275; https://doi.org/10.3390/f16081275 - 4 Aug 2025
Abstract
Deforestation and land-use changes lead to significant soil degradation and erosion, particularly in Amazonian ecosystems, due to the region’s climate and geology. This study characterizes soil quality using physical, chemical, and biological parameters across different land uses. It uses a soil quality index [...] Read more.
Deforestation and land-use changes lead to significant soil degradation and erosion, particularly in Amazonian ecosystems, due to the region’s climate and geology. This study characterizes soil quality using physical, chemical, and biological parameters across different land uses. It uses a soil quality index (SQI) based on a minimum data set (MDS), from 19 evaluated parameters. The land uses evaluated were cacao monoculture (CMC), agroforestry systems associated with fruit and timber species (FAFS and TAFS, respectively), and a secondary forest. The SQI was composed of six variables, bulk density (BD), soil organic matter (SOM), urease activity (UR), pH, dehydrogenase activity (DH), and leaf litter, which are considered relevant indicators that allow for an adequate evaluation of soil quality. According to the SQI assessment, FAFS has a moderate-quality rating (0.40), followed by secondary forest (0.35), TAFS (0.33), and CMC (0.30), the last three categorized as low-quality. The methods used are replicable and efficient for evaluating changes in soil properties based on different land uses and management systems in landscapes similar to those of the Ecuadorian Amazon. Also worth mentioning is the potential of agroforestry as a sustainable land-use strategy that can enhance above- and below-ground biodiversity and nutrient cycling. Therefore, implementing agroforestry practices can contribute to long-term soil conservation and the resilience of tropical ecosystems. Full article
(This article belongs to the Special Issue Forest Soil Physical, Chemical, and Biological Properties)
Show Figures

Figure 1

17 pages, 2032 KiB  
Article
The Impact of Hydrological Streamflow Drought on Pollutant Concentration and Its Implications for Sustainability in a Small River in Poland
by Leszek Hejduk, Ewa Kaznowska, Michał Wasilewicz and Agnieszka Hejduk
Sustainability 2025, 17(15), 6995; https://doi.org/10.3390/su17156995 - 1 Aug 2025
Viewed by 166
Abstract
The paper presents the results of investigations into the relationship between selected water quality parameters and hydrological streamflow drought in a small river situated in the Mazovian Lowlands in Poland. As hydrological streamflow drought periods become more frequent in Poland, investigations about the [...] Read more.
The paper presents the results of investigations into the relationship between selected water quality parameters and hydrological streamflow drought in a small river situated in the Mazovian Lowlands in Poland. As hydrological streamflow drought periods become more frequent in Poland, investigations about the relationship between flow and water quality parameters can be an essential contribution to a better understanding of the impact of low flow on the status of water rivers. Data from a three-year study of a small lowland river along with significant agricultural land management was used to analyze the connection between low flows and specific water quality indicators. The separation of low-flow data from water discharge records was achieved using two criteria: Q90% (the discharge value from a flow duration curve) and a minimum low-flow duration of 10 days. During these periods, the concentration of water quality indicators was determined based on collected water samples. In total, 30 samples were gathered and examined for pH, suspended sediments, dissolved substances, hardness, ammonium, nitrates, nitrites, phosphates, total phosphorus, chloride, sulfate, calcium, magnesium, and water temperature during sampling. The study’s main aim was to describe the relation between hydrological streamflow droughts and chosen water quality parameters. The analysis results demonstrate an inverse statistically significant relationship between concentration and low-flow values for total hardness and sulfate. In contrast, there was a direct relationship between nutrient indicators, suspended sediment concentration, and river hydrological streamflow drought. Statistical tests were applied to compare the datasets between years, revealing statistical differences only for nutrient indicators. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

27 pages, 6094 KiB  
Article
National Multi-Scenario Simulation of Low-Carbon Land Use to Achieve the Carbon-Neutrality Target in China
by Junjun Zhi, Chenxu Han, Qiuchen Yan, Wangbing Liu, Likang Zhang, Zuyuan Wang, Xinwu Fu and Haoshan Zhao
Earth 2025, 6(3), 85; https://doi.org/10.3390/earth6030085 (registering DOI) - 1 Aug 2025
Viewed by 157
Abstract
Refining the land use structure can boost land utilization efficiency and curtail regional carbon emissions. Nevertheless, prior research has predominantly concentrated on static linear planning analysis. It has failed to account for how future dynamic alterations in driving factors (such as GDP and [...] Read more.
Refining the land use structure can boost land utilization efficiency and curtail regional carbon emissions. Nevertheless, prior research has predominantly concentrated on static linear planning analysis. It has failed to account for how future dynamic alterations in driving factors (such as GDP and population) affect simulation outcomes and how the land use spatial configuration impacts the attainment of the carbon-neutrality goal. In this research, 1 km spatial resolution LULC products were employed to meticulously simulate multiple land use scenarios across China at the national level from 2030 to 2060. This was performed by taking into account the dynamic changes in driving factors. Subsequently, an analysis was carried out on the low-carbon land use spatial structure required to reach the carbon-neutrality target. The findings are as follows: (1) When employing the PLUS (Patch—based Land Use Simulation) model to conduct simulations of various land use scenarios in China by taking into account the dynamic alterations in driving factors, a high degree of precision was attained across diverse scenarios. The sustainable development scenario demonstrated the best performance, with kappa, OA, and FoM values of 0.9101, 93.15%, and 0.3895, respectively. This implies that the simulation approach based on dynamic factors is highly suitable for national-scale applications. (2) The simulation accuracy of the PLUS and GeoSOS-FLUS (Systems for Geographical Modeling and Optimization, Simulation of Future Land Utilization) models was validated for six scenarios by extrapolating the trends of influencing factors. Moreover, a set of scenarios was added to each model as a control group without extrapolation. The present research demonstrated that projecting the trends of factors having an impact notably improved the simulation precision of both the PLUS and GeoSOS-FLUS models. When contrasted with the GeoSOS-FLUS model, the PLUS model attained superior simulation accuracy across all six scenarios. The highest precision indicators were observed in the sustainable development scenario, with kappa, OA, and FoM values reaching 0.9101, 93.15%, and 0.3895, respectively. The precise simulation method of the PLUS model, which considers the dynamic changes in influencing factors, is highly applicable at the national scale. (3) Under the sustainable development scenario, it is anticipated that China’s land use carbon emissions will reach their peak in 2030 and achieve the carbon-neutrality target by 2060. Net carbon emissions are expected to decline by 14.36% compared to the 2020 levels. From the perspective of dynamic changes in influencing factors, the PLUS model was used to accurately simulate China’s future land use. Based on these simulations, multi-scenario predictions of future carbon emissions were made, and the results uncover the spatiotemporal evolution characteristics of China’s carbon emissions. This study aims to offer a solid scientific basis for policy-making related to China’s low-carbon economy and high-quality development. It also intends to present Chinese solutions and key paths for achieving carbon peak and carbon neutrality. Full article
Show Figures

Figure 1

31 pages, 2831 KiB  
Article
Structural Diversity and Biodiversity of Forest and Hedgerow in Areas Managed for Pheasant Shooting Across the UK
by Peter R. Long, Leo Petrokofsky, William J. Harvey, Paul Orsi, Matthew W. Jordon and Gillian Petrokofsky
Forests 2025, 16(8), 1249; https://doi.org/10.3390/f16081249 - 1 Aug 2025
Viewed by 201
Abstract
Management for pheasant shooting is a widespread land use in the UK, with potential implications for forest and hedgerow habitats. This study evaluates whether sites managed for pheasant shooting differ ecologically from similar sites not used for shooting. A systematic evidence evaluation of [...] Read more.
Management for pheasant shooting is a widespread land use in the UK, with potential implications for forest and hedgerow habitats. This study evaluates whether sites managed for pheasant shooting differ ecologically from similar sites not used for shooting. A systematic evidence evaluation of comparative studies was combined with a spatial analysis using remote sensing data (2010–2024). The literature review identified only 32 studies meeting strict criteria for comparability, revealing inconsistent and often weak evidence, with few studies reporting detailed forest management or statistically robust outcomes. While some studies noted increased or decreased biodiversity associated with pheasant shooting, the evidence base was generally of low quality. Remote sensing assessed forest structural and spectral diversity, intactness, and hedgerow density across 1131 pheasant-managed and 1131 matched control sites. Biodiversity data for birds, plants, and butterflies were sourced from GBIF records. Structural diversity and hedgerow density were significantly higher on pheasant-managed sites, while no significant differences were found in forest spectral diversity, intactness, or biodiversity indicators. Pheasant management may shape certain habitat features but has limited demonstrable effects on overall biodiversity. Further field-based, controlled studies are required to understand causal mechanisms and inform ecologically sustainable shooting practices. Full article
(This article belongs to the Special Issue Biodiversity and Ecosystem Functions in Forests)
Show Figures

Figure 1

20 pages, 8132 KiB  
Article
Spatiotemporal Evolution and Driving Force Analysis of Habitat Quality in the Beibu Gulf Urban Agglomeration
by Jing Jing, Hong Jiang, Feili Wei, Jiarui Xie, Ling Xie, Yu Jiang, Yanhong Jia and Zhantu Chen
Land 2025, 14(8), 1556; https://doi.org/10.3390/land14081556 - 29 Jul 2025
Viewed by 198
Abstract
The ecological environment is crucial for human survival and development. As ecological issues become more pressing, studying the spatiotemporal evolution of ecological quality (EQ) and its driving mechanisms is vital for sustainable development. This study, based on MODIS data from 2000 to 2022 [...] Read more.
The ecological environment is crucial for human survival and development. As ecological issues become more pressing, studying the spatiotemporal evolution of ecological quality (EQ) and its driving mechanisms is vital for sustainable development. This study, based on MODIS data from 2000 to 2022 and the Google Earth Engine platform, constructs a remote sensing ecological index for the Beibu Gulf Urban Agglomeration and analyzes its spatiotemporal evolution using Theil–Sen trend analysis, Hurst index (HI), and geographic detector. The results show the following: (1) From 2000 to 2010, EQ improved, particularly from 2005 to 2010, with a significant increase in areas of excellent and good quality due to national policies and climate improvements. From 2010 to 2015, EQ degraded, with a sharp reduction in areas of excellent quality, likely due to urban expansion and industrial pressures. After 2015, EQ rebounded with successful governance measures. (2) The HI analysis indicates that future changes will continue the past trend, especially in areas like southeastern Chongzuo and northwestern Fangchenggang, where governance efforts were effective. (3) EQ shows a positive spatial correlation, with high-quality areas in central Nanning and Fangchenggang, and low-quality areas in Nanning and Beihai. After 2015, both high–high and low–low clusters showed changes, likely due to ecological governance measures. (4) NDBSI (dryness) is the main driver of EQ changes (q = 0.806), with significant impacts from NDVI (vegetation coverage), LST (heat), and WET (humidity). Urban expansion’s increase in impervious surfaces (NDBSI rise) and vegetation loss (NDVI decline) have a synergistic effect (q = 0.856), significantly affecting EQ. Based on these findings, it is recommended to control construction land expansion, optimize land use structure, protect ecologically sensitive areas, and enhance climate adaptation strategies to ensure continuous improvement in EQ. Full article
Show Figures

Figure 1

21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 335
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

27 pages, 42290 KiB  
Article
Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City
by Rui Li, Zhongfa Zhou, Jie Kong, Cui Wang, Yanbi Wang, Rukai Xie, Caixia Ding and Xinyue Zhang
Remote Sens. 2025, 17(15), 2608; https://doi.org/10.3390/rs17152608 - 27 Jul 2025
Viewed by 349
Abstract
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes [...] Read more.
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes in land cover and their effects on carbon stocks from 2000 to 2035. A carbon stocks assessment framework was developed using a cellular automaton-based artificial neural network model (CA-ANN), the InVEST model, and the geographical detector model to predict future land cover changes and identify the primary drivers of variations in carbon stocks. The results indicate that (1) from 2000 to 2020, impervious surfaces expanded significantly, increasing by 199.73 km2. Compared to 2020, impervious surfaces are projected to increase by 1.06 km2, 13.54 km2, and 34.97 km2 in 2025, 2030, and 2035, respectively, leading to further reductions in grassland and forest areas. (2) Over time, carbon stocks in Guiyang exhibited a general decreasing trend; spatially, carbon stocks were higher in the western and northern regions and lower in the central and southern regions. (3) The level of greenness, measured by the normalized vegetation index (NDVI), significantly influenced the spatial variation of carbon stocks in Guiyang. Changes in carbon stocks resulted from the combined effects of multiple factors, with the annual average temperature and NDVI being the most influential. These findings provide a scientific basis for advancing low-carbon development and constructing an ecological civilization in Guiyang. Full article
(This article belongs to the Special Issue Smart Monitoring of Urban Environment Using Remote Sensing)
Show Figures

Figure 1

18 pages, 816 KiB  
Article
Comprehensive Characterization of the Algarve Octopus, Octopus vulgaris: Nutritional Aspects and Quality Indexes of Lipids
by Ana G. Cabado, Celina Costas, David Baptista de Sousa, João Pontes and Mafalda Rangel
Appl. Sci. 2025, 15(15), 8235; https://doi.org/10.3390/app15158235 - 24 Jul 2025
Viewed by 199
Abstract
The common octopus (Octopus vulgaris) supports one of the most valuable small-scale fisheries in Portugal, particularly in the Algarve region, with substantial socioeconomic implications. This species holds significant potential for human consumption due to its low lipid content, favorable fatty acid [...] Read more.
The common octopus (Octopus vulgaris) supports one of the most valuable small-scale fisheries in Portugal, particularly in the Algarve region, with substantial socioeconomic implications. This species holds significant potential for human consumption due to its low lipid content, favorable fatty acid profile, high-quality protein, and essential microelements. This study aimed to provide a comprehensive characterization of octopus specimens landed in two key Algarve fishing areas—Barlavento/Windward (Alvor Harbour) and Sotavento/Leeward (Fuzeta Harbour). We assessed their nutritional value, focusing on protein quality, lipid indexes, trace minerals, and essential vitamins, as well as overall safety and quality. All regulated contaminants and additional potential risks were also evaluated, yielding fully satisfactory safety results. The research was conducted within the framework of the European Sea2See project, which aims to enhance consumer trust and acceptance of sustainably harvested or farmed seafood in Europe. Our findings demonstrate that Algarve octopus is a nutritionally rich seafood product, promoting cardiovascular health and general well-being. Full article
Show Figures

Figure 1

19 pages, 4056 KiB  
Article
Ecological and Geochemical Characteristics of the Content of Heavy Metals in Steppe Ecosystems of the Akmola Region, Kazakhstan
by Gataulina Gulzira, Mendybaev Yerbolat, Aikenova Nuriya, Berdenov Zharas, Ataeva Gulshat, Saginov Kairat, Dukenbayeva Assiya, Beketova Aidana and Almurzaeva Saltanat
Sustainability 2025, 17(14), 6576; https://doi.org/10.3390/su17146576 - 18 Jul 2025
Viewed by 338
Abstract
Soil quality assessment plays a critical role in promoting sustainable land management, particularly in fragile steppe ecosystems. This study provides a comprehensive geoecological evaluation of heavy metal contamination (Pb, Cd, Zn, Cu, Co, Ni, Fe, and Mn) in soils across five districts of [...] Read more.
Soil quality assessment plays a critical role in promoting sustainable land management, particularly in fragile steppe ecosystems. This study provides a comprehensive geoecological evaluation of heavy metal contamination (Pb, Cd, Zn, Cu, Co, Ni, Fe, and Mn) in soils across five districts of the Akmola region, Kazakhstan. The assessment incorporates multiple integrated pollution indices, including the geochemical pollution index (Igeo), pollution coefficient (CF), ecological risk index (Er), pollution load index (PLI), and integrated pollution index (Zc). Spatial analysis combined with multivariate statistical techniques (PCA and clustering analysis) was used to identify pollutant distribution patterns and differentiate areas by risk levels. The findings reveal generally low to moderate contamination, with cadmium (Cd) posing the highest environmental risk due to its elevated toxic response coefficient, despite its low concentration. The study also explores the connection between current soil conditions and historical land-use changes, particularly those associated with the Virgin Lands Campaign of the mid-20th century. The highest PLI values were recorded in the Yesil and Atbasar districts (7.88 and 7.54, respectively), likely driven by intensive agricultural activity and lithological factors. PCA and cluster analysis revealed distinct spatial groupings, reflecting heterogeneity in both the sources and distribution of soil pollutants. Full article
(This article belongs to the Special Issue Soil Pollution, Soil Ecology and Sustainable Land Use)
Show Figures

Figure 1

20 pages, 9502 KiB  
Article
Spatiotemporal Coupling Characteristics Between Urban Land Development Intensity and Population Density from a Building-Space Perspective: A Case Study of the Yangtze River Delta Urban Agglomeration
by Xiaozhou Wang, Lie You and Lin Wang
Land 2025, 14(7), 1459; https://doi.org/10.3390/land14071459 - 13 Jul 2025
Viewed by 371
Abstract
As China shifts from rapid to high-quality development, urban growth has exhibited allometric patterns. This study evaluated land use efficiency from the perspective of architectural space, focusing on 41 cities in the Yangtze River Delta urban agglomeration from 2010 to 2020. A land [...] Read more.
As China shifts from rapid to high-quality development, urban growth has exhibited allometric patterns. This study evaluated land use efficiency from the perspective of architectural space, focusing on 41 cities in the Yangtze River Delta urban agglomeration from 2010 to 2020. A land development intensity index was constructed at both the provincial and municipal levels using the entropy weight method, integrating floor area ratio, building density, and functional mix. The spatiotemporal characteristics of land development intensity and population density were analyzed, and a coordination coupling model was applied to identify mismatches between land and population. The results reveal: (1) Temporally, the imbalance of “more people, less land” in the Yangtze River Delta diminished. Spatially, leading regions exhibit a diffusion effect. Shanghai showed a decline in both population density and development intensity; Zhejiang maintained balanced development; Jiangsu experienced accelerated growth; and Anhui showed signs of catching up. (2) Although the two indicators showed a high coupling degree and strong correlation, the coordination degree remained low, indicating poor quality of correlation. The land-population relationship demonstrated a fluctuating pattern of “strengthening–weakening” over time. Shanghai exhibited the highest coordination, while more than half of the cities in Jiangsu, Zhejiang, and Anhui still needed optimization. (3) Unlike previous findings that linked such patterns to shrinking cities, in this transformation stage, the number of cities where land development intensity exceeded population density continued to grow in advanced regions. This study first applied 3D building data at the macro scale to support differentiated spatial policies. Full article
Show Figures

Figure 1

16 pages, 4159 KiB  
Article
Integrated Transcriptomic and Metabolic Analyses Highlight Key Pathways Involved in the Somatic Embryogenesis of Picea mongolica
by Jinling Dai, Shengli Zhang and Yu’e Bai
Plants 2025, 14(14), 2141; https://doi.org/10.3390/plants14142141 - 11 Jul 2025
Viewed by 377
Abstract
In the severe environment of Hunshandake Sandy Land, the uncommon and indigenous Chinese tree species Picea mongolica is an important biological component. Conventional seed propagation in P. mongolica is constrained by low germination rates, prolonged breeding cycles, and hybrid offspring genetic instability, limiting [...] Read more.
In the severe environment of Hunshandake Sandy Land, the uncommon and indigenous Chinese tree species Picea mongolica is an important biological component. Conventional seed propagation in P. mongolica is constrained by low germination rates, prolonged breeding cycles, and hybrid offspring genetic instability, limiting efficient varietal improvement. In contrast, somatic embryogenesis (SE) offers superior propagation efficiency, exceptional germination synchrony, and strict genetic fidelity, enabling rapid mass production of elite regenerants. However, SE in P. mongolica is hampered by severe genotype dependence, poor mature embryo induction rates, and loss of embryogenic potential during long-term cultures, restricting the production of high-quality seedlings. In this study, we aimed to analyze the transcriptome and metabolome of three crucial phases of SE: mature somatic embryos (MSEs), globular somatic embryos (GSEs), and embryogenic calli (EC). Numerous differentially expressed genes (DEGs) were found, especially in pathways linked to ribosomal functions, flavonoid biosynthesis, and the metabolism of starch and sucrose. Additionally, 141 differentially accumulated metabolites (DAMs) belonging to flavonoids, organic acids, carbohydrates, lipids, amino acids, and other metabolites were identified. An integrated study of metabolomic and transcriptome data indicated considerable enrichment of DEGs and DAMs in starch and sucrose metabolism, as well as phenylpropanoid biosynthesis pathways, all of which are required for somatic embryo start and development. This study revealed a number of metabolites and genes linked with SE, offering important insights into the molecular mechanisms driving SE in P. mongolica and laying the groundwork for the development of an efficient SE system. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

22 pages, 1617 KiB  
Article
Determining Patient Satisfaction, Nutrition, and Environmental Impacts of Inpatient Food at a Tertiary Care Hospital in Canada: A Prospective Cohort Study
by Annie Lalande, Stephanie Alexis, Penelope M. A. Brasher, Neha Gadhari, Jiaying Zhao and Andrea J. MacNeill
Dietetics 2025, 4(3), 29; https://doi.org/10.3390/dietetics4030029 - 10 Jul 2025
Viewed by 324
Abstract
While hospital meals are designed to meet the nutritional requirements associated with illness or surgery, competing priorities often take precedence over food quality, contributing to poor patient satisfaction, in-hospital malnutrition, and high food waste. The environmental impacts of hospital food services are a [...] Read more.
While hospital meals are designed to meet the nutritional requirements associated with illness or surgery, competing priorities often take precedence over food quality, contributing to poor patient satisfaction, in-hospital malnutrition, and high food waste. The environmental impacts of hospital food services are a less well-characterized dimension of this complex problem. A prospective cohort study of patients admitted for select abdominal surgeries between June and October 2021 was conducted at a tertiary care hospital in Canada. Greenhouse gas emissions and land-use impacts associated with all food items served were estimated, and patient food waste was weighed for each meal. Patients’ experience of hospital food was measured at discharge. Nutrition was assessed by comparing measured oral intake to minimum caloric and protein requirements. On average, food served in hospital resulted in 3.75 kg CO2e/patient/day and 6.44 m2/patient/day. Average food waste was 0.88–1.39 kg/patient/day (37.5–58.9% of food served). Patients met their caloric and protein requirements on 9.8% and 14.8% of days in hospital, respectively. For patient satisfaction, 75% of overall scores were lower than the industry benchmark, and food quality scores were inversely correlated with quantities of food wasted. Redesigning inpatient food offerings to feature high-quality, low-emissions meals could lessen their environmental impacts while improving patient nutritional status and experience. Full article
Show Figures

Graphical abstract

22 pages, 4476 KiB  
Article
A Method for Identifying Key Areas of Ecological Restoration, Zoning Ecological Conservation, and Restoration
by Shuaiqi Chen, Zhengzhou Ji and Longhui Lu
Land 2025, 14(7), 1439; https://doi.org/10.3390/land14071439 - 10 Jul 2025
Viewed by 317
Abstract
Ecological security patterns (ESPs) are fundamental to safeguarding regional ecological integrity and enhancing human well-being. Consequently, research on conservation and restoration in critical regions is vital for ensuring ecological security and optimizing territorial ecological spatial configurations. Focusing on the Henan section of the [...] Read more.
Ecological security patterns (ESPs) are fundamental to safeguarding regional ecological integrity and enhancing human well-being. Consequently, research on conservation and restoration in critical regions is vital for ensuring ecological security and optimizing territorial ecological spatial configurations. Focusing on the Henan section of the Yellow River Basin, this study established the regional ESP and conservation–restoration framework through an integrated approach: (1) assessing four key ecosystem services—soil conservation, water retention, carbon sequestration, and habitat quality; (2) identifying ecological sources based on ecosystem service importance classification; (3) calculating a comprehensive resistance surface using the entropy weight method, incorporating key factors (land cover type, NDVI, topographic relief, and slope); (4) delineating ecological corridors and nodes using Linkage Mapper and the minimum cumulative resistance (MCR) theory; and (5) integrating ecological functional zoning to synthesize the final spatial conservation and restoration strategy. Key findings reveal: (1) 20 ecological sources, totaling 8947 km2 (20.9% of the study area), and 43 ecological corridors, spanning 778.24 km, were delineated within the basin. Nineteen ecological barriers (predominantly located in farmland, bare land, construction land, and low-coverage grassland) and twenty-one ecological pinch points (primarily clustered in forestland, grassland, water bodies, and wetlands) were identified. Collectively, these elements form the Henan section’s Ecological Security Pattern (ESP), integrating source areas, a corridor network, and key regional nodes for ecological conservation and restoration. (2) Building upon the ESP and the ecological baseline, and informed by ecological functional zoning, we identified a spatial framework for conservation and restoration characterized by “one axis, two cores, and multiple zones”. Tailored conservation and restoration strategies were subsequently proposed. This study provides critical data support for reconciling ecological security and economic development in the Henan Yellow River Basin, offering a scientific foundation and practical guidance for regional territorial spatial ecological restoration planning and implementation. Full article
Show Figures

Figure 1

26 pages, 7342 KiB  
Article
Habitat Quality Evolution and Multi-Scenario Simulation Based on Land Use Change in the Tacheng Region
by Zhenyu Zhang, Shuangshang Qi, Abudukeyimu Abulizi and Yongfu Zhang
Sustainability 2025, 17(13), 6113; https://doi.org/10.3390/su17136113 - 3 Jul 2025
Viewed by 256
Abstract
Habitat quality functions as a critical metric for evaluating regional ecological health and the capacity of ecosystem services. Understanding its temporal dynamics is critical for advancing ecological civilization sustainability. Focusing on the Tacheng region, this study analyzes the evolution characteristics of land use [...] Read more.
Habitat quality functions as a critical metric for evaluating regional ecological health and the capacity of ecosystem services. Understanding its temporal dynamics is critical for advancing ecological civilization sustainability. Focusing on the Tacheng region, this study analyzes the evolution characteristics of land use based on long-term sequential land use data from 2003 to 2023. By coupling the PLUS and InVEST models, it predicts land use change trends under three distinct scenarios for the year 2033 and assesses the spatiotemporal evolution characteristics of habitat quality in the Tacheng region from 2003 to 2033. Findings reveal: (1) The land use types in the Tacheng region are dominated by grassland and unutilized land. During 2003–2023, the area of grassland and water showed a decreasing trend, while the areas of cultivated land and unutilized land significantly increased. Among them, NDVI was identified as the primary driver influencing the expansion of cultivated land, grassland, and unutilized land in the Tacheng region, addressing the gap in quantitative contribution analysis of specific drivers in arid region studies. (2) Overall, habitat quality in the Tacheng region significantly deteriorated during 2003–2023, with areas of high habitat quality continuously decreasing and transitioning to medium and relatively low habitat quality zones. This degradation is primarily attributed to the unidirectional conversion of grassland and water into cultivated land and unutilized land. (3) Under different scenario simulations, land use and habitat quality in the Tacheng region exhibit marked differences, with habitat quality showing significant improvement, particularly under the ecological protection scenario. Compared to existing research, this study pioneers the coupling of PLUS and InVEST models in the typical arid region of the Tacheng region, implements localization of model parameters, quantifies future evolution trends of land use and habitat quality under multiple scenarios, and reveals core drivers of land use change in arid regions. This work addresses the research gap regarding habitat quality simulation and driving mechanisms in the Central Asian arid-semiarid transition zone. Full article
Show Figures

Figure 1

Back to TopTop