Integrated Transcriptomic and Metabolic Analyses Highlight Key Pathways Involved in the Somatic Embryogenesis of Picea mongolica
Abstract
1. Introduction
2. Results
2.1. Induction of SE
2.2. Transcriptome Analysis of EC, GSEs, and MSEs
2.2.1. DEG Identification and Enrichment Analysis
2.2.2. Transcription Factor Expression Among EC, GSEs, and MSEs
2.2.3. Verification of DEGs via qRT-PCR
2.3. Metabolomic Analysis of EC, GSEs, and MSEs
2.4. DEG and DAM Expression Trend Analysis
2.5. Analysis of the Combined Transcriptome and Metabolome Data
3. Discussion
3.1. Role of Starch and Sucrose Metabolism in SE
3.2. Role of Amino Acid and Flavonoid Metabolism in SE
3.3. Plant Hormone Signal Transduction in SE
4. Materials and Methods
4.1. Plant Material
4.2. Transcriptomic Analysis
4.3. Quantitative Real-Time PCR Analysis
4.4. Metabolomic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2,4-D | 2,4-dichlorophenoxyacetic acid |
6-BA | 6-benzyladenine |
ABA | Abscisic acid |
ARF | Auxin response factor |
BBM | Baby boom |
DAMs | Differentially accumulated metabolites |
DEGs | Differentially expressed genes |
EC | Embryogenic calli |
GO | Gene Ontology |
GSEs | Globular somatic embryos |
IAA | Indole-3-acetic acid |
JA | Jasmonic acid |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LEC | Leafy cotyledon |
MSEs | Mature somatic embryos |
NEC | Non-embryogenic calli |
PCA | Principal component analysis |
SE | Somatic embryogenesis |
WUS | Wuschel |
References
- Zou, C.; Han, S.; Xu, W.; Su, B. Formation, Distribution, and Nature of Picea mongolica in China. J. For. Res. 2001, 12, 187–191. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Kang, C.; Man, D. Endangered Mechanism of Picea mongolica: An Endemic and Evergreen Tree only Found in Desert Areas of China. Bull. Soil Water Conserv. 2018, 38, 60–65. [Google Scholar] [CrossRef]
- Yan, J.; Buer, H.; Wang, Y.P.; Zhula, G.; Bai, Y.E. Transcriptomic Time-Series Analyses of Gene Expression Profile during Zygotic Embryo Development in Picea mongolica. Front. Genet. 2021, 12, 738649. [Google Scholar] [CrossRef]
- Zhang, C.; Zou, C.J.; Peltola, H.; Wang, K.Y.; Xu, W.D. The Effects of Gap Size and Age on Natural Regeneration of Picea mongolica in the Semi-arid Region of Northern China. New For. 2013, 44, 297. [Google Scholar] [CrossRef]
- Carra, A.; Wijerathna-Yapa, A.; Pathirana, R.; Carimi, F. Development and Applications of Somatic Embryogenesis in Grapevine (Vitis spp.). Plants 2024, 13, 3131. [Google Scholar] [CrossRef]
- Guan, Y.; Li, S.G.; Fan, X.F.; Su, Z.H. Application of Somatic Embryogenesis in Woody Plants. Front. Plant Sci. 2016, 7, 938. [Google Scholar] [CrossRef]
- Martínez, M.; Corredoira, E. Recent Advances in Plant Somatic Embryogenesis: Where We Stand and Where to Go? Int. J. Mol. Sci. 2024, 25, 8912. [Google Scholar] [CrossRef]
- Fraga, H.P.F.; Moraes, P.E.C.; Vieira, L.D.N.; Guerra, M.P. Somatic Embryogenesis in Conifers: One Clade to Rule Them All? Plants 2023, 12, 2648. [Google Scholar] [CrossRef] [PubMed]
- Tretyakova, I.N.; Mineev, V.V. Reproductive Potential of Conifers, Somatic Embryogenesis and Apomixis. Russ. J. Dev. Biol. 2021, 52, 75. [Google Scholar] [CrossRef]
- Hakman, I.; Arnold, S.V. Plantlet Regeneration through Somatic Embryogenesis in Picea abies (Norway Spruce). J. Plant Physiol. 1985, 121, 149. [Google Scholar] [CrossRef]
- Hazubska-Przybył, T.; Wawrzyniak, M.K.; Kijowska-Oberc, J.; Staszak, A.M.; Ratajczak, E. Somatic Embryogenesis of Norway Spruce and Scots Pine: Possibility of Application in Modern Forestry. Forests 2022, 13, 155. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, X.; Liu, C.; Zhao, H.; Dai, F.; Zhao, J.; Zhang, J.; Kong, L. Involvement of 5mC DNA Demethylation via 5-Aza-2′-Deoxycytidine in Regulating Gene Expression during Early Somatic Embryo Development in White Spruce (Picea glauca). For. Res. 2023, 3, 30. [Google Scholar] [CrossRef]
- Tremblay, F.M.; Iraqi, D.; El Meskaoui, A. Protocol of Somatic Embryogenesis: Black Spruce (Picea mariana (Mill.) B.S.P.). In Protocol for Somatic Embryogenesis in Woody Plants; Jain, S.M., Gupta, P.K., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 59–68. ISBN 978-1-4020-2984-4. [Google Scholar]
- Klimaszewska, K.; Hargreaves, C.; Lelu-Walter, M.A.; Trontin, J.F. Advances in Conifer Somatic Embryogenesis Since Year 2000. Methods Mol. Biol. 2016, 1359, 131. [Google Scholar] [CrossRef]
- Egertsdotter, U.; Ahmad, I.; Clapham, D. Automation and Scale Up of Somatic Embryogenesis for Commercial Plant Production, with Emphasis on Conifers. Front. Plant Sci. 2019, 10, 109. [Google Scholar] [CrossRef]
- Yan, J.; Peng, P.; Duan, G.; Lin, T.; Bai, Y.E. Multiple Analyses of Various Factors Affecting the Plantlet Regeneration of Picea mongolica (H. Q. Wu) W.D. Xu from Somatic Embryos. Sci. Rep. 2021, 11, 6694. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Bao, W.; Sui, M.; Bai, Y.E. Transcriptome Analysis of Embryogenic and Non-embryogenic Callus of Picea mongolica. Curr. Issues Mol. Biol. 2023, 45, 5232. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, S.; Wang, J. Transcriptome Analysis of Callus from Picea balfouriana. BMC Genom. 2014, 15, 553. [Google Scholar] [CrossRef]
- Yakovlev, I.A.; Lee, Y.; Rotter, B.; Olsen, J.E.; Skrøppa, T.; Johnsen, Ø.; Fossdal, C.G. Temperature-Dependent Differential Transcriptomes during Formation of an Epigenetic Memory in Norway Spruce Embryogenesis. Tree Genet. Genomes 2014, 10, 355–366. [Google Scholar] [CrossRef]
- Yakovlev, I.A.; Carneros, E.; Lee, Y.; Olsen, J.E.; Fossdal, C.G. Transcriptional Profiling of Epigenetic Regulators in Somatic Embryos during Temperature Induced Formation of an Epigenetic Memory in Norway Spruce. Planta 2016, 243, 1237–1249. [Google Scholar] [CrossRef]
- Wang, M.; Li, R.; Zhao, Q. Multi-omics Techniques in Genetic Studies and Breeding of Forest Plants. Forests 2023, 14, 1196. [Google Scholar] [CrossRef]
- Awon, V.K.; Dutta, D.; Banerjee, S.; Pal, S.; Gangopadhyay, G. Integrated Metabolomics and Transcriptomics Analysis Highlight Key Pathways Involved in the Somatic Embryogenesis of Darjeeling Tea. BMC Genom. 2024, 25, 207. [Google Scholar] [CrossRef]
- Guo, H.; Guo, H.; Zhang, L.; Tang, Z.; Yu, X.; Wu, J.; Zeng, F. Metabolome and Transcriptome Association Analysis Reveals Dynamic Regulation of Purine Metabolism and Flavonoid Synthesis in Transdifferentiation during Somatic Embryogenesis in Cotton. Int. J. Mol. Sci. 2019, 20, 2070. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Zhao, G.; Wang, N.; Guo, L.; Hou, X. Molecular Mechanism of Somatic Embryogenesis in Paeonia Ostii ‘Fengdan’ Based on Transcriptome Analysis Combined Histomorphological Observation and Metabolite Determination. BMC Genom. 2023, 24, 665. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Qi, L.; Zhang, S. Integrated Transcriptomic and Metabolic Analyses Provide Insights into the Maintenance of Embryogenic Potential and the Biosynthesis of Phenolic Acids and Flavonoids Involving Transcription Factors in Larix kaempferi (Lamb.) Carr. Front. Plant Sci. 2022, 13, 1056930. [Google Scholar] [CrossRef]
- Peng, C.; Gao, F.; Tretyakova, I.N.; Nosov, A.M.; Shen, H.; Yang, L. Transcriptomic and Metabolomic Analysis of Korean Pine Cell Lines with Different Somatic Embryogenic Potential. Int. J. Mol. Sci. 2022, 23, 13301. [Google Scholar] [CrossRef]
- Ling, J.; Xia, Y.; Hu, J.; Zhu, T.; Wang, J.; Zhang, H.; Kong, L. Integrated Lipidomic and Transcriptomic Analysis Reveals Phospholipid Changes in Somatic Embryos of Picea Asperata in Response to Partial Desiccation. Int. J. Mol. Sci. 2022, 23, 6494. [Google Scholar] [CrossRef]
- Dobrowolska, I.; Businge, E.; Abreu, I.N.; Moritz, T.; Egertsdotter, U. Metabolome and Transcriptome Profiling Reveal New Insights into Somatic Embryo Germination in Norway Spruce (Picea Abies). Tree Physiol. 2017, 37, 1752–1766. [Google Scholar] [CrossRef]
- Pais, M.S. Somatic Embryogenesis Induction in Woody Species: The Future after OMICs Data Assessment. Front. Plant Sci. 2019, 10, 240. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, X.; Cheng, L.; Hu, L.; Zhu, L.; Cao, J.; Guo, X. A Draft Gene Regulatory Network for Cellular Totipotency Reprogramming during Plant Somatic Embryogenesis. Genomics 2007, 90, 620. [Google Scholar] [CrossRef]
- Gliwicka, M.; Nowak, K.; Balazadeh, S.; Mueller-Roeber, B.; Gaj, M.D. Extensive Modulation of the Transcription Factor Transcriptome during Somatic Embryogenesis in Arabidopsis thaliana. PLoS ONE 2013, 8, e69261. [Google Scholar] [CrossRef]
- Chen, L.; Meng, Y.; Bai, Y.; Yu, H.; Qian, Y.; Zhang, D.; Zhou, Y. Starch and Sucrose Metabolism and Plant Hormone Signaling Pathways Play Crucial Roles in Aquilegia Salt Stress Adaption. Int. J. Mol. Sci. 2023, 24, 3948. [Google Scholar] [CrossRef]
- Sakr, S.; Wang, M.; Dédaldéchamp, F.; Perez-Garcia, M.-D.; Ogé, L.; Hamama, L.; Atanassova, R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int. J. Mol. Sci. 2018, 19, 2506. [Google Scholar] [CrossRef]
- Gu, X.; Fan, Z.; Wang, Y.; He, J.; Zheng, C.; Ma, H. Metabolome and Transcriptome Joint Analysis Reveals That Different Sucrose Levels Regulate the Production of Flavonoids and Stilbenes in Grape Callus Culture. Int. J. Mol. Sci. 2024, 25, 10398. [Google Scholar] [CrossRef]
- Juarez-Escobar, J.; Bojórquez-Velázquez, E.; Elizalde-Contreras, J.M.; Guerrero-Analco, J.A.; Loyola-Vargas, V.M.; Mata-Rosas, M.; Ruiz-May, E. Current Proteomic and Metabolomic Knowledge of Zygotic and Somatic Embryogenesis in Plants. Int. J. Mol. Sci. 2021, 22, 11807. [Google Scholar] [CrossRef]
- Li, H.-Z.; Wu, H.; Song, K.-K.; Zhao, H.-H.; Tang, X.-Y.; Zhang, X.-H.; Wang, D.; Dong, S.-L.; Liu, F.; Wang, J.; et al. Transcriptome Analysis Revealed Enrichment Pathways and Regulation of Gene Expression Associated with Somatic Embryogenesis in Camellia sinensis. Sci. Rep. 2023, 13, 15946. [Google Scholar] [CrossRef]
- Cao, L.; Wang, G.; Ye, X.; Li, F.; Wang, S.; Li, H.; Wang, P.; Wang, J. Physiological, Metabolic, and Transcriptomic Analyses Reveal Mechanisms of Proliferation and Somatic Embryogenesis of Litchi (Litchi chinensis Sonn.) Embryogenic Callus Promoted by D-arginine Treatment. Int. J. Mol. Sci. 2024, 25, 3965. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, J.J.; Aux Zhang, J.Z.; Family, I.A.A.G. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function. Int. J. Mol. Sci. 2018, 19, 259. [Google Scholar] [CrossRef]
- Pascual, M.B.; El-Azaz, J.; De La Torre, F.N.; Cañas, R.A.; Avila, C.; Cánovas, F.M. Biosynthesis and Metabolic Fate of Phenylalanine in Conifers. Front. Plant Sci. 2016, 7, 1030. [Google Scholar] [CrossRef]
- Ding, M.; Dong, H.; Xue, Y.; Su, S.; Wu, Y.; Li, S.; Liu, H.; Li, H.; Han, J.; Shan, X.; et al. Transcriptomic Analysis Reveals Somatic Embryogenesis-Associated Signaling Pathways and Gene Expression Regulation in Maize (Zea mays L.). Plant Mol. Biol. 2020, 104, 647. [Google Scholar] [CrossRef]
- Khadem, A.; Moshtaghi, N.; Bagheri, A. Regulatory Networks of Hormone-Involved Transcription Factors and Their Downstream Pathways during Somatic Embryogenesis of Arab. thaliana. 3 Biotech 2023, 13, 132. [Google Scholar] [CrossRef]
- Pinto, R.T.; Freitas, N.C.; Máximo, W.P.F.; Cardoso, T.B.; Prudente, D.O.; Paiva, L.V. Genome-Wide Analysis, Transcription Factor Network Approach and Gene Expression Profile of GH3 Genes over Early Somatic Embryogenesis in Coffea spp. BMC Genom. 2019, 20, 812. [Google Scholar] [CrossRef]
- Yang, X.; Chang, M.; Yang, N.; Zhang, Q.; Ge, Y.; Zhou, H.; Li, G.; Yang, Q. ABA Exerts a Promotive Effect on the Early Process of Somatic Embryogenesis in Quercus aliena Bl. Plant. Plant Physiol. Biochem. 2024, 214, 108969. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global Metabolic Profiling of Animal and Human Tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17. [Google Scholar] [CrossRef]
- Bylesjö, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS Discriminant Analysis: Combining the Strengths of PLS-DA and SIMCA Classification. J. Chemom. 2006, 20, 341. [Google Scholar] [CrossRef]
- Warnes, G.R.; Bolker, B.; Lumley, T.; Johnson, R.C. Gmodels: Various R Programming Tools for Model Fitting. Available online: https://CRAN.R-project.org/package=gmodels (accessed on 16 February 2025).
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 28, 29. [Google Scholar] [CrossRef]
- Ernst, J.; Bar-Joseph, Z. STEM: A Tool for the Analysis of Short Time Series Gene Expression Data. BMC Bioinform. 2006, 7, 191. [Google Scholar] [CrossRef]
Sample | Raw Reads | Clean Reads | Clean Data (bp) | Q20 (%) | Q30 (%) | GC Content (%) |
---|---|---|---|---|---|---|
EC-1 | 40,747,192 | 40,491,600 | 5,959,054,101 | 97.79 | 93.17 | 44.32 |
EC-2 | 57,552,526 | 57,200,990 | 8,401,685,909 | 98.05 | 94.26 | 44.32 |
EC-3 | 48,070,218 | 47,841,264 | 7,091,543,345 | 97.88 | 93.42 | 44.42 |
GSEs-1 | 40,351,730 | 40,153,750 | 5,959,722,664 | 97.96 | 93.69 | 44.60 |
GSEs-2 | 48,316,596 | 48,055,482 | 7,092,902,035 | 98.37 | 94.99 | 44.56 |
GSEs-3 | 45,805,840 | 45,538,794 | 6,677,507,898 | 97.73 | 93.00 | 44.64 |
MSEs-1 | 49,113,436 | 48,870,328 | 7,240,911,276 | 97.98 | 94.08 | 44.06 |
MSEs-2 | 45,370,116 | 45,170,886 | 6,683,159,328 | 97.86 | 93.37 | 44.30 |
MSEs-3 | 42,457,888 | 42,272,576 | 6,223,547,483 | 97.72 | 92.95 | 44.42 |
Summary/Average | 417,785,542 | 415,595,670 | 61,330,034,039 | 97.93 | 93.66 | 44.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, J.; Zhang, S.; Bai, Y. Integrated Transcriptomic and Metabolic Analyses Highlight Key Pathways Involved in the Somatic Embryogenesis of Picea mongolica. Plants 2025, 14, 2141. https://doi.org/10.3390/plants14142141
Dai J, Zhang S, Bai Y. Integrated Transcriptomic and Metabolic Analyses Highlight Key Pathways Involved in the Somatic Embryogenesis of Picea mongolica. Plants. 2025; 14(14):2141. https://doi.org/10.3390/plants14142141
Chicago/Turabian StyleDai, Jinling, Shengli Zhang, and Yu’e Bai. 2025. "Integrated Transcriptomic and Metabolic Analyses Highlight Key Pathways Involved in the Somatic Embryogenesis of Picea mongolica" Plants 14, no. 14: 2141. https://doi.org/10.3390/plants14142141
APA StyleDai, J., Zhang, S., & Bai, Y. (2025). Integrated Transcriptomic and Metabolic Analyses Highlight Key Pathways Involved in the Somatic Embryogenesis of Picea mongolica. Plants, 14(14), 2141. https://doi.org/10.3390/plants14142141