Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,394)

Search Parameters:
Keywords = long-term cardiovascular disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 583 KiB  
Review
Diagnosis and Emerging Biomarkers of Cystic Fibrosis-Related Kidney Disease (CFKD)
by Hayrettin Yavuz, Manish Kumar, Himanshu Ballav Goswami, Uta Erdbrügger, William Thomas Harris, Sladjana Skopelja-Gardner, Martha Graber and Agnieszka Swiatecka-Urban
J. Clin. Med. 2025, 14(15), 5585; https://doi.org/10.3390/jcm14155585 - 7 Aug 2025
Abstract
As people with cystic fibrosis (PwCF) live longer, kidney disease is emerging as a significant comorbidity that is increasingly linked to cardiovascular complications and progression to end-stage kidney disease. In our recent review, we proposed the unifying term CF-related kidney disease (CFKD) to [...] Read more.
As people with cystic fibrosis (PwCF) live longer, kidney disease is emerging as a significant comorbidity that is increasingly linked to cardiovascular complications and progression to end-stage kidney disease. In our recent review, we proposed the unifying term CF-related kidney disease (CFKD) to encompass the spectrum of kidney dysfunction observed in this population. Early detection of kidney injury is critical for improving long-term outcomes, yet remains challenging due to the limited sensitivity of conventional laboratory tests, particularly in individuals with altered muscle mass and unique CF pathophysiology. Emerging approaches, including novel blood and urinary biomarkers, urinary extracellular vesicles, and genetic risk profiling, offer promising avenues for identifying subclinical kidney damage. When integrated with machine learning algorithms, these tools may enable the development of personalized risk stratification models and targeted therapeutic strategies. This precision medicine approach has the potential to transform kidney disease management in PwCF, shifting care from reactive treatment of late-stage disease to proactive monitoring and early intervention. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Clinical Manifestations and Treatment)
Show Figures

Figure 1

15 pages, 2691 KiB  
Review
SGLT2 Inhibitors: Multifaceted Therapeutic Agents in Cardiometabolic and Renal Diseases
by Ana Checa-Ros, Owahabanun-Joshua Okojie and Luis D’Marco
Metabolites 2025, 15(8), 536; https://doi.org/10.3390/metabo15080536 - 7 Aug 2025
Abstract
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce [...] Read more.
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce glycosuria, reduce hyperglycemia, and promote weight loss through increased caloric excretion. Beyond glycemic control, they modulate tubuloglomerular feedback, attenuate glomerular hyperfiltration, and exert systemic effects via natriuresis, ketone utilization, and anti-inflammatory pathways. Landmark trials (DAPA-HF, EMPEROR-Reduced, CREDENCE, DAPA-CKD) demonstrate robust reductions in heart failure (HF) hospitalizations, cardiovascular mortality, and chronic kidney disease (CKD) progression, irrespective of diabetes status. Adipose Tissue and Metabolic Effects: SGLT2is mitigate obesity-associated adiposopathy by shifting macrophage polarization (M1 to M2), reducing proinflammatory cytokines (TNF-α, IL-6), and enhancing adipose tissue browning (UCP1 upregulation) and mitochondrial biogenesis (via PGC-1α/PPARα). Modest weight loss (~2–4 kg) occurs, though compensatory hyperphagia may limit long-term effects. Emerging Applications: Potential roles in non-alcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and neurodegenerative disorders are under investigation, driven by pleiotropic effects on metabolism and inflammation. Conclusions: SGLT2is represent a paradigm shift in managing T2DM, HF, and CKD, with expanding implications for metabolic syndrome. Future research should address interindividual variability, combination therapies, and non-glycemic indications to optimize their therapeutic potential. Full article
(This article belongs to the Special Issue Metabolic Modulators in Cardiovascular Disease Management)
Show Figures

Figure 1

24 pages, 639 KiB  
Review
A Systemic Perspective of the Link Between Microbiota and Cardiac Health: A Literature Review
by Ionica Grigore, Oana Roxana Ciobotaru, Delia Hînganu, Gabriela Gurau, Dana Tutunaru and Marius Valeriu Hînganu
Life 2025, 15(8), 1251; https://doi.org/10.3390/life15081251 - 7 Aug 2025
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of death, with long-term hospitalization becoming increasingly frequent in advanced or chronic cases. In this context, the interplay between systemic factors such as lipid metabolism, circulating metabolites, gut microbiota, and oral health is gaining attention [...] Read more.
Cardiovascular diseases (CVDs) are the leading global cause of death, with long-term hospitalization becoming increasingly frequent in advanced or chronic cases. In this context, the interplay between systemic factors such as lipid metabolism, circulating metabolites, gut microbiota, and oral health is gaining attention for its potential role in influencing inflammation, cardiometabolic risk, and long-term outcomes. Despite their apparent independence, these domains are increasingly recognized as interconnected and influential in cardiovascular pathophysiology. Methods: This narrative review was conducted by analyzing studies published between 2015 and 2024 from databases including PubMed, Scopus, and Web of Science. Keywords such as “lipid profile,” “metabolomics,” “gut microbiota,” “oral health,” and “cardiovascular disease” were used. Original research, meta-analyses, and reviews relevant to hospitalized cardiac patients were included. A critical integrative approach was applied to highlight cross-domain connections. Results and Discussion: Evidence reveals significant interrelations between altered lipid profiles, gut dysbiosis (including increased TMAO levels), metabolic imbalances, and oral inflammation. Each component contributes to a systemic pro-inflammatory state that worsens cardiovascular prognosis, particularly in long-term hospitalized patients. Despite isolated research in each domain, there is a paucity of studies integrating all four. The need for interdisciplinary diagnostic models and preventive strategies is emphasized, especially in populations with frailty or immobilization. Conclusions: Monitoring lipid metabolism, metabolomic shifts, gut microbial balance, and oral status should be considered part of comprehensive cardiovascular care. Gut microbiota exerts a dual role in cardiac health: when balanced, it supports anti-inflammatory and metabolic homeostasis; when dysbiotic, it contributes to systemic inflammation and worsened cardiac outcomes. Future research should aim to develop integrative screening tools and personalized interventions that address the multifactorial burden of disease. A systemic approach may improve both short- and long-term outcomes in this complex and vulnerable patient population. Full article
(This article belongs to the Special Issue The Emerging Role of Microbiota in Health and Diseases)
Show Figures

Figure 1

14 pages, 746 KiB  
Article
Long-Term Outcomes of the Dietary Approaches to Stop Hypertension (DASH) Intervention in Nonobstructive Coronary Artery Disease: Follow-Up of the DISCO-CT Study
by Magdalena Makarewicz-Wujec, Jan Henzel, Cezary Kępka, Mariusz Kruk, Barbara Jakubczak, Aleksandra Wróbel, Rafał Dąbrowski, Zofia Dzielińska, Marcin Demkow, Edyta Czepielewska and Agnieszka Filipek
Nutrients 2025, 17(15), 2565; https://doi.org/10.3390/nu17152565 - 6 Aug 2025
Abstract
In the original randomised Dietary Intervention to Stop Coronary Atherosclerosis (DISCO-CT) trial, a 12-month Dietary Approaches to Stop Hypertension (DASH) project led by dietitians improved cardiovascular and metabolic risk factors and reduced platelet chemokine levels in patients with coronary artery disease (CAD). It [...] Read more.
In the original randomised Dietary Intervention to Stop Coronary Atherosclerosis (DISCO-CT) trial, a 12-month Dietary Approaches to Stop Hypertension (DASH) project led by dietitians improved cardiovascular and metabolic risk factors and reduced platelet chemokine levels in patients with coronary artery disease (CAD). It is unclear whether these benefits are sustained. Objective: To determine whether the metabolic, inflammatory, and clinical benefits achieved during the DISCO-CT trial are sustained six years after the structured intervention ended. Methods: Ninety-seven adults with non-obstructive CAD confirmed in coronary computed tomography angiography were randomly assigned to receive optimal medical therapy (control group, n = 41) or the same therapy combined with intensive DASH counselling (DASH group, n = 43). After 301 ± 22 weeks, 84 individuals (87%) who had given consent underwent reassessment of body composition, meal frequency assessment, and biochemical testing (lipids, hs-CRP, CXCL4, RANTES and homocysteine). Major adverse cardiovascular events (MACE) were assessed. Results: During the intervention, the DASH group lost an average of 3.6 ± 4.2 kg and reduced their total body fat by an average of 4.2 ± 4.8 kg, compared to an average loss of 1.1 ± 2.9 kg and a reduction in total body fat of 0.3 ± 4.1 kg in the control group (both p < 0.01). Six years later, most of the lost body weight and fat tissue had been regained, and there was a sharp increase in visceral fat area in both groups (p < 0.0001). CXCL4 decreased by 4.3 ± 3.0 ng/mL during the intervention and remained lower than baseline values; in contrast, in the control group, it initially increased and then decreased (p < 0.001 between groups). LDL cholesterol and hs-CRP levels returned to baseline in both groups but remained below baseline in the DASH group. There was one case of MACE in the DASH group, compared with four cases (including one fatal myocardial infarction) in the control group (p = 0.575). Overall adherence to the DASH project increased by 26 points during counselling and then decreased by only four points, remaining higher than in the control group. Conclusions: A one-year DASH project supported by a physician and dietitian resulted in long-term suppression of the proatherogenic chemokine CXCL4 and fewer MACE over six years, despite a decline in adherence and loss of most anthropometric and lipid benefits. It appears that sustained systemic reinforcement of behaviours is necessary to maintain the benefits of lifestyle intervention in CAD. Full article
(This article belongs to the Special Issue Nutrients: 15th Anniversary)
Show Figures

Figure 1

29 pages, 2060 KiB  
Review
Revitalizing Colchicine: Novel Delivery Platforms and Derivatives to Expand Its Therapeutic Potential
by Natallia V. Dubashynskaya, Anton N. Bokatyi, Mikhail M. Galagudza and Yury A. Skorik
Int. J. Mol. Sci. 2025, 26(15), 7591; https://doi.org/10.3390/ijms26157591 - 6 Aug 2025
Abstract
Colchicine is a potent alkaloid with well-established anti-inflammatory properties. It shows significant promise in treating classic immune-mediated inflammatory diseases, as well as associated cardiovascular diseases, including atherosclerosis. However, its clinical use is limited by a narrow therapeutic window, dose-limiting systemic toxicity, variable bioavailability, [...] Read more.
Colchicine is a potent alkaloid with well-established anti-inflammatory properties. It shows significant promise in treating classic immune-mediated inflammatory diseases, as well as associated cardiovascular diseases, including atherosclerosis. However, its clinical use is limited by a narrow therapeutic window, dose-limiting systemic toxicity, variable bioavailability, and clinically significant drug–drug interactions, partly mediated by modulation of P-glycoprotein and cytochrome P450 3A4 metabolism. This review explores advanced delivery strategies designed to overcome these limitations. We critically evaluate lipid-based systems, such as solid lipid nanoparticles, liposomes, transferosomes, ethosomes, and cubosomes; polymer-based nanoparticles; microneedles; and implants, including drug-eluting stents. These systems ensure targeted delivery, improve pharmacokinetics, and reduce toxicity. Additionally, we discuss chemical derivatization approaches, such as prodrugs, codrugs, and strategic ring modifications (A-, B-, and C-rings), aimed at optimizing both the efficacy and safety profile of colchicine. Combinatorial nanoformulations that enable the co-delivery of colchicine with synergistic agents, such as glucocorticoids and statins, as well as theranostic platforms that integrate therapeutic and diagnostic functions, are also considered. These innovative delivery systems and derivatives have the potential to transform colchicine therapy by broadening its clinical applications while minimizing adverse effects. Future challenges include scalable manufacturing, long-term safety validation, and the translation of research into clinical practice. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

16 pages, 294 KiB  
Review
Coffee’s Impact on Health and Well-Being
by Ryan C. Emadi and Farin Kamangar
Nutrients 2025, 17(15), 2558; https://doi.org/10.3390/nu17152558 - 5 Aug 2025
Abstract
Coffee is one of the most widely consumed beverages globally, with over 60% of Americans drinking it daily. This review examines coffee’s multifaceted impact on health and well-being, drawing on decades of research. Overall, the consensus is that moderate coffee intake is more [...] Read more.
Coffee is one of the most widely consumed beverages globally, with over 60% of Americans drinking it daily. This review examines coffee’s multifaceted impact on health and well-being, drawing on decades of research. Overall, the consensus is that moderate coffee intake is more beneficial than harmful across a wide range of health outcomes. Numerous large-scale, prospective cohort studies from around the world have consistently shown that moderate coffee consumption—typically three to five cups per day—is associated with reduced overall mortality and lower risk of major diseases such as cardiovascular diseases, diabetes, stroke, respiratory conditions, cognitive decline, and potentially several types of cancer, including liver and uterine cancers. Both caffeinated and decaffeinated coffee have shown benefits. The addition of sugar and cream to coffee may attenuate coffee’s positive health effects. Despite historical concerns, coffee consumption is not linked to increased risks of cancer, hypertension, or arrhythmia. However, some concerns remain. For pregnant women, coffee consumption should be limited to lower amounts, such that the daily intake of caffeine does not exceed 200 mg/day. Also, excessive caffeinated coffee intake may cause anxiety or sleep disturbances. Coffee’s health-promoting mechanisms include improved glucose balancing, increased physical activity, increased fat oxidation, improved lung function, and reduced inflammation. Beyond mortality and chronic diseases, coffee consumption affects many aspects of well-being: it supports hydration, boosts mental acuity, enhances physical performance, and may aid bowel recovery after surgery. While the field is well-studied via long-term observational cohorts, future research should focus on randomized controlled trials, Mendelian randomization studies, and granular analyses of coffee types and additives. Full article
(This article belongs to the Section Nutritional Epidemiology)
14 pages, 221 KiB  
Review
Metabolic Dysfunction-Associated Steatotic Liver Disease in People with Type 1 Diabetes
by Brynlee Vermillion and Yuanjie Mao
J. Clin. Med. 2025, 14(15), 5502; https://doi.org/10.3390/jcm14155502 - 5 Aug 2025
Viewed by 29
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is increasingly recognized as a significant comorbidity in individuals with type 1 diabetes (T1D), despite its historical association with type 2 diabetes. This review focuses on summarizing current findings regarding the role of insulin resistance in the [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is increasingly recognized as a significant comorbidity in individuals with type 1 diabetes (T1D), despite its historical association with type 2 diabetes. This review focuses on summarizing current findings regarding the role of insulin resistance in the development of MASLD in T1D, as well as examining the relationship between MASLD and diabetes-related complications. We will also briefly discuss the prevalence, diagnostic challenges, associated complications, and potential mechanisms underlying MASLD in T1D. Although insulin resistance is well established in MASLD among those with type 2 diabetes, its role in T1D requires further clarification. Emerging markers, such as the estimated glucose disposal rate, offer early insight into this relationship. MASLD in T1D is linked to both microvascular and macrovascular complications, including nephropathy, retinopathy, neuropathy, and cardiovascular disease. Variability in prevalence estimates reflects inconsistencies among imaging modalities, emphasizing the need for standardized, non-invasive diagnostic approaches. Recognizing and addressing MASLD and its links to insulin resistance and diabetes complications in T1D is vital for mitigating long-term complications and enhancing clinical outcomes. Full article
(This article belongs to the Section Endocrinology & Metabolism)
16 pages, 661 KiB  
Article
Comparative Evaluation of ARB Monotherapy and SGLT2/ACE Inhibitor Combination Therapy in the Renal Function of Diabetes Mellitus Patients: A Retrospective, Longitudinal Cohort Study
by Andrew W. Ngai, Aqsa Baig, Muhammad Zia, Karen Arca-Contreras, Nadeem Ul Haque, Veronica Livetsky, Marcelina Rokicki and Shiryn D. Sukhram
Int. J. Mol. Sci. 2025, 26(15), 7412; https://doi.org/10.3390/ijms26157412 - 1 Aug 2025
Viewed by 341
Abstract
Diabetic nephropathy affects approximately 30–40% of individuals with diabetes mellitus (DM) and is a major contributor to end-stage renal disease (ESRD). While angiotensin II receptor blockers (ARBs) have long served as a standard treatment, sodium-glucose cotransporter-2 inhibitors (SGLT2i) have recently gained attention for [...] Read more.
Diabetic nephropathy affects approximately 30–40% of individuals with diabetes mellitus (DM) and is a major contributor to end-stage renal disease (ESRD). While angiotensin II receptor blockers (ARBs) have long served as a standard treatment, sodium-glucose cotransporter-2 inhibitors (SGLT2i) have recently gained attention for their renal and cardiovascular benefits. However, comparative real-world data on their long-term renal effectiveness remain limited. We conducted a retrospective, longitudinal study over a 2-year period to compare the impact of ARB monotherapy versus SGLT2i and angiotensin-converting enzyme inhibitor (ACEi) combination therapy on the progression of chronic kidney disease (CKD) in patients with DM. A total of 126 patients were included and grouped based on treatment regimen. Renal biomarkers were analyzed using t-tests and ANOVA (p < 0.01). Albuminuria was qualitatively classified via urinalysis as negative, level 1 (+1), level 2 (+2), or level 3 (+3). The ARB group demonstrated higher estimated glomerular filtration rate (eGFR) and lower serum creatinine (sCr) levels than the combination therapy group, with glycated hemoglobin (HbA1c), potassium (K+), and blood pressure remaining within normal limits in both cohorts. Albuminuria remained stable over time, with 60.8% of ARB users and 73.1% of combination therapy users exhibiting persistently or on-average negative results. Despite the expected additive benefits of SGLT2i/ACEi therapy, ARB monotherapy was associated with slightly more favorable renal function markers and a lower incidence of severe albuminuria. These findings suggest a need for further controlled studies to clarify the comparative long-term renal effects of these treatment regimens. Full article
Show Figures

Figure 1

41 pages, 1640 KiB  
Review
Early Roots of Childhood Obesity: Risk Factors, Mechanisms, and Prevention Strategies
by Giuseppina Rosaria Umano, Simonetta Bellone, Raffaele Buganza, Valeria Calcaterra, Domenico Corica, Luisa De Sanctis, Anna Di Sessa, Maria Felicia Faienza, Nicola Improda, Maria Rosaria Licenziati, Melania Manco, Carla Ungaro, Flavia Urbano, Giuliana Valerio, Malgorzata Wasniewska and Maria Elisabeth Street
Int. J. Mol. Sci. 2025, 26(15), 7388; https://doi.org/10.3390/ijms26157388 - 30 Jul 2025
Viewed by 710
Abstract
Childhood obesity is a growing global health concern, with established links to physical activity, nutrition, and, increasingly, to prenatal and perinatal factors. Emerging evidence highlights the significant role of maternal conditions such as obesity, comorbidities, nutrition, and environmental exposures in predisposing offspring to [...] Read more.
Childhood obesity is a growing global health concern, with established links to physical activity, nutrition, and, increasingly, to prenatal and perinatal factors. Emerging evidence highlights the significant role of maternal conditions such as obesity, comorbidities, nutrition, and environmental exposures in predisposing offspring to long-term metabolic and cardiovascular diseases. The “Developmental Origins of Health and Disease” (DOHaD) paradigm provides a framework for understanding how early life environmental exposures, particularly during the periconceptional, fetal, and neonatal periods, can program future health outcomes through epigenetic mechanisms. Epigenetic modifications alter gene expression without changing the DNA sequence and are increasingly recognized as key mediators in the development of obesity. This narrative review summarizes current findings on the early determinants of childhood obesity, emphasizing the molecular and epigenetic pathways involved. A comprehensive literature search was conducted across multiple databases and international sources, focusing on recent studies from the past decade. Both human and animal research were included to provide a broad perspective. This review aims to consolidate recent insights into early life influences on obesity, underscoring the need for preventive strategies starting as early as the preconception period. Full article
(This article belongs to the Special Issue Genetic and Molecular Mechanisms of Obesity)
Show Figures

Figure 1

18 pages, 875 KiB  
Review
Monounsaturated Fatty Acids in Cardiovascular Disease: Intake, Individual Types, and Content in Adipose Tissue as a Biomarker of Endogenous Exposure
by Jonas Pedersen, Berit Storgaard Hedegaard, Erik Berg Schmidt, Christina C. Dahm, Kirsten B. Holven, Kjetil Retterstøl, Philip C. Calder and Christian Bork
Nutrients 2025, 17(15), 2509; https://doi.org/10.3390/nu17152509 (registering DOI) - 30 Jul 2025
Viewed by 300
Abstract
Unhealthy dietary patterns are a major modifiable risk factor for atherosclerotic cardiovascular disease (ASCVD). International guidelines recommend reducing saturated fatty acid intake while increasing polyunsaturated and monounsaturated fatty acids (MUFAs) to mitigate cardiovascular risk. However, evidence regarding MUFAs and risk of ASCVD remains [...] Read more.
Unhealthy dietary patterns are a major modifiable risk factor for atherosclerotic cardiovascular disease (ASCVD). International guidelines recommend reducing saturated fatty acid intake while increasing polyunsaturated and monounsaturated fatty acids (MUFAs) to mitigate cardiovascular risk. However, evidence regarding MUFAs and risk of ASCVD remains conflicting, with recent studies raising concern about a potential higher risk associated with MUFA intake. The aim of this narrative review is to provide an overview of current knowledge and gaps in the literature regarding MUFAs and the risk of ASCVD with a focus on intake, individual types, and content in adipose tissue as a biomarker of endogenous exposure. Main findings reveal that most studies have inappropriately combined all MUFAs together, despite individual MUFA types having different biological effects and showing varying correlations between dietary intake and adipose tissue content. Adipose tissue composition may serve as a biomarker of long-term MUFA exposure, reflecting cumulative intake over one to two years while minimizing biases inherent in dietary assessments. However, tissue levels reflect both dietary intake and endogenous synthesis, complicating interpretation. Importantly, the source of MUFAs appears critical, with plant-derived MUFAs potentially offering advantages over animal-derived sources. In conclusion, we suggest that future research should focus on individual MUFA types rather than treating them as a homogeneous group, investigate their specific dietary sources and associations with ASCVD risk, and use adipose tissue biomarkers to improve exposure assessment and clarify causal relationships while considering overall dietary patterns. Full article
(This article belongs to the Special Issue Diet, Nutrition and Cardiovascular Health—2nd Edition)
Show Figures

Figure 1

18 pages, 333 KiB  
Review
Molecular Mechanisms of Cardiac Adaptation After Device Deployment
by Letizia Rosa Romano, Paola Plutino, Giovanni Lopes, Rossella Quarta, Pierangelo Calvelli, Ciro Indolfi, Alberto Polimeni and Antonio Curcio
J. Cardiovasc. Dev. Dis. 2025, 12(8), 291; https://doi.org/10.3390/jcdd12080291 - 30 Jul 2025
Viewed by 147
Abstract
Cardiac devices have transformed the management of heart failure, ventricular arrhythmias, ischemic cardiomyopathy, and valvular heart disease. Technologies such as cardiac resynchronization therapy (CRT), conduction system pacing, left ventricular assist devices (LVADs), and implantable cardioverter-defibrillators have contributed to abated global cardiovascular risk through [...] Read more.
Cardiac devices have transformed the management of heart failure, ventricular arrhythmias, ischemic cardiomyopathy, and valvular heart disease. Technologies such as cardiac resynchronization therapy (CRT), conduction system pacing, left ventricular assist devices (LVADs), and implantable cardioverter-defibrillators have contributed to abated global cardiovascular risk through action onto pathophysiological processes such as mechanical unloading, electrical resynchronization, or hemodynamic optimization, respectively. While their clinical benefits are well established, their long-term molecular and structural effects on the myocardium remain under investigation. Cardiac devices dynamically interact with myocardial and vascular biology, inducing molecular and extracellular matrix adaptations that vary by pathology. CRT enhances calcium cycling and reduces fibrosis, but chronic pacing may lead to pacing-induced cardiomyopathy. LVADs and Impella relieve ventricular workload yet alter sarcomeric integrity and mitochondrial function. Transcatheter valve therapies influence ventricular remodeling, conduction, and coronary flow. Understanding these remodeling processes is crucial for optimizing patient selection, device programming, and therapeutic strategies. This narrative review integrates the current knowledge on the molecular and structural effects of cardiac devices, highlighting their impact across different disease settings. Full article
(This article belongs to the Section Electrophysiology and Cardiovascular Physiology)
Show Figures

Graphical abstract

12 pages, 433 KiB  
Article
Cardiac Function in Women with and Without Previous Assisted Reproductive Technology: A Prospective Observational Cohort Study
by Freya Baird, Eleni Kakouri, Iulia Huluta, Ippokratis Sarris, Sesh K. Sunkara, Kypros H. Nicolaides and Nick Kametas
J. Clin. Med. 2025, 14(15), 5366; https://doi.org/10.3390/jcm14155366 - 29 Jul 2025
Viewed by 338
Abstract
Background: Previous research has linked hypertensive disorders of pregnancy (HDP) and long-term cardiovascular disease (CVD) with assisted reproductive technology (ART). It is not clear whether this reflects the background population cardiovascular profiles or whether ART independently increases the long-term risk for CVD [...] Read more.
Background: Previous research has linked hypertensive disorders of pregnancy (HDP) and long-term cardiovascular disease (CVD) with assisted reproductive technology (ART). It is not clear whether this reflects the background population cardiovascular profiles or whether ART independently increases the long-term risk for CVD and alters cardiovascular function. Furthermore, CVD has been associated with pathological cardiovascular function before and after the establishment of the disease. The aim of this study was to compare cardiac function in women attending for ART between those who had previous treatment and those who had not after controlling for demographic characteristics which have been shown to affect cardiovascular function. Methods: This was a prospective observational cohort study at a London fertility clinic. Women were consecutively enrolled between May 2021 and March 2022. Maternal demographics and cardiac function using transthoracic echocardiography were assessed before the current treatment cycle in the mid-luteal phase of the menstrual cycle. Maternal demographics included age, body mass index, smoking, race, and parity. Cardiovascular parameters included blood pressure and indices of left-ventricular systolic and diastolic function. Differences between cardiac variables after controlling for maternal demographics and history of previous ART were assessed by multivariate linear regression. Results: There were 232 healthy women who agreed to participate in the study; of those, 153 (58%) had undergone previous ART. After controlling for maternal demographic characteristics, previous assisted reproductive technology was not an independent predictor of cardiac function. Conclusions: Previous ART is not associated with significant changes in cardiac function. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

15 pages, 1467 KiB  
Review
Pathophysiology of Prediabetes Hyperinsulinemia and Insulin Resistance in the Cardiovascular System
by Ghassan Bkaily, Ashley Jazzar, Amira Abou-Aichi and Danielle Jacques
Biomedicines 2025, 13(8), 1842; https://doi.org/10.3390/biomedicines13081842 - 29 Jul 2025
Viewed by 378
Abstract
Hyperinsulinemia refers to an elevated level of circulating insulin (80 and 100 µU/mL), often leading to metabolic disorders such as obesity, insulin resistance, and type 2 diabetes (T2D). There is no precise and universally accepted definition of hyperinsulinemia and insulin resistance. The literature [...] Read more.
Hyperinsulinemia refers to an elevated level of circulating insulin (80 and 100 µU/mL), often leading to metabolic disorders such as obesity, insulin resistance, and type 2 diabetes (T2D). There is no precise and universally accepted definition of hyperinsulinemia and insulin resistance. The literature in the field remains unclear regarding whether insulin resistance precedes the development of hyperinsulinemia. Recently, a new hypothesis has been proposed suggesting that chronic hyperinsulinemia precedes and causes insulin resistance. The causes of the initiation of hyperinsulinemia, insulin resistance, and type 2 diabetes are multifactorial. Thus, it is not easy to define in general. Recent work demonstrates that the main prediabetic factor leading to insulin resistance is chronic hyperinsulinemia. However, recent work in the literature proposes that relatively long-term hyperinsulinemia does precede insulin resistance and already promotes cardiovascular remodeling. This later may lead to the development of vascular diseases such as hypertension. Thus, defining hyperinsulinemia and insulin resistance, as well as their signaling pathways implicated in the development of type 2 diabetes (T2D), needs to be clarified. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

27 pages, 4299 KiB  
Article
Causal Relationship Between Serum Uric Acid and Atherosclerotic Disease: A Mendelian Randomization and Transcriptomic Analysis
by Shitao Wang, Shuai Mei, Xiaozhu Ma, Qidamugai Wuyun, Li Zhou, Qiushi Luo, Ziyang Cai and Jiangtao Yan
Biomedicines 2025, 13(8), 1838; https://doi.org/10.3390/biomedicines13081838 - 28 Jul 2025
Viewed by 477
Abstract
Background/Objectives: Elevated serum uric acid levels are associated with the occurrence, development, and adverse events of coronary heart disease (CHD) and CHD risk factors. However, the extent of any pathogenic effect of the serum uric acid on CHD and whether CHD risk [...] Read more.
Background/Objectives: Elevated serum uric acid levels are associated with the occurrence, development, and adverse events of coronary heart disease (CHD) and CHD risk factors. However, the extent of any pathogenic effect of the serum uric acid on CHD and whether CHD risk factors play a confounding or mediating role are still unclear. Methods: The potential causal associations of serum uric acid with CHD were evaluated via cross-trait linkage disequilibrium score regression analysis and Mendelian randomization. The pleiotropy of genetic tools was analyzed via a Bayesian colocalization approach. Moreover, we utilized two-step MR to identify risk factors mediating the relationship between uric acid and CHD. Results: Mendelian randomization results derived from two genetic instrument selection strategies support that serum uric acid levels have a significant causal relationship with coronary artery disease, stable angina pectoris, and myocardial infarction. This causal relationship was partially mediated by diastolic blood pressure, mean arterial pressure, and serum triglycerides. Transcriptomic analysis revealed that serum uric acid may directly contribute to the development of atherosclerosis by inducing transcriptomic changes in macrophages. Conclusions: Our findings highlight that the control of serum urate concentration in the long-term management of CHD patients may be necessary. Well-designed clinical trials and foundational research are presently required to furnish conclusive proof regarding the specific clinical scenarios in which adequate reduction in urate concentrations can confer cardiovascular advantages. Full article
(This article belongs to the Special Issue Advances in Genomics and Bioinformatics of Human Disease)
Show Figures

Graphical abstract

41 pages, 3039 KiB  
Review
Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs
by Syed Arman Rabbani, Mohamed El-Tanani, Rakesh Kumar, Manita Saini, Yahia El-Tanani, Shrestha Sharma, Alaa A. A. Aljabali, Eman Hajeer and Manfredi Rizzo
Pharmaceuticals 2025, 18(8), 1130; https://doi.org/10.3390/ph18081130 - 28 Jul 2025
Viewed by 454
Abstract
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise [...] Read more.
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise in protecting both kidney and heart health beyond their effects on blood sugar control. Methods: We conducted a narrative review summarizing the findings of different clinical trials and mechanistic studies evaluating the effect of SGLT2i and GLP-1 RAs on kidney function, cardiovascular outcomes, and overall disease progression in patients with CKD and DKD. Results: SGLT2i significantly mitigate kidney injury by restoring tubuloglomerular feedback, reducing intraglomerular hypertension, and attenuating inflammation, fibrosis, and oxidative stress. GLP-1 RAs complement these effects by enhancing endothelial function, promoting weight and blood pressure control, and exerting direct anti-inflammatory and anti-fibrotic actions on renal tissues. Landmark trials—CREDENCE, DAPA-CKD, and EMPA-KIDNEY—demonstrate that SGLT2i reduce the risk of kidney failure and renal or cardiovascular death by 25–40% in both diabetic and non-diabetic CKD populations. Likewise, trials such as LEADER, SUSTAIN, and AWARD-7 confirm that GLP-1 RAs slow renal function decline and improve cardiovascular outcomes. Early evidence suggests that using both drugs together may offer even greater benefits through multiple mechanisms. Conclusions: SGLT2i and GLP-1 RAs have redefined the therapeutic landscape of CKD by offering organ-protective benefits that extend beyond glycemic control. Whether used individually or in combination, these agents represent a paradigm shift toward integrated cardiorenal-metabolic care. A deeper understanding of their mechanisms and clinical utility in both diabetic and non-diabetic populations can inform evidence-based strategies to slow disease progression, reduce cardiovascular risk, and improve long-term patient outcomes in CKD. Full article
(This article belongs to the Special Issue New Development in Pharmacotherapy of Kidney Diseases)
Show Figures

Graphical abstract

Back to TopTop