Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = low grade calcined clay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4087 KiB  
Article
Performance Evaluation of Low-Grade Clay Minerals in LC3-Based Cementitious Composites
by Nosheen Blouch, Syed Noman Hussain Kazmi, Nijah Akram, Muhammad Junaid Saleem, Imran Ahmad Khan, Kashif Javed, Sajjad Ahmad and Asfandyar Khan
Solids 2025, 6(3), 35; https://doi.org/10.3390/solids6030035 - 10 Jul 2025
Viewed by 368
Abstract
The cements industry is increasingly under pressure to reduce carbon emissions while maintaining performance standards. Limestone calcined clay cement (LC3) presents a promising low-carbon alternative; however, its performance depends significantly on the type and reactivity of clay used. This study investigates [...] Read more.
The cements industry is increasingly under pressure to reduce carbon emissions while maintaining performance standards. Limestone calcined clay cement (LC3) presents a promising low-carbon alternative; however, its performance depends significantly on the type and reactivity of clay used. This study investigates the effect of three common low-grade clay minerals—kaolinite, montmorillonite, and illite—on the behavior of LC3 blends. The clays were thermally activated and characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray fluorescence spectroscopy (XRF), and Blaine air permeability testing to evaluate their mineralogical composition, thermal behavior, chemical content, and fineness. Pozzolanic reactivity was assessed using the modified Chapelle test. Microstructural development was examined through scanning electron microscopy (SEM) of the hydrated specimens at 28 days. The results confirmed a strong correlation between clay reactivity and hydration performance. Kaolinite showed the highest reactivity and fineness, contributing to a dense microstructure with reduced portlandite and enhanced formation of calcium silicate hydrate. Montmorillonite demonstrated comparable strength and favorable hydration characteristics, while illite, though less reactive initially, showed acceptable long-term behavior. Although kaolinite delivered the best overall performance, its limited availability and higher cost suggest that montmorillonite and illite represent viable and cost-effective alternatives, particularly in regions where kaolinite is scarce. This study highlights the suitability of regionally available, low-grade clays for use in LC3 systems, supporting sustainable and economically viable cement production. Full article
(This article belongs to the Topic Novel Cementitious Materials)
Show Figures

Figure 1

19 pages, 9152 KiB  
Article
Mechanism Study on the Influence of Clay-Type Lithium Slag on the Properties of Cement-Based Materials
by Kejia Xiao, Guangshao Yang, Wei Zhou, Qihao Ran, Xin Yao, Rengui Xiao and Shaoqi Zhou
Materials 2025, 18(8), 1788; https://doi.org/10.3390/ma18081788 - 14 Apr 2025
Cited by 1 | Viewed by 541
Abstract
With the increasing demand for lithium resources and the enhancement of global environmental awareness, how to efficiently and environmentally develop clay-type lithium resources is of great strategic significance for future development. Clay-type lithium slag (LS) is a byproduct resulting from the extraction of [...] Read more.
With the increasing demand for lithium resources and the enhancement of global environmental awareness, how to efficiently and environmentally develop clay-type lithium resources is of great strategic significance for future development. Clay-type lithium slag (LS) is a byproduct resulting from the extraction of lithium from clay-type lithium ores. Its primary chemical constituents include SiO2 and Al2O3, and it exhibits potential pozzolanic properties. Clay-type lithium ore is of low grade, so a large amount of clay-type LS is produced during its production. In this study, calcined clay-type LS, limestone powder (LP), and cement clinker were used as the main raw materials to prepare low-carbon LC3 cementitious materials. The study focused on the effect of clay-type LS and LP on the new mixing properties, mechanical properties, hydration kinetics, and microstructure formation and transformation of the cementitious materials. The findings revealed that incorporating clay-type LS and LP significantly raised the standard consistency water demand of cement and reduced the setting time of the binding material. While clay-type LS and LP initially weakened the mechanical performance of the cement mortar, it enhanced these properties in the later stages. The compressive strength of LC-10 and LC-20 at 180 days exceeded that of the reference by 3.7% and 1.1%, respectively. In addition, the number of micropores between 3 and 20 nm in LC3 cement increased significantly. It showed that the addition of clay-type LS and LP could optimize the pore structure to some extent. According to research, the optimal content of clay-type LS and LP should not exceed 30%. This method not only consumes the solid waste of clay-type LS, but also facilitates the green and low-carbon transformation of the cement industry. Full article
Show Figures

Figure 1

15 pages, 2822 KiB  
Article
Effect of Low-Grade Calcined Clay on the Durability Performance of Blended Cement Mortar
by Kwabena Boakye and Morteza Khorami
Buildings 2025, 15(7), 1159; https://doi.org/10.3390/buildings15071159 - 2 Apr 2025
Viewed by 697
Abstract
Recent studies have shown the viability of low-grade calcined clays as a partial substitute for cement in construction applications. However, there is limited information about the performance of low-grade calcined clay in withstanding chloride-rich environments. This paper investigates the durability performance of mortar [...] Read more.
Recent studies have shown the viability of low-grade calcined clays as a partial substitute for cement in construction applications. However, there is limited information about the performance of low-grade calcined clay in withstanding chloride-rich environments. This paper investigates the durability performance of mortar prepared by partially substituting cement with low-grade calcined clay. Naturally occurring clay having a kaolinite content of 17% was calcined at 900 °C, blended and used to prepare composite cement samples containing up to 40% by weight low-grade calcined clay. Durability studies were conducted using the rapid chloride penetration test (RCPT), freeze and thaw, sorptivity, permeable porosity, ultrasonic pulse velocity (UPV), and autogenous shrinkage. The incorporation of calcined clay resulted in significant improvements in durability properties, including reductions in sorptivity, permeable porosity, and chloride ion penetration. Additionally, enhanced freeze–thaw resistance was observed, indicating the ability of calcined clays to mitigate deterioration under harsh environmental conditions. These improvements in durability translate to extended service life and reduced maintenance requirements for concrete structures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 4638 KiB  
Review
Performance of Calcined Impure Kaolinitic Clay as a Partial Substitute for Portland Cement Concrete: A Review
by Kwabena Boakye and Morteza Khorami
J. Compos. Sci. 2025, 9(4), 145; https://doi.org/10.3390/jcs9040145 - 21 Mar 2025
Cited by 3 | Viewed by 1328
Abstract
This paper reviews the performance of low-grade calcined clay as a partial substitute for Portland cement in concrete, emphasizing its potential to enhance sustainability in construction. Thermal treatment of naturally occurring clays at optimal temperatures produces amorphous siliceous materials with pozzolanic properties. Clays [...] Read more.
This paper reviews the performance of low-grade calcined clay as a partial substitute for Portland cement in concrete, emphasizing its potential to enhance sustainability in construction. Thermal treatment of naturally occurring clays at optimal temperatures produces amorphous siliceous materials with pozzolanic properties. Clays with substantial kaolinite content exhibit significant pozzolanic reactivity when calcined at temperatures between 700 and 850 °C, with effective firing possible up to 1000 °C. Research shows that replacing Portland cement with calcined clays improves the mechanical and durability properties of concrete, with replacement levels ranging from 10% to 60%, depending on factors such as chemical composition, mineralogy, and reactivity. This paper synthesizes recent findings on low-grade calcined clays with 60–80% purity, which are more abundant, cost-effective, and easier to produce, particularly in developing regions lacking the resources and technology to process high-purity clays (>95% purity). Key aspects explored include calcination methods, optimal firing temperatures, and their effects on particle size distribution and pozzolanic activity. This study also examines the impact of low-grade calcined clay on fresh and hardened concrete and the durability properties of concrete and mortar. By providing a comprehensive analysis, this review highlights the potential of low-grade calcined clays to contribute to more sustainable and durable concrete production, emphasizing the need to optimize calcination processes and fully harness their pozzolanic properties. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

17 pages, 4174 KiB  
Article
Investigating Australian Calcined Clays as Supplementary Cementitious Materials
by Emily Canda, Rackel San Nicolas, Madhuwanthi Rupasinghe, Haleh Rasekh and Arnaud Castel
Ceramics 2025, 8(1), 9; https://doi.org/10.3390/ceramics8010009 - 20 Jan 2025
Viewed by 1356
Abstract
Limestone Calcined Clay Cement (LC3) has become a highlighted research topic over the past decade. Through various research, LC3 demonstrated the capability to supplement portions of cement, highlighting the possibility to decrease CO2 emissions due to the low calcination [...] Read more.
Limestone Calcined Clay Cement (LC3) has become a highlighted research topic over the past decade. Through various research, LC3 demonstrated the capability to supplement portions of cement, highlighting the possibility to decrease CO2 emissions due to the low calcination temperatures and low levels of CO2 released from the material during calcination. At this stage, there is no research into the feasibility of LC3 in any parts of Australia, limited research in finding clay, and incomplete research understanding how low calcination temperatures affect the compressive strength. The results show the feasibility of LC3, where we demonstrated the feasibility of a low calcination temperature of 650 °C and found that various overburden waste clays (clay in quarries and mines that are not needed) across the East Coast of Australia produced comparable compressive strength results to conventional Portland cement-based mixes. The results also indicate that optimising the particle size distribution of the calcined clay enhanced both the workability and compressive strength of the mortars. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

15 pages, 5314 KiB  
Article
Optimisation of Using Low-Grade Kaolinitic Clays in Limestone Calcined Clay Cement Production (LC3)
by Paola Vargas, María Victoria Borrachero, Jordi Payá, Ana Macián, Jorge Iván Tobón, Fernando Martirena and Lourdes Soriano
Materials 2025, 18(2), 285; https://doi.org/10.3390/ma18020285 - 10 Jan 2025
Viewed by 1754
Abstract
LC3 (limestone calcined clay cement) is poised to become the construction industry’s future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay [...] Read more.
LC3 (limestone calcined clay cement) is poised to become the construction industry’s future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay from the Valencian Community (Spain), which has a lower kaolinite content than the recommended amount (around 30%) for use in LC3 and how its performance can be enhanced by replacing part of that clay with metakaolin. This study begins with a physico-chemical characterisation of the starting materials. This is followed by a microstructural analysis of cement pastes, which includes isothermal calorimetry, thermogravimetry, and X-ray diffraction tests at different curing ages. Finally, this study analyses the mechanical performance of standard mortars under compression to observe the evolution of the control mortars and the mortars with calcined clay and metakaolin over time. The results show that the LC3 mortars exhibited higher compressive strength in the mixtures with higher calcined kaolinite contents, achieved by adding metakaolin. Adding 6% metakaolin increased the compressive strength after 90 days, while 10% additions surpassed the control mortar’s compressive strength after 28 days. Mortars with 15% metakaolin exceeded the control mortar’s compressive strength after just 7 curing days. The hydration kinetics showed an acceleration of LC3 hydration with metakaolin additions due to the nucleation effect and the formation of monocarboaluminate and hemicarboaluminate (both AFm phases). The results suggest the potential for combining less reactive materials blended with highly reactive materials. Full article
(This article belongs to the Special Issue Advance in Sustainable Construction Materials, Second Volume)
Show Figures

Figure 1

15 pages, 4721 KiB  
Article
Performance of a Single Source of Low-Grade Clay in a Limestone Calcined Clay Cement Mortar
by Kwabena Boakye, Morteza Khorami, Messaoud Saidani, Eshmaiel Ganjian, Mark Tyrer and Andrew Dunster
Buildings 2024, 14(1), 93; https://doi.org/10.3390/buildings14010093 - 29 Dec 2023
Cited by 3 | Viewed by 1772
Abstract
The high kaolinite content of metakaolin makes it valuable to other industries, thereby affecting its availability and affordability for the production of limestone calcined clay cement (LC3). This work presents a study on the potential utilization of low-grade clay in place [...] Read more.
The high kaolinite content of metakaolin makes it valuable to other industries, thereby affecting its availability and affordability for the production of limestone calcined clay cement (LC3). This work presents a study on the potential utilization of low-grade clay in place of pure metakaolin in the preparation of LC3 for mortar formulations. CEM I was partially substituted with calcined clay and limestone by 20, 30, 40, and 50 wt.%. The weight ratio of calcined clay and limestone was maintained at 2:1 for all mixes and the water-to-binder ratio was 0.48. X-ray diffraction (XRD), thermogravimetric analysis (TGA), and isothermal conduction calorimetry were used to study the hydration process and products after 28 days. Mechanical and durability assessments of the LC3 mortar specimens were conducted. LC3 specimens (marked LC20%, LC30%, LC40%, and LC50%) trailed the control sample by 1.2%, 4%, 9.8%, and 18%, respectively, at 28 days and 1.6%, 2.3%, 3.6%, and 5.5%, respectively, at 91 days. The optimum replacement of OPC clinker, calcined clay, and limestone was 20% (LC20%). Full article
Show Figures

Figure 1

18 pages, 4947 KiB  
Article
Hydration, Reactivity and Durability Performance of Low-Grade Calcined Clay-Silica Fume Hybrid Mortar
by Kwabena Boakye and Morteza Khorami
Appl. Sci. 2023, 13(21), 11906; https://doi.org/10.3390/app132111906 - 31 Oct 2023
Cited by 7 | Viewed by 2727
Abstract
Low-grade calcined clay, due to its low cost, availability and low temperature calcination, has been gaining attention in recent times as a supplementary cementitious material (SCM) in the manufacture of revolutionary building materials to improve the fresh and hardened properties of concrete. Silica [...] Read more.
Low-grade calcined clay, due to its low cost, availability and low temperature calcination, has been gaining attention in recent times as a supplementary cementitious material (SCM) in the manufacture of revolutionary building materials to improve the fresh and hardened properties of concrete. Silica fume, on the other hand, has been used, over the years, to improve the performance of concrete due to its reduced porosity and improved transition zone quality. In spite of the individual contribution of these two pozzolans to the strength and durability of concrete, there is a knowledge gap in the properties of ternary blended mixes utilizing calcined clay and silica fume. In this study, the synergistic effect of calcined clay and silica fume on the fresh and hardened properties of cementitious mortar have been investigated. The two pozzolans were used to partially substitute Portland cement to form a ternary blended composite binder having, at a maximum, a replacement of 30% by weight and a varying content of calcined clay and silica fume. The influence of the binary and ternary blended mixes on hydration, pozzolanic reactivity and the mechanical and durability properties of mortar was studied. From the results, partial replacement of cement with 30% calcined clay and silica fume caused significant reductions in the portlandite content of the two hydrated pastes at all curing ages. Drying shrinkage was found to be less severe in the control mortar than the blended cement mixes. Compared to the blended cement specimens, the control suffered the most weight (13.3%) and strength (10%) losses, as indicated by the sulphate resistance test. Full article
(This article belongs to the Special Issue Research Progress on New Aggregates and Materials for Concrete)
Show Figures

Figure 1

15 pages, 6288 KiB  
Article
Impact of Low-Reactivity Calcined Clay on the Performance of Fly Ash-Based Geopolymer Mortar
by Kwabena Boakye and Morteza Khorami
Sustainability 2023, 15(18), 13556; https://doi.org/10.3390/su151813556 - 11 Sep 2023
Cited by 8 | Viewed by 2374
Abstract
Availability of aluminosiliceous materials is essential for the production and promotion of geopolymer concrete. Unlike fly ash, which can only be found in industrial regions, clays are available almost everywhere but have not received sufficient attention to their potential use as a precursor [...] Read more.
Availability of aluminosiliceous materials is essential for the production and promotion of geopolymer concrete. Unlike fly ash, which can only be found in industrial regions, clays are available almost everywhere but have not received sufficient attention to their potential use as a precursor for geopolymer synthesis. This study investigates the effectiveness of calcined clay as a sole and binary precursor (with fly ash) for the preparation of geopolymer mortar. Fly ash-based geopolymer containing between 0 and 100% low-grade calcined clay was prepared to investigate the effect of calcined clay replacement on the geopolymerization process and resultant mortar, using a constant liquid/solid ratio. Reagent-grade sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) were mixed and used for the alkali solution preparation. Six different mortar mixes were formulated using sand and the geopolymer binder, comprising varying fly ash-to-calcined clay ratios. The combined effect of the two source materials on compressive strength, setting time, autogenous shrinkage, and porosity was studied. The source materials were characterized using XRD, SEM, FTIR, and XRF techniques. Isothermal calorimetry was used to characterize the effect of low-grade calcined clay on the geopolymerization process. The addition of calcined clay reduced the surface interaction between the dissolved particles in the alkali solution, leading to slow initial reactivity. Geopolymer mortar containing 20% calcined clay outperformed the reference geopolymer mortar by 5.6%, 17%, and 18.5% at 7, 28, and 91 days, respectively. The MIP analysis revealed that refinement of the pore structure of geopolymer specimens containing calcined clay resulted in the release of tensional forces within the pore fluid. Optimum replacement was found to be 20%. From this study, the mutual reliance on the physical and inherent properties of the two precursors to produce geopolymer mortar with desirable properties has been shown. The findings strongly suggest that clay containing low content of kaolinite can be calcined and added to fly ash, together with appropriate alkali activators, to produce a suitable geopolymer binder for construction applications. Full article
Show Figures

Figure 1

13 pages, 7514 KiB  
Article
Influence of Calcination Temperature and Amount of Low-Grade Clay Replacement on Mitigation of the Alkali–Silica Reaction
by Daria Jóźwiak-Niedźwiedzka, Roman Jaskulski, Kinga Dziedzic, Aneta Antolik and Mariusz Dąbrowski
Materials 2023, 16(8), 3210; https://doi.org/10.3390/ma16083210 - 19 Apr 2023
Cited by 6 | Viewed by 2358
Abstract
Results of experimental investigation on the mitigation of alkali–silica reaction (ASR) by low-grade calcined clay are presented. Domestic clay with an Al2O3 content equal to 26% and SiO2—58% was used. The calcination temperatures were as follows: 650 °C, [...] Read more.
Results of experimental investigation on the mitigation of alkali–silica reaction (ASR) by low-grade calcined clay are presented. Domestic clay with an Al2O3 content equal to 26% and SiO2—58% was used. The calcination temperatures were as follows: 650 °C, 750 °C, 850 °C and 950 °C, which were chosen much more widely than presented in previous studies. Pozzolanity of the raw and calcined clay was determined with the Fratini test. The performance of calcined clay to mitigate ASR was evaluated according to ASTM C1567 using reactive aggregates. A control mortar mixture was prepared with 100% Portland cement (Na2Oeq = 1.12%) as a binder with reactive aggregate, and test mixtures were made with 10% and 20% of calcined clay as a cement replacement. The microstructure of the specimens was observed on the polished sections using scanning electron microscope (SEM) operated in backscattered mode (BSE). The results of expansion of mortar bars with reactive aggregate showed that replacing cement with calcined clay reduced the expansion of the mortar bars. The greater the cement replacement, the better results in terms of ASR mitigation. However, the influence of the calcination temperature was not as clear. The opposite trend was found with the use of 10% or 20% calcined clay. Full article
(This article belongs to the Special Issue Building Materials Engineering and Innovative Sustainable Materials)
Show Figures

Figure 1

8 pages, 2842 KiB  
Proceeding Paper
Effect of Low-Quality Calcined Clay on the Suppression of the Alkali–Silica Reaction
by Daria Jóźwiak-Niedźwiedzka, Roman Jaskulski, Kinga Dziedzic and Aneta Antolik
Mater. Proc. 2023, 13(1), 15; https://doi.org/10.3390/materproc2023013015 - 14 Feb 2023
Cited by 3 | Viewed by 2959
Abstract
This article presents the results of an experimental investigation into the mitigation of the alkali–silica reaction (ASR) resulting from using low-grade clay calcined at 850 °C. The clay used in the experiment was domestic clay with an Al2O3 content equal [...] Read more.
This article presents the results of an experimental investigation into the mitigation of the alkali–silica reaction (ASR) resulting from using low-grade clay calcined at 850 °C. The clay used in the experiment was domestic clay with an Al2O3 content equal to 26% and a SiO2 content of 58%. The performance of calcined clay in ASR mitigation was evaluated according to ASTM C1567 using reactive aggregates. The control mortar mixture consisted of 100% Portland cement (Na2Oeq = 1.12%) binder and reactive aggregate. The test mixtures used the same reactive aggregate and binders, in which part of the cement was replaced with either 10%, 20% or 30% calcined clay. The microstructure of specimens was examined on the polished sections using a scanning electron microscope (SEM) operated in the backscattered mode (BSE). The results of expansion obtained from the mortar bars made with the reactive aggregate showed that replacing cement by calcined clay reduced their expansion, with the level of expansion decreasing with the increase in the level of cement replacement. Full article
(This article belongs to the Proceedings of 10th MATBUD’2023 Scientific-Technical Conference)
Show Figures

Figure 1

10 pages, 2919 KiB  
Project Report
Mechanochemical Characterisation of Calcined Impure Kaolinitic Clay as a Composite Binder in Cementitious Mortars
by Kwabena Boakye, Morteza Khorami, Messaoud Saidani, Eshmaiel Ganjian, Andrew Dunster, Ahmad Ehsani and Mark Tyrer
J. Compos. Sci. 2022, 6(5), 134; https://doi.org/10.3390/jcs6050134 - 6 May 2022
Cited by 14 | Viewed by 2814
Abstract
The availability of some supplementary cementitious materials, especially fly ash, is of imminent concern in Europe due to the projected closure of several coal-fired power generation plants. Pure kaolinitic clays, which arguably have the potential to replace fly ash, are also scarce and [...] Read more.
The availability of some supplementary cementitious materials, especially fly ash, is of imminent concern in Europe due to the projected closure of several coal-fired power generation plants. Pure kaolinitic clays, which arguably have the potential to replace fly ash, are also scarce and expensive due to their use in other industrial applications. This paper examines the potential utilisation of low-grade kaolinitic clays for construction purposes. The clay sample was heat-treated at a temperature of 800 °C and evenly blended with Portland cement in substitutions of 10–30% by weight. The physical, chemical, mineralogical and mechanical characteristics of the blended calcined clay cement were determined. The Frattini test proved the pozzolanic potential of the calcined impure clay, as a plot of its CaO and OH was found below the lime solubility curve. The 28 days compressive strengths trailed the reference cement by 5.1%, 12.3% and 21.7%, respectively, at all replacement levels. The optimum replacement level between the three blends was found to be 20 wt.%. Full article
Show Figures

Figure 1

17 pages, 1586 KiB  
Article
Low-Grade Clay as an Alkali-Activated Material
by Muhammad M. Rahman, David W. Law, Indubhushan Patnaikuni, Chamila Gunasekara and Morteza Tahmasebi Yamchelou
Appl. Sci. 2021, 11(4), 1648; https://doi.org/10.3390/app11041648 - 12 Feb 2021
Cited by 5 | Viewed by 2833
Abstract
The potential application of alkali-activated material (AAM) as an alternative binder in concrete to reduce the environmental impact of cement production has now been established. However, as the production and availability of the primarily utilized waste materials, such as fly Ash and blast [...] Read more.
The potential application of alkali-activated material (AAM) as an alternative binder in concrete to reduce the environmental impact of cement production has now been established. However, as the production and availability of the primarily utilized waste materials, such as fly Ash and blast furnace slag, decrease, it is necessary to identify alternative materials. One such material is clay, which contains aluminosilicates and is abundantly available across the world. However, the reactivity of untreated low-grade clay can be low. Calcination can be used to activate clay, but this can consume significant energy. To address this issue, this paper reports the investigation of two calcination methodologies, utilizing low-temperature and high-temperature regimes of different durations, namely 24 h heating at 120 °C and 5 h at 750 °C and, and the results are compared with those of the mechanical performance of the AAM produced with untreated low-grade clay. The investigation used two alkali dosages, 10% and 15%, with an alkali modulus varying from 1.0 to 1.75. An increase in strength was observed with calcination of the clay at both 120 and 750 °C compared to untreated clay. Specimens with a dosage of 10% showed enhanced performance compared to those with 15%, with Alkali Modulus (AM) of 1.0 giving the optimal strength at 28 days for both dosages. The strengths achieved were in the range 10 to 20 MPa, suitable for use as concrete masonry brick. The conversion of Al (IV) is identified as the primary factor for the observed increase in strength. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

22 pages, 6784 KiB  
Article
Limestone and Calcined Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing: A Fundamental Study of Extrudability and Early-Age Strength Development
by Yu Chen, Zhenming Li, Stefan Chaves Figueiredo, Oğuzhan Çopuroğlu, Fred Veer and Erik Schlangen
Appl. Sci. 2019, 9(9), 1809; https://doi.org/10.3390/app9091809 - 30 Apr 2019
Cited by 123 | Viewed by 9101
Abstract
The goal of this study is to investigate the effects of different grades of calcined clay on the extrudability and early-age strength development under ambient conditions. Four mix designs were proposed. Three of them contained high, medium, and low grades of calcined clay, [...] Read more.
The goal of this study is to investigate the effects of different grades of calcined clay on the extrudability and early-age strength development under ambient conditions. Four mix designs were proposed. Three of them contained high, medium, and low grades of calcined clay, respectively, and one was the reference without calcined clay. In terms of extrudability, an extrusion test method based on the ram extruder was introduced to observe the quality of extruded material filaments, and to determine the extrusion pressure of tested materials at different ages. For evaluating the very early-age strength development, the penetration resistance test, the green strength test, and the ultrasonic pulse velocity test were applied. Furthermore, the mechanical properties of the developed mix designs were determined by the compressive strength test at 1, 7 and 28 days. Finally, the main finding of this study was that increasing the metakaolin content in calcined clay could significantly increase the extrusion pressures and green strength, shorten the initial setting time and enhance the compressive strength at 1, 7, and 28 days. Full article
(This article belongs to the Special Issue Low Binder Concrete and Mortars)
Show Figures

Graphical abstract

Back to TopTop