Low-Grade Clay as an Alkali-Activated Material
Abstract
:1. Introduction
2. Significance of Research
3. Experimental Procedure
3.1. Materials
3.2. Mix Design
3.3. Specimen Preparation and Curing
3.4. Testing
4. Results and Discussion
4.1. Effect of Activator
4.2. XRD Analysis
4.3. NMR Analysis
4.4. FT-IR Analysis
5. Summary and Conclusions
- The amorphous content of the clay increased from 21.6% to 23.8% at 120 °C. However, a small decrease in the amorphous content was observed (23.1%) when heated to 750 °; this is attributed to recrystallization of the amorphous phase at this temperature.
- The surface area with calcination decreased from 12.45 m2/g in the natural clay to 8.66 m2/g at 120 °C and 6.03 m2/g at 750 °C, but the % passing at both 10 and 50 µm increased. This is attributed to the loss of adsorbed water resulting in shrinkage and disintegration of the soil particles and a reduction in particle size.
- An increase in strength was observed with calcination of the clay under both 120 °C for 24 h and 750 °C for 5 h.
- At 120 °C, the specimens with a dosage of 10% demonstrated improved performance compared to a dosage of 15%, with an AM of 1.0 providing the optimal strength at both dosages.
- The main components in the raw clay are illite, kaolinite, and quartz with small quantities of rutile and chlorite and traces of montmorillonite, albite, and goethite. Following calcination of the clay, there was a significant reduction in illite and kaolinite at 120 °C, while this was not observed following calcination at 750 °C. Montmorillonite, albite, and goethite all disappeared following calcination, while rutile and calcite content increased at 120 °C, but this was not evident after calcination at 750 °C. The quantity of quartz increased with calcination, while significant quantities of muscovite were observed when calcinated at 750 °C.
- Calcination at 120 °C increased the quantity of Al (VI) from 61% to 67%, while at 750 °C, all of the Al (VI) was converted to Al (IV). Following the reaction, an increase in Al (IV) was noted for all the mortars, with a higher rate of conversion in the 120 °C specimens compared to the raw clay. The conversion of Al (IV) is identified as the primary factor for the increased strength in the treated clay mortars.
- The mortar specimens showed a broadening of the peak in the region of 1080–1000 cm−1, which was noted together with a shift to lower wavenumbers for all of the 10% and 15% dosage mortars. The peaks in the 500–400 cm−1 region also broadened and increased in intensity. The shifting of the peaks towards the lower wave number is an indication of aluminum incorporation in the backbone of the silicates matrix, consistent with the increases in strength observed and the conversion of Al (VI) to Al (IV).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.J.; Rangan, B.V. On the Development of Fly Ash-BasedGeopolymer Concrete. ACI Mater. J. 2004, 101, 467–472. [Google Scholar]
- Buchwald, A.; Hohmann, M.; Posern, K.; Brendler, E. The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders. Appl. Clay Sci. 2009, 43, 300–304. [Google Scholar] [CrossRef]
- Impacts, A. Vulnerability, Part A: Global and Sectoral Aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovenmental Panel on Climate Change; Climate Change 2014; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Heath, A.; Paine, K.; McManus, M. Minimising the global warming potential of clay based geopolymers. J. Clean. Prod. 2014, 75, 75–78. [Google Scholar] [CrossRef] [Green Version]
- IEA. Global Status Report for Buildings and Construction; IEA: Paris, Franch, 2019. [Google Scholar]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Constr. Build. Mater. 2008, 22, 1315–1322. [Google Scholar] [CrossRef] [Green Version]
- Bernal, S.A.; de Gutierrez, R.M.; Provis, J.L. Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr. Build. Mater. 2012, 33, 99–108. [Google Scholar] [CrossRef]
- Adak, D.; Mandal, S. Strength and Durability Performance of Fly Ash-Based Process-Modified Geopolymer Concrete. J. Mater. Civ. Eng. 2019, 31, 04019174. [Google Scholar] [CrossRef]
- Puertas, F.; Fernandez-Jimenez, A. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem. Concr. Compos. 2003, 25, 287–292. [Google Scholar] [CrossRef]
- Law, D.W.; Adam, A.A.; Molyneaux, T.K.; Patnaikuni, I.; Wardhono, A. Long term durability properties of class F fly ash geopolymer concrete. Mater. Struct. 2012, 48, 721–731. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Aguilar, R.; Nakamatsu, J. Natural fibers as reinforcement additives for geopolymers A review of potential eco-friendly applications to the construction industry. Sustain. Mater. Technol. 2020, 23, e00132. [Google Scholar] [CrossRef]
- Du, W.; Wang, X.; Chen, G.; Zhang, J.; Slany, M. Synthesis, Property and Mechanism Analysis of a Novel Polyhydroxy Organic Amine Shale Hydration Inhibitor. Minerals 2020, 10, 128. [Google Scholar] [CrossRef] [Green Version]
- Marsh, A.; Heath, A.; Patereaud, P.; Everenden, M.; Walker, P. Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Appl. Clay Sci. 2018, 166, 250–261. [Google Scholar] [CrossRef]
- Karozou, A.; Konopisi, S.; Pavlidou, E.; Stefanidou, M. Long-Term Behavior and Durability of Alkali-Activated Clay Mortars. Materials 2020, 13, 3790. [Google Scholar] [CrossRef] [PubMed]
- IPCC. 2018: Global Warming of 1.5 °C. In An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, W.M.-O.A., Péan, C., Pidcock, R., Connors, S., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Perna, I.; Hanzlicek, T.; Supova, M. The identification of geopolymer affinity in specific cases of clay materials. Appl. Clay Sci. 2014, 102, 213–219. [Google Scholar] [CrossRef]
- Ferone, C.; Ligouri, B.; Capasso, I.; Colangelo, F.; Cioffi, R.; Cappeletto, E.; Di Maggio, R. Thermally treated clay sediments as geopolymer source material. Appl. Clay Sci. 2015, 107, 195–204. [Google Scholar] [CrossRef]
- Diop, M.B.; Grutzeck, M.W.; Molez, L. Comparing the performances of bricks made with natural clay and clay activated by calcination and addition of sodium silicate. Appl. Clay Sci. 2011, 54, 172–178. [Google Scholar] [CrossRef]
- Cioffi, R.; Maffucci, L.; Santoro, L. Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue. Resour. Conserv. Recycl. 2003, 40, 27–38. [Google Scholar] [CrossRef]
- Seiffarth, T.; Grone, J.; Slavova, N.; Seigmund, B.; Bhur, H.J.; Ritz, J.P. Effect of thermal pre-treatment conditions of common clays on the performance of clay-based geopolymeric binders. Appl. Clay Sci. 2013, 73, 35–41. [Google Scholar] [CrossRef]
- Selemani, S.; Sidiri, A.; Bouaziz, S.; Joussein, E.; Rossognol, S. Effects of metakaolin addition on geopolymer prepared from natural kaolinitic clay. Appl. Clay Sci. 2017, 146, 457–467. [Google Scholar] [CrossRef]
- Nikolov, A.; Nugteren, H.; Rostovsky, I. Optimization of geopolymers based on natural zeolite clinoptilolite by calcination and use of aluminate activators. Constr. Build. Mater. 2020, 243, 118257. [Google Scholar] [CrossRef]
- Jaya, N.A.; Yun-Ming, L.; Cheng-Yong, H.; Al Bakri, A.M.M.; Hussin, K. Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Constr. Build. Mater. 2020, 247, 118257. [Google Scholar] [CrossRef]
- Alshaaer, M. Synthesis and characterization of self-healing geopolymer composite. Constr. Build. Mater. 2020, 245, 118432. [Google Scholar] [CrossRef]
- Koutník, P.; Soukup, A.; Bezucha, P.; Safar, J.; Kohout, J. Low viscosity metakaolinite based geopolymer binders. Constr. Build. Mater. 2020, 230, 116978. [Google Scholar] [CrossRef]
- Khalifaa, A.Z.; Cizera, O.; Pontikes, Y.; Heath, A.; Patereaud, P.; Bernal, S.A.; Marsh, A.T.M. Advances in alkali-activation of clay minerals. Cem. Concr. Res. 2020, 132, 106050. [Google Scholar] [CrossRef]
- Kumar, S.; K, R. Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer. Ceram. Int. 2011, 37, 533–541. [Google Scholar] [CrossRef]
- Tahmasebi Yamchelou, M.; Law, D.W.; Li, J.; Patnaikuni, I. Alkali activation of mechanically activated low grade clay. J. Sustain. Cem. Based Mater. 2020. [Google Scholar] [CrossRef]
- Xu, H.; van Deventer, J.S.J. Microstructural characterisation of geopolymers synthesised from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM. Cem. Concr. Res. 2002, 32, 1705–1716. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A. Metakaolin. In Cement Replacement Materials; Springer: Berlin/Heidelberg, Germany, 2014; pp. 225–255. [Google Scholar]
- Guo, W.; Wu., G.; Wang, J.; Wen, Z.; Sin, S. Preparation and performance of geopolymers. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2008, 23, 326–330. [Google Scholar] [CrossRef]
- Guo, X.; Shi, H.; Chen, L.; Dick, W.A. Performance and mechanism of alkali-activated complex binders of high-Ca fly ash and other Ca-bearing materials. In Proceedings of the 3rd World of Coal Ash, WOCA Conference, Lexington, KY, USA, 4 May 2009–7 May 2009. [Google Scholar]
- Kong, D.L.Y.; Sanjayan, J.G.; Sagoe-Crentsil, K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 2007, 37, 1583–1589. [Google Scholar] [CrossRef]
- Poowancum, A.; Horpibulsuk, S. Development of Low Cost Geopolymer from Calcined Sedimentary Clay. Calc. Clays Sustain. Concr. 2015, 10, 359–364. [Google Scholar]
- Zhang, B.; Guo, H.; Yuan, P.; Lia, Y.; Wang, Q.; Deng, L.; Liu, D. Geopolymerization of halloysite via alkali-activation: Dependence of microstructures on precalcination. Appl. Clay Sci. 2020, 185, 105375. [Google Scholar] [CrossRef]
- Tahmasebi Yamchelou, M.; Law, D.W.; Brkjaca, R.; Gunasekara, C.; Li, J.; Patnaikuni, I. Geopolymer synthesis using low-grade clays. Constr. Build. Mater. 2020, 268, 121066. [Google Scholar] [CrossRef]
- Whitfield, P.S.; Mitchell, L.D. Quantitative Rietveld analysis of the amorphous content in cements and clinkers. J. Mater. Sci. 2003, 38, 4415–4421. [Google Scholar] [CrossRef] [Green Version]
- Font, O.; Moreno, N.; Querol, X.; Izquierdo, M.; Álvarez, E.; Diez, S.; Elvira, J.; Antenucci, D.; Nugteren, H.; Plana, F.; et al. X-ray powder diffraction-based method for the determination of the glass content and mineralogy of coal (co)-combustion fly ashes. Fuel 2010, 89, 2971–2976. [Google Scholar] [CrossRef]
- Standards Australia. AS411.5-2000 Methods for sampling and testing aggregates, Method 5: Particle density and water absorption of fine aggregate. In AS 1141.5-200 (Australian Standards); Standards Australia: Sydney, Australia, 2000; pp. 1–8. [Google Scholar]
- Adam, A.A. Strength and Durability Properties of Alkali Activated Slag and Fly Ash based geopolymer Concrete. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2009. [Google Scholar]
- International ASTM. C109/C109M-16a. In Standard Test Method for Compressive Strength of Hydraulic Cement Mortars 2016; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Soutsos, M.; Boyle, A.P.; Vinai, R.; Hadjierakleous, A.; Barnett, A.J. Factors influencing the compressive strength of fly ash based geopolymers. Constr. Build. Mater. 2016, 110, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Gunasekara, C.; Law, D.W.; Setunge, S. Long term permeation properties of different fly ash geopolymer concretes. Constr. Build. Mater. 2016, 124, 352–362. [Google Scholar] [CrossRef]
- Rahman, M.M.; Law, D.W.; Patnaikuni, I. Factors affecting the performance of 100% clay based geopolymer concrete. In Proceedings of the 28th Biennial National Conference of the Concrete Institute of Australia, Adelaide, Australia, 22–25 October 2017; p. 39. [Google Scholar]
- Wang, K.; Shah, S.P.; Mishulovich, A. Effects of curing temeperature and NaOH addition on hydration and strength development of clinker free CKD-fly ash binders. Cem. Conc. Res. 2004, 34, 229–309. [Google Scholar] [CrossRef]
- Khodr, M.; Law, D.W.; Gunasekara, C.; Setunge, S.; Brkjaca, R. Compressive strength and microstructure evolution of low calcium brown coal fly ash-based geopolymer. J. Sustain. Cem. Based Mater. 2019, 9, 17–34. [Google Scholar] [CrossRef]
- Nazari, A.; Bagheri, A.; Riahi, S. Properties of geopolymer with seeded fly ash and rice husk bark ash. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2011, 528, 7395–7401. [Google Scholar] [CrossRef]
- Sukmak, P.; Horpibulsuk, S.; Shen, S.L.; Chindaprasirt, P.; Suksiripattanapong, C. Factors influencing strength development in clay-fly ash geopolymer. Constr. Build. Mater. 2013, 47, 1125–1136. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J.G. Microcracking and strength development of alkali activated slag concrete. Cem. Concr. Compos. 2001, 23, 345–352. [Google Scholar] [CrossRef]
- Rovnanik, P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernandez-Jimenez, A. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O. Cem. Concr. Res. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- He, C.L.; Makovicky, E.; Osbaeck, B. Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite. Appl. Clay Sci. 1996, 10, 351–368. [Google Scholar] [CrossRef]
- Kaze, R.C.; Moungam, L.M.B.; Djouka, M.L.F.; Nana, A.; Kamseu, E.; Melo, U.F.C.; Leonelli, C. The corrosion of kaolinite by iron minerals and the effects on geopolymerization. Appl. Clay Sci. 2017, 138, 48–62. [Google Scholar] [CrossRef]
- Msinjili, N.S.; Gluth, G.J.G.; Sturm, P.; Vogler, N.; Khune, H.C. Comparison of calcined illitic clays (brick clays) and low-grade kaolinitic clays as supplementary cementitious materials. Mater. Struct. 2019, 52, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zibouche, F.; Kerdjoudj, H.; d’Espinosede Lacaillerie, J.-B.; Van Damme, H. Geopolymers from Algerian metakaolin. Influence of secondary minerals. Appl. Clay Sci. 2009, 43, 453–458. [Google Scholar] [CrossRef]
- Abdullah, M.M.A.B.; Mimg, L.Y.; Yong, H.C.; Tahir, M.F.M. Clay-Based Materials in Geopolymer Technology. In Cement Based Materials; Intechopen: London, UK, 2018; pp. 239–264. [Google Scholar]
- Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem. Mater. 2005, 17, 3075–3085. [Google Scholar] [CrossRef]
- Ulcina, K.; Strepankova, H.; Rimal, V.; Hanzlitec, T.; Perna, I. NMR Study of aluminium Coordination in Clays. In WDS’13 22nd Annual Conference of Doctoral Students; MATFYZPRESS: Prague, Czech Republic, 2013; pp. 104–109. [Google Scholar]
- Matsuda, A.; Naruyama, I.; Meawad, A.; Pareek, S.; Araki, Y. Reactions, Phases and Microstructure of Fly Ash based Alkali-Activated Materials. J. Adv. Concr. Technol. 2019, 17, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Gunasekara, C.; Law, D.W.; Setunge, S.; Burgar, I.; Brkjaca, R. Effect of Element Distribution on Strength in Fly Ash Geopolymers. ACI Mater. J. 2017, 114, 795–808. [Google Scholar] [CrossRef]
- Omegna, A.; van Bokhoven, J.A.; Prins, R. Flexible Aluminum Coordination in Alumino-Silicates. structure of Zeolites H-USY and Amorphous Silica-Alumina. J. Phys. Chem. B 2003, 107, 8854–8860. [Google Scholar] [CrossRef]
- Sperinck, S.; Raiteri, P.; Marks, N.; Wright, K. Dehydroxylation of kaolinite to metakaolin-a molecular dynamics study. J. Mater. Chem. 2011, 21, 2118–2125. [Google Scholar] [CrossRef] [Green Version]
- Tchakoute, H.K.; Melele, S.J.K.; Djamen, A.T.; Kaze, C.R.; Kamseu, E.; Nanseu, C.N.P.; Leonelli, C.; Ruscher, C.H. Microstructural and mechanical properties of poly(sialate-siloxo) networks obtained using metakaolins from kaolin and halloysite as aluminosilicate sources: A comparative study. Appl. Clay Sci. 2020, 186, 105448. [Google Scholar] [CrossRef]
- Slaný, M.; L, J.; Madejová, J. Structural characterization of organo-montmorillonites prepared from a series of primary alkylamines salts: Mid-IR and near-IR study. Appl. Clay Sci. 2019, 176, 11–20. [Google Scholar] [CrossRef]
- van Jaarsveld, J.G.S.; van Deventer, J.S.J.; Lukey, G.C. The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chem. Eng. J. 2002, 89, 63–73. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Applications; Geopolymer Institute: Saint Quinten, France, 2008. [Google Scholar]
- Valcke, S.L.; Pipilikaki, A.P.; Fischer, H.R.; Verkuijlen, M.H.W.; van Eck, E.R.H. FT-IR and 29Si-NMR for evaluating aluminium–silicate precursors for geopolymers. Mater. Struct. 2014, 48, 557–569. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Provis, J.L. Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. J. Sustain. Cem. Based Mater. 2012, 1, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Phair, J.W.; van Deventer, J.S.J. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Miner. Eng. 2001, 14, 289–304. [Google Scholar] [CrossRef]
Oxide (%) | Clay Without Pre-Treatment | Clay Pre-Treated at 120 °C | Clay Pre-Treated at 750 °C |
---|---|---|---|
Al2O3 | 20.06 | 19.63 | 20.20 |
SiO2 | 62.13 | 63.57 | 65.50 |
CaO | 0.71 | 0.67 | 0.70 |
Fe2O3 | 5.54 | 5.17 | 5.35 |
K2O | 4.41 | 4.11 | 4.15 |
MgO | 2.08 | 2.05 | 2.23 |
MnO | 0.05 | 0.05 | 0.05 |
TiO2 | 0.90 | 0.91 | 0.85 |
P2O5 | 0.33 | 0.30 | 0.31 |
LOI | 3.79 | 3.54 | 0.66 |
Total | 100.00 | 100.00 | 100.00 |
Property | Without Pre-Treatment | Pre-Treated at 120 °C | Pre-Treated at 750 °C |
---|---|---|---|
Amorphous phase (%) | 21.6 | 23.8 | 23.1 |
Crystalline phase (%) | 78.4 | 76.2 | 76.9 |
Surface Area (m2/g) | 12.45 | 8.66 | 6.03 |
D (10) µm | 3.00 | 4.25 | 5.23 |
D (50) µm | 14.76 | 17.03 | 22.41 |
D (90) µm | 77.88 | 65.18 | 66.75 |
Dosage (%) | AM | Clay | Sand | Na2SiO3 | NaOH | Added Water |
---|---|---|---|---|---|---|
15 | 1.00 | 493 | 1356 | 251 | 118 | 34.5 |
1.25 | 493 | 1356 | 315 | 87 | 21.5 | |
1.50 | 493 | 1356 | 377 | 56.5 | 9 | |
1.75 | 493 | 1356 | 438 | 30.5 | 0 | |
10 | 1.00 | 493 | 1356 | 168 | 77 | 84 |
1.25 | 493 | 1356 | 210 | 56.5 | 75.5 | |
1.50 | 493 | 1356 | 251.5 | 36 | 66.5 | |
1.75 | 493 | 1356 | 296 | 20 | 58 |
Phase (%) | Raw Clay | Mortar (10% Dosage) | Mortar (15% Dosage) | ||||||
---|---|---|---|---|---|---|---|---|---|
Natural | Pre-treated at 120 °C | Pre-treated at 750 °C | Natural | Pre-Treated at 120 °C | Pre-Treated at 750 °C | Natural | Pre-treated at 120 °C | Pre-treated at 750 °C | |
Illite K0.5Al3Si4O10 (OH)2 | 19.6 | 6.3 | - | 2.9 | 4.4 | 7.3 | 4.3 | 2.4 | 3.1 |
Kaolinite Al2O3 2SiO2·2H2O | 21.3 | 8.8 | - | 1.0 | 2.6 | - | 0.5 | - | - |
Quartz SiO2 | 33.7 | 55.7 | 45.3 | 82.3 | 68.1 | 70.7 | 79.0 | 79.0 | 76.1 |
Rutile TiO2 | 1.3 | 2.4 | - | - | - | - | - | - | - |
Chlorite Mg6Si4O10 (OH)8 | 1.1 | 2.9 | - | - | - | - | - | - | - |
Montmorillonite (Na,Ca)0.33(Al,Mg)2(Si4O10) (OH)2 ·nH2O | 0.1 | - | - | - | - | - | - | - | - |
Albite Al2O3Na2O 6SiO2 | 0.5 | - | - | 2.5 | - | 3.3 | 1.9 | - | 3.6 |
Goethite FeO(OH) | 0.6 | - | - | - | - | - | - | - | - |
Muscovite KAl3Si3O11 | - | - | 31.7 | - | - | - | - | - | - |
Sodalite Na₈Al₆Si₆O₂₄ Cl₂ | - | - | - | - | 0.4 | 0.7 | 1.9 | 2.9 | 1.5 |
Analcime NaAlSi₂O₆·H₂O | - | - | - | 1.8 | 4.0 | - | - | 0.9 | - |
Amorphous | 21.6 | 23.8 | 23.1 | 10.1 | 20.3 | 18.0 | 12.3 | 15.3 | 15.7 |
Type | Clay (%) | Geopolymer Mortar 10% (%) | Geopolymer Mortar 15% (%) | |||
---|---|---|---|---|---|---|
Al (VI) | Al (IV) | Al (VI) | Al (IV) | Al (VI) | Al (IV) | |
Clay without pre-treatment | 61.6 | 38.4 | 45.5 | 54.5 | 43.8 | 56.2 |
Clay pre-treated at 120 °C | 67.6 | 32.4 | 38.5 | 61.5 | 28 | 72 |
Clay pre-treated at 750 °C | 0 | 100 | 0 | 100 | 0 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Law, D.W.; Patnaikuni, I.; Gunasekara, C.; Tahmasebi Yamchelou, M. Low-Grade Clay as an Alkali-Activated Material. Appl. Sci. 2021, 11, 1648. https://doi.org/10.3390/app11041648
Rahman MM, Law DW, Patnaikuni I, Gunasekara C, Tahmasebi Yamchelou M. Low-Grade Clay as an Alkali-Activated Material. Applied Sciences. 2021; 11(4):1648. https://doi.org/10.3390/app11041648
Chicago/Turabian StyleRahman, Muhammad M., David W. Law, Indubhushan Patnaikuni, Chamila Gunasekara, and Morteza Tahmasebi Yamchelou. 2021. "Low-Grade Clay as an Alkali-Activated Material" Applied Sciences 11, no. 4: 1648. https://doi.org/10.3390/app11041648
APA StyleRahman, M. M., Law, D. W., Patnaikuni, I., Gunasekara, C., & Tahmasebi Yamchelou, M. (2021). Low-Grade Clay as an Alkali-Activated Material. Applied Sciences, 11(4), 1648. https://doi.org/10.3390/app11041648