Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (999)

Search Parameters:
Keywords = long-term drought

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 19171 KiB  
Article
Spatiotemporal Evolution of Precipitation Concentration in the Yangtze River Basin (1960–2019): Associations with Extreme Heavy Precipitation and Validation Using GPM IMERG
by Tao Jin, Yuliang Zhou, Ping Zhou, Ziling Zheng, Rongxing Zhou, Yanqi Wei, Yuliang Zhang and Juliang Jin
Remote Sens. 2025, 17(15), 2732; https://doi.org/10.3390/rs17152732 - 7 Aug 2025
Abstract
Precipitation concentration reflects the uneven temporal distribution of rainfall. It plays a critical role in water resource management and flood–drought risk under climate change. However, its long-term trends, associations with atmospheric teleconnections as potential drivers, and links to extreme heavy precipitation events remain [...] Read more.
Precipitation concentration reflects the uneven temporal distribution of rainfall. It plays a critical role in water resource management and flood–drought risk under climate change. However, its long-term trends, associations with atmospheric teleconnections as potential drivers, and links to extreme heavy precipitation events remain poorly understood in complex basins like the Yangtze River Basin. This study analyzes these aspects using ground station data from 1960 to 2019 and conducts a comparison using the Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (GPM IMERG) satellite product. We calculated three indices—Daily Precipitation Concentration Index (PCID), Monthly Precipitation Concentration Index (PCIM), and Seasonal Precipitation Concentration Index (SPCI)—to quantify rainfall unevenness, selected for their ability to capture multi-scale variability and associations with extremes. Key methods include Mann–Kendall trend tests for detecting changes, Hurst exponents for persistence, Pettitt detection for abrupt shifts, random forest modeling to assess atmospheric teleconnections, and hot spot analysis for spatial clustering. Results show a significant basin-wide decrease in PCID, driven by increased frequency of small-to-moderate rainfall events, with strong spatial synchrony to extreme heavy precipitation indices. PCIM is most strongly associated with El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). GPM IMERG captures PCIM patterns well but underestimates PCID trends and magnitudes, highlighting limitations in daily-scale resolution. These findings provide a benchmark for satellite product improvement and support adaptive strategies for extreme precipitation risks in changing climates. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrometeorology and Natural Hazards)
Show Figures

Figure 1

23 pages, 4515 KiB  
Article
Monitoring Post-Fire Deciduous Shrub Cover Using Machine Learning and Multiscale Remote Sensing
by Hannah Trommer and Timothy Assal
Land 2025, 14(8), 1603; https://doi.org/10.3390/land14081603 - 6 Aug 2025
Abstract
Wildfire and drought are key drivers of shrubland expansion in southwestern US landscapes. Stand-replacing fires in conifer forests induce shrub-dominated stages, and changing climatic patterns may cause a long-term shift to deciduous shrubland. We assessed change in deciduous fractional shrub cover (DFSC) in [...] Read more.
Wildfire and drought are key drivers of shrubland expansion in southwestern US landscapes. Stand-replacing fires in conifer forests induce shrub-dominated stages, and changing climatic patterns may cause a long-term shift to deciduous shrubland. We assessed change in deciduous fractional shrub cover (DFSC) in the eastern Jemez Mountains from 2019 to 2023 using topographic and Sentinel-2 satellite data and evaluated the impact of spatial scale on model performance. First, we built a 10 m and a 20 m random forest model. The 20 m model outperformed the 10 m model, achieving an R-squared value of 0.82 and an RMSE of 7.85, compared to the 10 m model (0.76 and 9.99, respectively). We projected the 20 m model to the other years of the study using imagery from the respective years, yielding yearly DFSC predictions. DFSC decreased from 2019 to 2022, coinciding with severe drought and a 2022 fire, followed by an increase in 2023, particularly within the 2022 fire footprint. Overall, DFSC trends showed an increase, with elevation being a key variable influencing these trends. This framework revealed vegetation dynamics in a semi-arid system and provided a close look at post-fire regeneration in deciduous resprouting shrubs and could be applied to similar systems. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

17 pages, 826 KiB  
Review
Mechanisms and Impact of Acacia mearnsii Invasion
by Hisashi Kato-Noguchi and Midori Kato
Diversity 2025, 17(8), 553; https://doi.org/10.3390/d17080553 - 4 Aug 2025
Viewed by 69
Abstract
Acacia mearnsii De Wild. has been introduced to over 150 countries for its economic value. However, it easily escapes from plantations and establishes monospecific stands across plains, hills, valleys, and riparian habitats, including protected areas such as national parks and forest reserves. Due [...] Read more.
Acacia mearnsii De Wild. has been introduced to over 150 countries for its economic value. However, it easily escapes from plantations and establishes monospecific stands across plains, hills, valleys, and riparian habitats, including protected areas such as national parks and forest reserves. Due to its negative ecological impact, A. mearnsii has been listed among the world’s 100 worst invasive alien species. This species exhibits rapid stem growth in its sapling stage and reaches reproductive maturity early. It produces a large quantity of long-lived seeds, establishing a substantial seed bank. A. mearnsii can grow in different environmental conditions and tolerates various adverse conditions, such as low temperatures and drought. Its invasive populations are unlikely to be seriously damaged by herbivores and pathogens. Additionally, A. mearnsii exhibits allelopathic activity, though its ecological significance remains unclear. These characteristics of A. mearnsii may contribute to its expansion in introduced ranges. The presence of A. mearnsii affects abiotic processes in ecosystems by reducing water availability, increasing the risk of soil erosion and flooding, altering soil chemical composition, and obstructing solar light irradiation. The invasion negatively affects biotic processes as well, reducing the diversity and abundance of native plants and arthropods, including protective species. Eradicating invasive populations of A. mearnsii requires an integrated, long-term management approach based on an understanding of its invasive mechanisms. Early detection of invasive populations and the promotion of public awareness about their impact are also important. More attention must be given to its invasive traits because it easily escapes from cultivation. Full article
(This article belongs to the Special Issue Plant Adaptation and Survival Under Global Environmental Change)
Show Figures

Graphical abstract

13 pages, 1189 KiB  
Article
Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period
by Irena Bertoncelj, Anže Rovanšek and Robert Leskovšek
Agriculture 2025, 15(15), 1658; https://doi.org/10.3390/agriculture15151658 - 1 Aug 2025
Viewed by 202
Abstract
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when [...] Read more.
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when applied consistently over extended periods. However, understanding of the earthworm population dynamics in the period following the implementation of changes in tillage practices remains limited. This three-year field study (2021–2023) investigates earthworm populations during the early transition phase (4–6 years) following the conversion from conventional ploughing to conservation (<8 cm depth, with residue retention) and no-tillage systems in a temperate arable system in central Slovenia. Earthworms were sampled annually in early October from three adjacent fields, each following the same three-year crop rotation (maize—winter cereal + cover crop—soybeans), using a combination of hand-sorting and allyl isothiocyanate (AITC) extraction. Results showed that reduced tillage practices significantly increased both earthworm biomass and abundance compared to conventional ploughing. However, a significant interaction between tillage and year was observed, with a sharp decline in earthworm abundance and mass in 2022, likely driven by a combination of 2022 summer tillage prior to cover crop sowing and extreme drought conditions. Juvenile earthworms were especially affected, with their proportion decreasing from 62% to 34% in ploughed plots and from 63% to 26% in conservation tillage plots. Despite interannual fluctuations, no-till showed the lowest variability in earthworm population. Long-term monitoring is essential to disentangle management and environmental effects and to inform resilient soil management strategies. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

28 pages, 6962 KiB  
Article
Mapping Drought Incidents in the Mediterranean Region with Remote Sensing: A Step Toward Climate Adaptation
by Aikaterini Stamou, Aikaterini Bakousi, Anna Dosiou, Zoi-Eirini Tsifodimou, Eleni Karachaliou, Ioannis Tavantzis and Efstratios Stylianidis
Land 2025, 14(8), 1564; https://doi.org/10.3390/land14081564 - 30 Jul 2025
Viewed by 482
Abstract
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are [...] Read more.
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are a concerning consequence of this phenomenon, causing severe environmental damage and transforming natural landscapes. However, droughts involve a two-way interaction: On the one hand, climate change and various human activities, such as urbanization and deforestation, influence the development and severity of droughts. On the other hand, droughts have a significant impact on various sectors, including ecology, agriculture, and the local economy. This study investigates drought dynamics in four Mediterranean countries, Greece, France, Italy, and Spain, each of which has experienced severe wildfire events in recent years. Using satellite-based Earth observation data, we monitored drought conditions across these regions over a five-year period that includes the dates of major wildfires. To support this analysis, we derived and assessed key indices: the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI). High-resolution satellite imagery processed within the Google Earth Engine (GEE) platform enabled the spatial and temporal analysis of these indicators. Our findings reveal that, in all four study areas, peak drought conditions, as reflected in elevated NDDI values, were observed in the months leading up to wildfire outbreaks. This pattern underscores the potential of satellite-derived indices for identifying regional drought patterns and providing early signals of heightened fire risk. The application of GEE offered significant advantages, as it allows efficient handling of long-term and large-scale datasets and facilitates comprehensive spatial analysis. Our methodological framework contributes to a deeper understanding of regional drought variability and its links to extreme events; thus, it could be a valuable tool for supporting the development of adaptive management strategies. Ultimately, such approaches are vital for enhancing resilience, guiding water resource planning, and implementing early warning systems in fire-prone Mediterranean landscapes. Full article
(This article belongs to the Special Issue Land and Drought: An Environmental Assessment Through Remote Sensing)
Show Figures

Figure 1

25 pages, 1668 KiB  
Article
The Impact of Climate Change on the Sustainability of PGI Legume Cultivation: A Case Study from Spain
by Betty Carlini, Javier Velázquez, Derya Gülçin, Víctor Rincón, Cristina Lucini and Kerim Çiçek
Agriculture 2025, 15(15), 1628; https://doi.org/10.3390/agriculture15151628 - 27 Jul 2025
Viewed by 217
Abstract
Legume crops are sensitive to shifting environmental conditions, as they depend on a narrow range of climatic stability for growth and nitrogen fixation. This research sought to assess the sustainability of Faba Asturiana (FA) cultivation under current and future climatic scenarios by establishing [...] Read more.
Legume crops are sensitive to shifting environmental conditions, as they depend on a narrow range of climatic stability for growth and nitrogen fixation. This research sought to assess the sustainability of Faba Asturiana (FA) cultivation under current and future climatic scenarios by establishing generalized linear mixed models (GLMMs). Specifically, it aimed to (1) investigate the effects of significant climatic stressors, including higher nighttime temperatures and extended drought periods, on crop viability, (2) analyze future scenarios based on Representative Concentration Pathways (RCP 4.5 and RCP 8.5), and (3) recommend adaptive measures to mitigate threats. Six spatial GLMMs were developed, incorporating variables such as extreme temperatures, precipitation, and the drought duration. Under present-day conditions (1971–2000), all the models exhibited strong predictive performances (AUC: 0.840–0.887), with warm nights (tasminNa20) consistently showing a negative effect on suitability (coefficients: −0.58 to −1.16). Suitability projections under future climate scenarios revealed considerable variation among the developed models. Under RCP 4.5, Far Future, Model 1 projected a 7.9% increase in the mean suitability, while under RCP 8.5, Far Future, the same model showed a 78% decline. Models using extreme cold, drought, or precipitation as climatic stressors (e.g., Models 2–4) revealed the most significant suitability losses under RCP 8.5, with the reductions exceeding 90%. In contrast, comprising variables less affected by severe fluctuations, Model 6 showed relative stability in most of the developed scenarios. The model also produced the highest mean suitability (0.130 ± 0.207) in an extreme projective scenario. The results highlight that high night temperatures and prolonged drought periods are the most limiting factors for FA cultivation. ecological niche models (ENMs) performed well, with a mean AUC value of 0.991 (SD = 0.006) and a mean TSS of 0.963 (SD = 0.024). According to the modeling results, among the variables affecting the current distribution of Protected Geographical Indication-registered AF, prspellb1 (max consecutive dry days) had the highest effect of 28.3%. Applying advanced statistical analyses, this study provides important insights for policymakers and farmers, contributing to the long-term sustainability of PGI agroecosystems in a warming world. Full article
(This article belongs to the Special Issue Sustainable Management of Legume Crops)
Show Figures

Figure 1

19 pages, 1940 KiB  
Article
Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions
by Alec Magaisa, Elizabeth Ngadze, Tshifhiwa P. Mamphogoro, Martin P. Moyo and Casper N. Kamutando
Agronomy 2025, 15(8), 1815; https://doi.org/10.3390/agronomy15081815 - 26 Jul 2025
Viewed by 303
Abstract
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two [...] Read more.
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two low-altitude (i.e., <600 masl) locations with a long-term history of averagely very high temperatures in the beginning of the summer season, under two management (i.e., CDHS and well-watered (WW)) regimes. At each location, the genotypes were laid out in the field using a randomized complete block design (RCBD) replicated two times. Root trait data, namely root diameter (RD), number of roots (NR), number of root tips (NRT), total root length (TRL), root depth (RDP), root width (RW), width–depth ratio (WDR), root network area (RNA), root solidity (RS), lower root area (LRA), root perimeter (RP), root volume (RV), surface area (SA), root holes (RH) and root angle (RA) were gathered using the RhizoVision Explorer software during the pre- and post-flowering stage of growth. RSA traits differentially showed significant (p < 0.05) correlations with grain yield (GY) at pre- and post-flowering growth stages and under CDHS and WW conditions also revealing genotypic variation estimates exceeding 50% for all the traits. Regression models varied between pre-flowering (p = 0.013, R2 = 47.15%, R2 Predicted = 29.32%) and post-flowering (p = 0.000, R2 = 85.64%, R2 Predicted = 73.30%) growth stages, indicating post-flowering as the optimal stage to relate root traits to yield performance. RD contributed most to the regression model at post-flowering, explaining 51.79% of the 85.64% total variation. The Smith–Hazel index identified ICSV111IN and ASAREACA12-3-1 as superior pre-release lines, suitable for commercialization as new varieties. The study demonstrated that root traits (in particular, RD, RW, and RP) are linked to crop performance under CDHS conditions and should be incorporated in breeding programs. This approach may accelerate genetic gains not only in sorghum breeding programs, but for other crops, while offering a nature-based breeding strategy for stress adaptation in crops. Full article
Show Figures

Figure 1

18 pages, 2611 KiB  
Article
Long-Term Phytaspase Responses in Nicotiana benthamiana: Sustained Activation by Mechanical Wounding, but Not by Drought, Heat, Cold, or Salinity Stress
by Maria Alievna Abdullina, Jiarui Li, Feifan Liu, Xinyi Luo, Anastasia Igorevna Barsukova and Svetlana Vladimirovna Trusova
Int. J. Mol. Sci. 2025, 26(15), 7170; https://doi.org/10.3390/ijms26157170 - 24 Jul 2025
Viewed by 369
Abstract
Plant subtilases, as hydrolytic enzymes, contribute to certain plant stress response pathways by cleaving precursor proteins into active peptides or through other less well-characterized mechanisms. Phytaspases represent a specific subgroup of subtilases, and their participation in rapid stress responses, particularly to herbivory attacks [...] Read more.
Plant subtilases, as hydrolytic enzymes, contribute to certain plant stress response pathways by cleaving precursor proteins into active peptides or through other less well-characterized mechanisms. Phytaspases represent a specific subgroup of subtilases, and their participation in rapid stress responses, particularly to herbivory attacks and drought, is already well established, in contrast to their poorly understood role in long-term responses. This study investigated the involvement of phytaspase NbSBT1.9-2 in the long-term stress responses of Nicotiana benthamiana. Plants were subjected to either mild to severe mechanical wounding or drought stress, followed by the detection of phytaspase activity and gene expression in the leaf tissue. The results revealed a distinct involvement of phytaspase in the wounding response, showing increased activity and upregulated expression correlated with the extent and recurrence of wounding. In contrast, no significant change in phytaspase activity was observed in the leaves under drought, alongside salinity and heat stress conditions. Consequently, phytaspase association with the long-term response to mechanical injury was demonstrated using N. benthamiana as a model organism. Full article
Show Figures

Graphical abstract

17 pages, 4524 KiB  
Article
Growth and Water-Use Efficiency of European Beech and Turkey Oak at Low-Elevation Site
by Negar Rezaie, Ettore D’Andrea, Marco Ciolfi, Enrico Brugnoli and Silvia Portarena
Forests 2025, 16(8), 1210; https://doi.org/10.3390/f16081210 - 23 Jul 2025
Viewed by 774
Abstract
In Italy, beech and Turkey oak are among the most widespread tree species, thriving across various climatic zones. However, rising temperatures and prolonged droughts significantly affect their physiological performance and growth dynamics. To assess their long-term responses to climate change, mature beech and [...] Read more.
In Italy, beech and Turkey oak are among the most widespread tree species, thriving across various climatic zones. However, rising temperatures and prolonged droughts significantly affect their physiological performance and growth dynamics. To assess their long-term responses to climate change, mature beech and Turkey oak trees were studied in Central Italy at an elevation of 450 m. Using dendrochronological and stable isotope analyses (1981–2020), their growth patterns and physiological adaptations were evaluated. Beech exhibited a higher growth rate, with a basal area increment (BAI) of 17.1 ± 1.1 cm2 year−1, compared to Turkey oak, showing a BAI of 12.7 ± 0.96 cm2 year−1. Both species actively responded to increasing atmospheric CO2 levels. Additionally, spring and the previous summer’s climatic conditions played a key role in growth, while summer temperature and precipitation influenced carbon discrimination. For beech, correlations between BAI and iWUE (intrinsic water efficiency, defined as the ratio between photosynthesis and stomatal conductance) were initially weak and not statistically significant. However, the correlation became significant, strengthening steadily into the early 2000s, likely related to thinning of the beech trees. For Turkey oak, the correlation was already significant and strong from the beginning of the analysis period (1981), persisting until the late 1990s. Our findings suggest that both species actively adjust their iWUE in response to an increasing atmospheric CO2 concentration. However, while Turkey oak’s iWUE and BAI relationship remains unaffected by the likely thinning, beech benefits from reduced competition for light, nutrients, and water. Despite climate change’s impact on marginal populations, microclimatic conditions allow beech to outperform Turkey oak, a species typically better suited to drier climates. Full article
Show Figures

Figure 1

15 pages, 5045 KiB  
Article
Transpiration and Water Use Efficiency of Mediterranean Eucalyptus Genotypes Under Contrasting Irrigation Regimes
by Juan C. Valverde, Rafael A. Rubilar, Alex Medina, Matías Pincheira, Verónica Emhart, Yosselin Espinoza, Daniel Bozo and Otávio C. Campoe
Plants 2025, 14(14), 2232; https://doi.org/10.3390/plants14142232 - 19 Jul 2025
Viewed by 323
Abstract
Water scarcity is a key constraint for commercial Eucalyptus plantations, particularly given the increasing frequency of droughts driven by climate change. This study assessed annual transpiration (Tr) and water use efficiency (WUE) across eight genotypes subjected to contrasting irrigation regimes (WR). A split-plot [...] Read more.
Water scarcity is a key constraint for commercial Eucalyptus plantations, particularly given the increasing frequency of droughts driven by climate change. This study assessed annual transpiration (Tr) and water use efficiency (WUE) across eight genotypes subjected to contrasting irrigation regimes (WR). A split-plot design was implemented, comprising two irrigation levels: high (maintained above 75% of field capacity) and low (approximately 25% above the permanent wilting point). The genotypes included Eucalyptus globulus (EgH, EgL), E. nitens × globulus (EngH, EngL), E. nitens (En), E. camaldulensis × globulus (Ecg), E. badjensis (Eb), and E. smithii (Es). Between stand ages of 7 and 9 years (2020–2023), we measured current annual increment (CAI), leaf area index (LAI), Tr, and WUE. Under high WR, CAI ranged from 8 to 36 m3 ha−1 yr−1, Tr from 520 to 910 mm yr−1, and WUE from 0.7 to 2.9 kg m−3. Low irrigation reduced CAI by 5–25% and Tr by 10–35%, while WUE responses varied across genotypes, ranging from a 12% decrease to a 48% increase. Based on their functional responses, genotypes were grouped as follows: (i) stable performers (Es, Ecg, Eb) exhibited high WUE and consistent Tr under both WR; (ii) partially plastic genotypes (EgH, EngH) combined moderate reductions in Tr with improved WUE; and (iii) water-sensitive genotypes (EgL, EngL, En) showed substantial declines in Tr alongside variable WUE gains. These findings underscore the importance of selecting genotypes with adaptive water-use traits to improve the resilience and long-term sustainability of Eucalyptus plantations in Mediterranean environments. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

29 pages, 6561 KiB  
Article
Correction of ASCAT, ESA–CCI, and SMAP Soil Moisture Products Using the Multi-Source Long Short-Term Memory (MLSTM)
by Qiuxia Xie, Yonghui Chen, Qiting Chen, Chunmei Wang and Yelin Huang
Remote Sens. 2025, 17(14), 2456; https://doi.org/10.3390/rs17142456 - 16 Jul 2025
Viewed by 424
Abstract
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly [...] Read more.
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly across regions and environmental conditions, due to in sensor characteristics, retrieval algorithms, and the lack of localized calibration. This study proposes a multi-source long short-term memory (MLSTM) for improving ASCAT, ESA–CCI, and SMAP SM products by combining in-situ SM measurements and four key auxiliary variables: precipitation (PRE), land surface temperature (LST), fractional vegetation cover (FVC), and evapotranspiration (ET). First, the in-situ measured data from four in-situ observation networks were corrected using the LSTM method to match the grid sizes of ASCAT (0.1°), ESA–CCI (0.25°), and SMAP (0.1°) SM products. The RPE, LST, FVC, and ET were used as inputs to the LSTM to obtain loss data against in-situ SM measurements. Second, the ASCAT, ESA–CCI, and SMAP SM datasets were used as inputs to the LSTM to generate loss data, which were subsequently corrected using LSTM-derived loss data based on in-situ SM measurements. When the mean squared error (MSE) loss values were minimized, the improvement for ASCAT, ESA–CCI, and SMAP products was considered the best. Finally, the improved ASCAT, ESA–CCI, and SMAP were produced and evaluated by the correlation coefficient (R), root mean square error (RMSE), and standard deviation (SD). The results showed that the RMSE values of the improved ASCAT, ESA–CCI, and SMAP products against the corrected in-situ SM data in the OZNET network were lower, i.e., 0.014 cm3/cm3, 0.019 cm3/cm3, and 0.034 cm3/cm3, respectively. Compared with the ESA–CCI and SMAP products, the ASCAT product was greatly improved, e.g., in the SNOTEL network, the Root Mean-Square Deviation (RMSD) values of 0.1049 cm3/cm3 (ASCAT) and 0.0662 cm3/cm3 (improved ASCAT). Overall, the MLSTM-based algorithm has the potential to improve the global satellite SM product. Full article
(This article belongs to the Special Issue Remote Sensing for Terrestrial Hydrologic Variables)
Show Figures

Figure 1

26 pages, 7975 KiB  
Article
Soil Moisture Prediction Using the VIC Model Coupled with LSTMseq2seq
by Xiuping Zhang, Xiufeng He, Rencai Lin, Xiaohua Xu, Yanping Shi and Zhenning Hu
Remote Sens. 2025, 17(14), 2453; https://doi.org/10.3390/rs17142453 - 15 Jul 2025
Viewed by 510
Abstract
Soil moisture (SM) is a key variable in agricultural ecosystems and is crucial for drought prevention and control management. However, SM is influenced by underlying surface and meteorological conditions, and it changes rapidly in time and space. To capture the changes in SM [...] Read more.
Soil moisture (SM) is a key variable in agricultural ecosystems and is crucial for drought prevention and control management. However, SM is influenced by underlying surface and meteorological conditions, and it changes rapidly in time and space. To capture the changes in SM and improve the accuracy of short-term and medium-to-long-term predictions on a daily scale, an LSTMseq2seq model driven by both observational data and mechanism models was constructed. This framework combines historical meteorological elements and SM, as well as the SM change characteristics output by the VIC model, to predict SM over a 90-day period. The model was validated using SMAP SM. The proposed model can accurately predict the spatiotemporal variations in SM in Jiangxi Province. Compared with classical machine learning (ML) models, traditional LSTM models, and advanced transformer models, the LSTMseq2seq model achieved R2 values of 0.949, 0.9322, 0.8839, 0.8042, and 0.7451 for the prediction of surface SM over 3 days, 7 days, 30 days, 60 days, and 90 days, respectively. The mean absolute error (MAE) ranged from 0.0118 m3/m3 to 0.0285 m3/m3. This study also analyzed the contributions of meteorological features and simulated future SM state changes to SM prediction from two perspectives: time importance and feature importance. The results indicated that meteorological and SM changes within a certain time range prior to the prediction have an impact on SM prediction. The dual-driven LSTMseq2seq model has unique advantages in predicting SM and is conducive to the integration of physical mechanism models with data-driven models for handling input features of different lengths, providing support for daily-scale SM time series prediction and drought dynamics prediction. Full article
Show Figures

Figure 1

29 pages, 8743 KiB  
Article
Coupled Simulation of the Water–Food–Energy–Ecology System Under Extreme Drought Events: A Case Study of Beijing–Tianjin–Hebei, China
by Huanyu Chang, Naren Fang, Yongqiang Cao, Jiaqi Yao and Zhen Hong
Water 2025, 17(14), 2103; https://doi.org/10.3390/w17142103 - 15 Jul 2025
Viewed by 413
Abstract
The Beijing–Tianjin–Hebei (BTH) region is one of China’s most water-scarce yet economically vital areas, facing increasing challenges due to climate change and intensive human activities. This study develops an integrated Water–Food–Energy–Ecology (WFEE) simulation and regulation model to assess the system’s stability under coordinated [...] Read more.
The Beijing–Tianjin–Hebei (BTH) region is one of China’s most water-scarce yet economically vital areas, facing increasing challenges due to climate change and intensive human activities. This study develops an integrated Water–Food–Energy–Ecology (WFEE) simulation and regulation model to assess the system’s stability under coordinated development scenarios and extreme climate stress. A 500-year precipitation series was reconstructed using historical drought and flood records combined with wavelet analysis and machine learning models (Random Forest and Support Vector Regression). Results show that during the reconstructed historical megadrought (1633–1647), with average precipitation anomalies reaching −20% to −27%, leading to a regional water shortage rate of 16.9%, food self-sufficiency as low as 44.7%, and a critical reduction in ecological river discharge. Under future recommended scenario with enhanced water conservation, reclaimed water reuse, and expanded inter-basin transfers, the region could maintain a water shortage rate of 2.6%, achieve 69.3% food self-sufficiency, and support ecological water demand. However, long-term water resource degradation could still reduce food self-sufficiency to 62.9% and ecological outflows by 20%. The findings provide insights into adaptive water management, highlight the vulnerability of highly coupled systems to prolonged droughts, and support regional policy decisions on resilience-oriented water infrastructure planning. Full article
(This article belongs to the Special Issue Advanced Perspectives on the Water–Energy–Food Nexus)
Show Figures

Figure 1

23 pages, 5108 KiB  
Review
The Invasive Mechanism and Impact of Arundo donax, One of the World’s 100 Worst Invasive Alien Species
by Hisashi Kato-Noguchi and Midori Kato
Plants 2025, 14(14), 2175; https://doi.org/10.3390/plants14142175 - 14 Jul 2025
Viewed by 369
Abstract
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and [...] Read more.
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and grassland areas along roadsides, including in protected areas. This species grows rapidly and produces large amounts of biomass due to its high photosynthetic ability. It spreads asexually through ramets, in addition to stem and rhizome fragments. Wildfires, flooding, and human activity promote its distribution and domination. It can adapt to various habitats and tolerate various adverse environmental conditions, such as cold temperatures, drought, flooding, and high salinity. A. donax exhibits defense mechanisms against biotic stressors, including herbivores and pathogens. It produces indole alkaloids, such as bufotenidine and gramine, as well as other alkaloids that are toxic to herbivorous mammals, insects, parasitic nematodes, and pathogenic fungi and oomycetes. A. donax accumulates high concentrations of phytoliths, which also protect against pathogen infection and herbivory. Only a few herbivores and pathogens have been reported to significantly damage A. donax growth and populations. Additionally, A. donax exhibits allelopathic activity against competing plant species, though the allelochemicals involved have yet to be identified. These characteristics may contribute to its infestation, survival, and population expansion in new habitats as an invasive plant species. Dense monospecific stands of A. donax alter ecosystem structures and functions. These stands impact abiotic processes in ecosystems by reducing water availability, and increasing the risk of erosion, flooding, and intense fires. The stands also negatively affect biotic processes by reducing plant diversity and richness, as well as the fitness of habitats for invertebrates and vertebrates. Eradicating A. donax from a habitat requires an ongoing, long-term integrated management approach based on an understanding of its invasive mechanisms. Human activity has also contributed to the spread of A. donax populations. There is an urgent need to address its invasive traits. This is the first review focusing on the invasive mechanisms of this plant in terms of adaptation to abiotic and biotic stressors, particularly physiological adaptation. Full article
Show Figures

Graphical abstract

27 pages, 50073 KiB  
Article
A Spatiotemporal Analysis of Drought Conditions Framework in Vast Paddy Cultivation Areas of Thung Kula Ronghai, Thailand
by Pariwate Varnakovida, Nathapat Punturasan, Usa Humphries, Anisara Tibkaew and Sornkitja Boonprong
Agriculture 2025, 15(14), 1503; https://doi.org/10.3390/agriculture15141503 - 12 Jul 2025
Viewed by 402
Abstract
This study presents an integrated spatiotemporal assessment of drought conditions in the Thung Kula Ronghai region of Northeastern Thailand from 2001 to 2023. Multiple satellite-derived drought indices, including SPI, SPEI, RDI, and AI, together with NDVI anomalies, were used to detect seasonal and [...] Read more.
This study presents an integrated spatiotemporal assessment of drought conditions in the Thung Kula Ronghai region of Northeastern Thailand from 2001 to 2023. Multiple satellite-derived drought indices, including SPI, SPEI, RDI, and AI, together with NDVI anomalies, were used to detect seasonal and long-term drought dynamics affecting rainfed Hom Mali rice production. The results show that dry season droughts now affect up to 17 percent of the region’s agricultural land in some years, while severe drought zones persist across more than 2.5 million hectares over the 20-year period. In the most recent 5 years, approximately 50 percent of cultivated areas experienced moderate to severe drought conditions. The RDI showed the strongest correlation with NDVI anomalies (r = 0.22), indicating its relative value for assessing vegetation response to moisture deficits. The combined index approach delineated high-risk sub-regions, particularly in central Thung Kula Ronghai and lower Surin, where drought frequency and severity have intensified. These findings underscore the region’s increasing exposure to dry-season water stress and highlight the need for site-specific irrigation development and adaptive cropping strategies. The methodological framework demonstrated here provides a practical basis for improving drought monitoring and early warning systems to support the resilience of Thailand’s high-value rice production under changing climate conditions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

Back to TopTop