Molecular Mechanisms of Cardiac Adaptation After Device Deployment
Abstract
1. Introduction
2. Ventricular Unloading
2.1. Cath Lab
2.1.1. Intra-Aortic Balloon Pump (IABP)
2.1.2. Impella and Short-Term Mechanical Support
2.1.3. Transcatheter Aortic Valve Implantation (TAVI)
- Acute phase: within the first hours post-procedure, there is transient myocardial dysfunction affecting both systolic and diastolic components, as evidenced by changes in echocardiographic parameters (e.g., E/E′ ratio, left atrial volume, Myocardial performance index) and a rise in myocardial damage markers (Troponin I, CK-MB, ST2) [22]. Coronary circulation is also affected, with increased hyperemic flow velocity and modest reductions in microvascular resistance [23].
- Early remodeling (one month following TAVI): structural improvement of LV becomes evident, with reduced LV mass index and wall thickness, improved Doppler velocity indices, and increased aortic valve area [24]. Functional enhancement is also reflected in lower pulmonary systolic arterial pressure and an improved Kansas City Cardiomyopathy Questionnaire score, indicating better patient-reported outcomes [25].
- Long-term adaptation: further enhancements in myocardial function include improved flow-mediated dilation and further amelioration of diastolic and systolic function (e.g., LV mass index, LV EF, global longitudinal strain) [26,27]. Many patients experience New York Heart Association (NYHA) class improvement, though some remain unchanged [28].
2.1.4. Transcatheter Edge-to-Edge Repair with MitraClip
2.1.5. Transcatheter Edge-to-Edge Repair with TriClip
2.2. Cardiac Surgery
Left Ventricular Assist Device (LVAD)
2.3. Cardiac Anesthesia
Extracorporeal Membrane Oxygenation (ECMO)
3. Ventricular Remodeling
3.1. Electrophysiology Laboratory
3.1.1. Conduction System Pacing (CSP)
3.1.2. Cardiac Resynchronization Therapy (CRT)
3.1.3. Cardiac Contractility Modulation (CCM)
4. Future Directions and Therapeutic Innovations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AF | Atrial Fibrillation |
AI | Artificial Intelligence |
ATP | Adenosine Triphosphate |
BNP | B-type Natriuretic Peptide |
CaMKII | Ca2+/Calmodulin-dependent Protein Kinase II |
Cath lab | Catheterization Laboratory |
CCM | Cardiac Contractility Modulation |
CK-MB | Creatine Kinase-MB |
CSP | Conduction System Pacing |
CRT/CRT-D | Cardiac Resynchronization Therapy/with Defibrillator |
ECM | Extracellular Matrix |
ECMO | Extracorporeal Membrane Oxygenation |
EF | Ejection Fraction |
eNOS | Endothelial Nitric Oxide Synthase |
GATA4 | GATA-binding protein 4 |
HF | Heart Failure |
ICD | Implantable Cardioverter Defibrillator |
IL-1β/IL-6 | Interleukin-1 beta/Interleukin-6 |
IABP | Intra-Aortic Balloon Pump |
LV | Left Ventricle/Left Ventricular |
LVAD | Left Ventricular Assist Device |
LVEF | Left Ventricular Ejection Fraction |
MMP/TIMP | Matrix Metalloproteinase/Tissue Inhibitor of Metalloproteinase |
MR | Mitral Regurgitation |
NCX1 | Na+/Ca2+ Exchanger 1 |
NFAT | Nuclear Factor of Activated T-cells |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
NO | Nitric Oxide |
NYHA | New York Heart Association |
PICM | Pacing-Induced Cardiomyopathy |
PLN | Phospholamban |
RAAS | Renin–Angiotensin–Aldosterone System |
ROS | Reactive Oxygen Species |
RV | Right Ventricle/Right Ventricular |
RyR2 | Ryanodine Receptor type 2 |
SERCA2a | Sarco-Endoplasmic Reticulum Calcium ATPase 2a |
ST2 | Suppression of Tumorigenicity 2 |
TAVI | Transcatheter Aortic Valve Implantation |
TEER | Transcatheter Edge-to-Edge Repair |
TGF-β | Transforming Growth Factor-beta |
TNF-α | Tumor Necrosis Factor-alpha |
TR | Tricuspid Regurgitation |
VA/VAs | Ventricular Arrhythmias |
VHD | Valvular Heart Disease |
References
- Crespo-Leiro, M.G.; Metra, M.; Lund, L.H.; Milicic, D.; Costanzo, M.R.; Filippatos, G.; Gustafsson, F.; Tsui, S.; Barge-Caballero, E.; De Jonge, N.; et al. Advanced heart failure: A position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 1505–1535. [Google Scholar] [CrossRef] [PubMed]
- Ambardekar, A.V.; Buttrick, P.M. Reverse Remodeling with Left Ventricular Assist Devices: A Review of Clinical, Cellular, and Molecular Effects. Circ. Heart Fail. 2011, 4, 224–233. [Google Scholar] [CrossRef]
- Tsuda, T. Clinical Assessment of Ventricular Wall Stress in Understanding Compensatory Hypertrophic Response and Maladaptive Ventricular Remodeling. J. Cardiovasc. Dev. Dis. 2021, 8, 122. [Google Scholar] [CrossRef]
- Petrov, G.; Dworatzek, E.; Schulze, T.M.; Dandel, M.; Kararigas, G.; Mahmoodzadeh, S.; Knosalla, C.; Hetzer, R.; Regitz-Zagrosek, V. Maladaptive Remodeling Is Associated with Impaired Survival in Women but Not in Men After Aortic Valve Replacement. JACC Cardiovasc. Imaging 2014, 7, 1073–1080. [Google Scholar] [CrossRef]
- Klotz, S.; Foronjy, R.F.; Dickstein, M.L.; Gu, A.; Garrelds, I.M.; Danser, A.H.; Oz, M.C.; D’Armiento, J.; Burkhoff, D. Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation 2005, 112, 364–374. [Google Scholar] [CrossRef]
- Leask, A. TGFβ, cardiac fibroblasts, and the fibrotic response. Cardiovasc. Res. 2007, 74, 207–212. [Google Scholar] [CrossRef]
- De Jonge, N.; Lahpor, J.R.; Van Wichen, D.F.; Kirkels, H.; Gmelig-Meyling, F.H.; van den Tweel, J.G.; Doevendans, P.A.; de Weger, R.A. Similar left and right ventricular sarcomere structure after support with a left ventricular assist device suggests the utility of right ventricular biopsies to monitor left ventricular reverse remodeling. Int. J. Cardiol. 2005, 98, 465–470. [Google Scholar] [CrossRef]
- Muranaka, H.; Marui, A.; Tsukashita, M.; Wang, J.; Nakano, J.; Ikeda, T.; Sakata, R. Prolonged mechanical unloading preserves myocardial contractility but impairs relaxation in rat heart of dilated cardiomyopathy accompanied by myocardial stiffness and apoptosis. J. Thorac. Cardiovasc. Surg. 2010, 140, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Leyva, F.; Nisam, S.; Auricchio, A. 20 Years of Cardiac Resynchronization Therapy. J. Am. Coll. Cardiol. 2014, 64, 1047–1058. [Google Scholar] [CrossRef]
- Kontogeorgis, A.; Li, X.; Kang, E.Y.; Feig, J.E.; Ponzio, M.; Kang, G.; Kaba, R.A.; Wit, A.L.; Fisher, E.A.; Morley, G.E.; et al. Decreased connexin43 expression in the mouse heart potentiates pacing-induced remodeling of repolarizing currents. Am. J. Physiol.-Heart Circ. Physiol. 2008, 295, H1905–H1916. [Google Scholar] [CrossRef] [PubMed]
- Davidson, L.J.; Davidson, C.J. Transcatheter Treatment of Valvular Heart Disease: A Review. JAMA 2021, 325, 2480. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y. The clinical effects of IABP pumps combined with tirofiban in the treatment of acute myocardial infarction and on patients’ serum levels. Am. J. Transl. Res. 2021, 13, 9796–9801. [Google Scholar]
- Onorati, F.; Esposito, A.; Comi, M.C.; Impiombato, B.; Cristodoro, L.; Mastroroberto, P.; Renzulli, A. Intra-aortic balloon pump-induced pulsatile flow reduces coagulative and fibrinolytic response to cardiopulmonary bypass. Artif. Organs 2008, 32, 433–441. [Google Scholar] [CrossRef]
- Serraino, G.F.; Marsico, R.; Musolino, G.; Ventura, V.; Gulletta, E.; Santè, P.; Renzulli, A. Pulsatile cardiopulmonary bypass with intra-aortic balloon pump improves organ function and reduces endothelial activation. Circ. J. 2012, 76, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Kern, M.J.; Aguirre, F.V.; Tatineni, S.; Penick, D.; Serota, H.; Donohue, T.; Walter, K. Enhanced coronary blood flow velocity during intraaortic balloon counterpulsation in critically ill patients. J. Am. Coll. Cardiol. 1993, 21, 359–368. [Google Scholar] [CrossRef]
- Karami, M.; Eriksen, E.; Ouweneel, D.M.; Claessen, B.E.; Vis, M.M.; Baan, J.; Beijk, M.; Packer, E.J.S.; Sjauw, K.D.; Engstrom, A. Long-term 5-year outcome of the randomized IMPRESS in severe shock trial: Percutaneous mechanical circulatory support vs. intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Angiolillo, D.J. The evaluation and management of coagulopathies in the intensive therapy units. Eur. Heart J. Acute Cardiovasc. Care 2023, 12, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Diakos, N.A.; Swain, L.; Bhave, S.; Qiao, X.; Libermann, T.; Haywood, J.; Goel, S.; Annamalai, S.; Esposito, M.; Chweich, H.; et al. Circulating Proteome Analysis Identifies Reduced Inflammation After Initiation of Hemodynamic Support with Either Veno-Arterial Extracorporeal Membrane Oxygenation or Impella in Patients with Cardiogenic Shock. J. Cardiovasc. Trans. Res. 2024, 17, 935–945. [Google Scholar] [CrossRef]
- Alqarqaz, M.; Basir, M.; Alaswad, K.; O’Neill, W. Effects of Impella on Coronary Perfusion in Patients with Critical Coronary Artery Stenosis. Circ. Cardiovasc. Interv. 2018, 11, e005870. [Google Scholar] [CrossRef]
- Indolfi, C.; Curcio, A. Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy. J. Clin. Investig. 2014, 124, 1896–1898. [Google Scholar] [CrossRef]
- Dworakowski, R.; Wendler, O.; Bhan, A.; Smith, L.; Pearson, P.; Alcock, E.; Rajagopal, K.; Brickham, B.; Dew, T.; Byrne, J.; et al. Successful transcatheter aortic valve implantation (TAVI) is associated with transient left ventricular dysfunction. Heart 2012, 98, 1641–1646. [Google Scholar] [CrossRef]
- Wiegerinck, E.M.A.; van de Hoef, T.P.; Rolandi, M.C.; Yong, Z.; van Kesteren, F.; Koch, K.T.; Vis, M.M.; de Mol, B.A.; Piek, J.J.; Baan, J. Impact of Aortic Valve Stenosis on Coronary Hemodynamics and the Instantaneous Effect of Transcatheter Aortic Valve Implantation. Circ. Cardiovasc. Interv. 2015, 8, e002443. [Google Scholar] [CrossRef] [PubMed]
- Gegenava, T.; Vollema, E.M.; Van Rosendael, A.; Abou, R.; Goedemans, L.; van der Kley, F.; de Weger, A.; Ajmone Marsan, N.; Bax, J.J.; Delgado, V. Changes in Left Ventricular Global Longitudinal Strain after Transcatheter Aortic Valve Implantation according to Calcification Burden of the Thoracic Aorta. J. Am. Soc. Echocardiogr. 2019, 32, 1058–1066.e2. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.; Lynch, A.; Reddin, C.; Judge, C.; O’Donnell, M.; Murphy, R. Comparing functional and quality of life outcomes in transcatheter aortic valve implantation and surgical aortic valve replacement for aortic stenosis: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 519. [Google Scholar] [CrossRef]
- Muratori, M.; Fusini, L.; Tamborini, G.; Gripari, P.; Delgado, V.; Marsan, N.A.; Ghulam Ali, S.; Barbier, P.; Bartorelli, A.L.; Alamanni, F.; et al. Sustained favourable haemodynamics 1 year after TAVI: Improvement in NYHA functional class related to improvement of left ventricular diastolic function. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Spethmann, S.; Baldenhofer, G.; Dreger, H.; Stüer, K.; Sanad, W.; Saghabalyan, D.; Müller, E.; Stangl, V.; Baumann, G.; Stangl, K.; et al. Recovery of left ventricular and left atrial mechanics in various entities of aortic stenosis 12 months after TAVI. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 389–398. [Google Scholar] [CrossRef]
- Myon, F.; Marut, B.; Kosmala, W.; Auffret, V.; Leurent, G.; L’official, G.; Curtis, E.; Le Breton, H.; Oger, E.; Donal, E. Transcatheter aortic valve implantation in severe aortic stenosis does not necessarily reverse left ventricular myocardial damage: Data of long-term follow-up. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 821–828. [Google Scholar] [CrossRef]
- Bennett, J.; Thornton, G.D.; Nitsche, C.; Gama, F.F.; Aziminia, N.; Gul, U.; Shetye, A.; Kellman, P.; Davies, R.H.; Moon, J.C.; et al. Left Ventricular Hypertrophy in Aortic Stenosis: Early Cell and Matrix Regression 2 Months Post-Aortic Valve Replacement. Circ. Cardiovasc. Imaging 2024, 17, e017425. [Google Scholar] [CrossRef]
- Molkentin, J. Calcineurin? NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc. Res. 2004, 63, 467–475. [Google Scholar] [CrossRef]
- Lyon, A.R.; Bannister, M.L.; Collins, T.; Pearce, E.; Sepehripour, A.H.; Dubb, S.S.; Garcia, E.; O’Gara, P.; Liang, L.; Kohlbrenner, E.; et al. SERCA2a Gene Transfer Decreases Sarcoplasmic Reticulum Calcium Leak and Reduces Ventricular Arrhythmias in a Model of Chronic Heart Failure. Circ. Arrhythmia Electrophysiol. 2011, 4, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Ullah, W.; Zahid, S.; Zaidi, S.R.; Haq, S.; Roomi, S.; Mukhtar, M.; Khan, M.A.; Gowda, S.N.; Ruggiero, N.; Vishnevsky, A.; et al. Predictors of Permanent Pacemaker Implantation in Patients Undergoing Transcatheter Aortic Valve Replacement—A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2021, 10, e020906. [Google Scholar] [CrossRef]
- Sohns, C.; Marrouche, N.F.; Costard-Jäckle, A.; Sossalla, S.; Bergau, L.; Schramm, R.; Fuchs, U.; Omran, H.; Rubarth, K.; Dumitrescu, D.; et al. Catheter ablation for atrial fibrillation in patients with end-stage heart failure and eligibility for heart transplantation. ESC Heart Fail. 2021, 8, 1666–1674. [Google Scholar] [CrossRef]
- Siontis, G.C.M.; Praz, F.; Lanz, J.; Vollenbroich, R.; Roten, L.; Stortecky, S.; Räber, L.; Windecker, S.; Pilgrim, T. New-onset arrhythmias following transcatheter aortic valve implantation: A systematic review and meta-analysis. Heart 2018, 104, 1208–1215. [Google Scholar] [CrossRef]
- Wang, W.; Vootukuri, S.; Meyer, A.; Ahamed, J.; Coller, B.S. Association Between Shear Stress and Platelet-Derived Transforming Growth Factor-β1 Release and Activation in Animal Models of Aortic Valve Stenosis. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1924–1932. [Google Scholar] [CrossRef]
- Boeckling, F.; Rasper, T.; Zanders, L.; Pergola, G.; Cremer, S.; Mas-Peiro, S.; Vasa-Nicotera, M.; Leistner, D.; Dimmeler, S.; Kattih, B. Extracellular Matrix Proteins Improve Risk Prediction in Patients Undergoing Transcatheter Aortic Valve Replacement. J. Am. Heart Assoc. 2025, 14, e037296. [Google Scholar] [CrossRef] [PubMed]
- Généreux, P.; Schwartz, A.; Oldemeyer, J.B.; Pibarot, P.; Cohen, D.J.; Blanke, P.; Lindman, B.R.; Babaliaros, V.; Fearon, W.F.; Daniels, D.V.; et al. Transcatheter Aortic-Valve Replacement for Asymptomatic Severe Aortic Stenosis. N. Engl. J. Med. 2025, 392, 217–227. [Google Scholar] [CrossRef]
- Anker, S.D.; Friede, T.; Von Bardeleben, R.S.; Butler, J.; Khan, M.S.; Diek, M.; Heinrich, J.; Geyer, M.; Placzek, M.; Ferrari, R.; et al. Percutaneous repair of moderate-to-severe or severe functional mitral regurgitation in patients with symptomatic heart failure: Baseline characteristics of patients in the RESHAPE-HF2 trial and comparison to COAPT and MITRA-FR trials. Eur. J Heart Fail. 2024, 26, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.J.; Biner, S.; Rafique, A.M.; Lim, S.; Fail, P.; Hermiller, J.; Smalling, R.; Whitlow, P.L.; Herrmann, H.C.; Foster, E.; et al. The Acute Hemodynamic Effects of MitraClip Therapy. J. Am. Coll. Cardiol. 2011, 57, 1658–1665. [Google Scholar] [CrossRef]
- Van Wijngaarden, S.E.; Kamperidis, V.; Al-Amri, I.; van der Kley, F.; Schalij, M.J.; Marsan, N.A.; Bax, J.J.; Delgado, V. Effects of Transcatheter Mitral Valve Repair with MitraClip on Left Ventricular and Atrial Hemodynamic Load and Myocardial Wall Stress. J. Card. Fail. 2018, 24, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Romano, L.R.; Scalzi, G.; Malizia, B.; Aquila, I.; Polimeni, A.; Indolfi, C.; Curcio, A. Impact of Percutaneous Mitral Valve Repair on Left Atrial Strain and Atrial Fibrillation Progression. J. Cardiovasc. Dev. Dis. 2023, 10, 320. [Google Scholar] [CrossRef] [PubMed]
- Giannini, C.; Petronio, A.S.; De Carlo, M.; Guarracino, F.; Conte, L.; Fiorelli, F.; Pieroni, A.; Di Bello, V. Integrated reverse left and right ventricular remodelling after MitraClip implantation in functional mitral regurgitation: An echocardiographic study. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 95–103. [Google Scholar] [CrossRef]
- Schrage, B.; Kalbacher, D.; Schwarzl, M.; Rübsamen, N.; Waldeyer, C.; Becher, P.M.; Tigges, E.; Burkhoff, D.; Blankenberg, S.; Lubos, E.; et al. Distinct Hemodynamic Changes After Interventional Mitral Valve Edge-to-Edge Repair in Different Phenotypes of Heart Failure: An Integrated Hemodynamic Analysis. J. Am. Heart Assoc. 2018, 7, e007963. [Google Scholar] [CrossRef]
- Cohn, J.N.; Ferrari, R.; Sharpe, N. Cardiac remodeling—Concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol. 2000, 35, 569–582. [Google Scholar] [CrossRef]
- Jaiswal, A.; Nguyen, V.Q.; Carry, B.J.; Le Jemtel, T.H. Pharmacologic and Endovascular Reversal of Left Ventricular Remodeling. J. Card. Fail. 2016, 22, 829–839. [Google Scholar] [CrossRef]
- Gwathmey, J.K.; Yerevanian, A.I.; Hajjar, R.J. Cardiac gene therapy with SERCA2a: From bench to bedside. J. Mol. Cell. Cardiol. 2011, 50, 803–812. [Google Scholar] [CrossRef]
- Dörr, O.; Walther, C.; Liebetrau, C.; Keller, T.; Tabert, H.; Boeder, N.; Bayer, M.; Bauer, P.; Möllmann, H.; Gaede, L.; et al. Specific biomarkers of myocardial inflammation and remodeling processes as predictors of mortality in high-risk patients undergoing percutaneous mitral valve repair (MitraClip). Clin. Cardiol. 2018, 41, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Alperi, A.; Avanzas, P.; Pascual, I.; Adeba, A.; Lorca, R.; León, V.; Almendarez, M.; Cubero-Gallego, H.; Silva-Conde, I.; Moris, C.; et al. Functional mitral regurgitation: Structural modifications with percutaneous valve repair with MitraClip. Ann. Transl. Med. 2020, 8, 958. [Google Scholar] [CrossRef]
- Stolz, L.; Weckbach, L.T.; Glaser, H.; Doldi, P.M.; Schmid, S.; Stocker, T.J.; Hagl, C.; Näbauer, M.; Massberg, S.; Hausleiter, J. Biphasic Right Ventricular Reverse Remodeling Following Tricuspid Valve Transcatheter Edge-to-Edge Repair. JACC Cardiovasc. Interv. 2024, 17, 2811–2822. [Google Scholar] [CrossRef]
- Sorajja, P.; Whisenant, B.; Hamid, N.; Naik, H.; Makkar, R.; Tadros, P.; Price, M.J.; Singh, G.; Fam, N.; Kar, S.; et al. Transcatheter Repair for Patients with Tricuspid Regurgitation. N. Engl. J. Med. 2023, 388, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Bekedam, F.T.; Goumans, M.J.; Bogaard, H.J.; De Man, F.S.; Llucià-Valldeperas, A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol. Ther. 2023, 244, 108389. [Google Scholar] [CrossRef]
- Baicu, C.F.; Li, J.; Zhang, Y.; Cooper, G., 4th; Zile, M.R.; Bradshaw, A.D. Time course of right ventricular pressure-overload induced myocardial fibrosis: Relationship to changes in fibroblast postsynthetic procollagen processing. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H1128–H1134. [Google Scholar] [CrossRef] [PubMed]
- Esfandiary, A.; Kutsche, H.S.; Schreckenberg, R.; Weber, M.; Pak, O.; Kojonazarov, B.; Sydykov, A.; Hirschhäuser, C.; Wolf, A.; Haag, D.; et al. Protection against pressure overload-induced right heart failure by uncoupling protein 2 silencing. Cardiovasc. Res. 2019, 115, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Bernstein, D. Molecular Mechanisms of Right Ventricular Failure. Circulation 2015, 132, 1734–1742. [Google Scholar] [CrossRef]
- Burkhoff, D.; Topkara, V.K.; Sayer, G.; Uriel, N. Reverse Remodeling with Left Ventricular Assist Devices. Circ. Res. 2021, 128, 1594–1612. [Google Scholar] [CrossRef]
- Ezad, S.M.; Ryan, M.; Donker, D.W.; Pappalardo, F.; Barrett, N.; Camporota, L.; Price, S.; Kapur, N.K.; Perera, D. Unloading the Left Ventricle in Venoarterial ECMO: In Whom, When, and How? Circulation 2023, 147, 1237–1250. [Google Scholar] [CrossRef]
- Millar, J.E.; Fanning, J.P.; McDonald, C.I.; McAuley, D.F.; Fraser, J.F. The inflammatory response to extracorporeal membrane oxygenation (ECMO): A review of the pathophysiology. Crit. Care 2016, 20, 387. [Google Scholar] [CrossRef]
- Rao, P.; Khalpey, Z.; Smith, R.; Burkhoff, D.; Kociol, R.D. Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock and Cardiac Arrest: Cardinal Considerations for Initiation and Management. Circ. Heart Fail. 2018, 11, e004905. [Google Scholar] [CrossRef] [PubMed]
- Mizner, J.; Jurak, P.; Linkova, H.; Smisek, R.; Curila, K. Ventricular Dyssynchrony and Pacing-induced Cardiomyopathy in Patients with Pacemakers, the Utility of Ultra-high-frequency ECG and Other Dyssynchrony Assessment Tools. Arrhythm. Electrophysiol. Rev. 2022, 11, e17. [Google Scholar] [CrossRef]
- Lin, J.; Lai, L.; Lin, C.; Chou, N.; Chiu, C.; Lin, J. Left Ventricular Extracellular Matrix Remodeling in Dogs with Right Ventricular Apical Pacing. Cardiovasc. Electrophysiol. 2010, 21, 1142–1149. [Google Scholar] [CrossRef]
- Adomian, G.E.; Beazell, J. Myofibrillar disarray produced in normal hearts by chronic electrical pacing. Am. Heart J. 1986, 112, 79–83. [Google Scholar] [CrossRef]
- Yang, D.; Zhu, H.; Ma, M.; Wang, X.; Pan, X. A case of pacing-induced cardiomyopathy dramatically reversed by left bundle branch pacing in one week. Hear. Case Rep. 2021, 7, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, J.; Gong, X.; Lu, H.; Yu, Z.; Zhang, L.; Li, M.; Pan, L.; Chen, X.; Cui, J.; et al. Left Bundle Branch Pacing Versus Biventricular Pacing for Acute Cardiac Resynchronization in Patients with Heart Failure. Circ. Arrhythmia Electrophysiol. 2022, 15, e011181. [Google Scholar] [CrossRef]
- Leon, S.A.; Austin, M.; Nasher, N.; Rahimov, D.; Siddique, F.; Parikh, C.; Ahmad, D.; Tchantchaleishvili, V.; Pavri, B.B. Differing impacts of cardiac implantable electronic device leads on tricuspid regurgitation. J. Arrhythmia 2025, 41, e70133. [Google Scholar] [CrossRef]
- Korkeila, P.; Mustonen, P.; Koistinen, J.; Nyman, K.; Ylitalo, A.; Karjalainen, P.; Lund, J.; Airaksinen, J. Clinical and laboratory risk factors of thrombotic complications after pacemaker implantation: A prospective study. Europace 2010, 12, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Rozmus, G.; Daubert, J.P.; Huang, D.T.; Rosero, S.; Hall, B.; Francis, C. Venous Thrombosis and Stenosis After Implantation of Pacemakers and Defibrillators. J. Interv. Card. Electrophysiol. 2005, 13, 9–19. [Google Scholar] [CrossRef]
- Waddingham, P.H.; Elliott, J.; Bates, A.; Bilham, J.; Muthumala, A.; Honarbakhsh, S.; Ullah, W.; Hunter, R.J.; Lambiase, P.D.; Lane, R.E.; et al. Iatrogenic cardiac perforation due to pacemaker and defibrillator leads: A contemporary multicentre experience. EP Europace 2022, 24, 1824–1833. [Google Scholar] [CrossRef]
- Friedman, D.J.; Al-Khatib, S.M.; Dalgaard, F.; Fudim, M.; Abraham, W.T.; Cleland, J.G.F.; Curtis, A.B.; Gold, M.R.; Kutyifa, V.; Linde, C.; et al. Cardiac Resynchronization Therapy Improves Outcomes in Patients with Intraventricular Conduction Delay but Not Right Bundle Branch Block: A Patient-Level Meta-Analysis of Randomized Controlled Trials. Circulation 2023, 147, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Curcio, A.; Cascini, G.L.; De Rosa, S.; Pasceri, E.; Veneziano, C.; Cipullo, S.; Saccomanno, M.; Santarpia, G.; Cuda, G.; Indolfi, C. 123I-mIBG imaging predicts functional improvement and clinical outcome in patients with heart failure and CRT implantation. Int. J. Cardiol. 2016, 207, 107–109. [Google Scholar] [CrossRef]
- Nguyên, U.C.; Verzaal, N.J.; Van Nieuwenhoven, F.A.; Vernooy, K.; Prinzen, F.W. Pathobiology of cardiac dyssynchrony and resynchronization therapy. EP Europace 2018, 20, 1898–1909. [Google Scholar] [CrossRef]
- Mathias, A.; Moss, A.J.; McNitt, S.; Zareba, W.; Goldenberg, I.; Solomon, S.D.; Kutyifa, V. Clinical Implications of Complete Left-Sided Reverse Remodeling with Cardiac Resynchronization Therapy: A MADIT-CRT Substudy. J. Am. Coll. Cardiol. 2016, 68, 1268–1276. [Google Scholar] [CrossRef]
- Bose, A.; Kandala, J.; Upadhyay, G.A.; Riedl, L.; Ahmado, I.; Padmanabhan, R.; Gewirtz, H.; Mulligan, L.J.; Singh, J.P. Impact of Myocardial Viability and Left Ventricular Lead Location on Clinical Outcome in Cardiac Resynchronization Therapy Recipients with Ischemic Cardiomyopathy. Cardiovasc. Electrophysiol. 2014, 25, 507–513. [Google Scholar] [CrossRef]
- Vijayaraman, P.; Sharma, P.S.; Cano, Ó.; Ponnusamy, S.S.; Herweg, B.; Zanon, F.; Jastrzebski, M.; Zou, J.; Chelu, M.G.; Vernooy, K.; et al. Comparison of Left Bundle Branch Area Pacing and Biventricular Pacing in Candidates for Resynchronization Therapy. J. Am. Coll. Cardiol. 2023, 82, 228–241. [Google Scholar] [CrossRef]
- Rudolph, F.; Ivannikova, M.; Bormann, J.; Goncharov, A.; Sciacca, V.; Kirchner, J.; Friedrichs, K.P.; Rudolph, T.K.; Fink, T.; Eitz, T.; et al. Progression of tricuspid regurgitation in patients with right ventricular pacing. Clin. Res. Cardiol. 2025, 114, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Linde, C.; Grabowski, M.; Ponikowski, P.; Rao, I.; Stagg, A.; Tschöpe, C. Cardiac contractility modulation therapy improves health status in patients with heart failure with preserved ejection fraction: A pilot study (CCM-HFpEF). Eur. J. Heart Fail. 2022, 24, 2275–2284. [Google Scholar] [CrossRef]
- Anker, S.D.; Borggrefe, M.; Neuser, H.; Ohlow, M.A.; Röger, S.; Goette, A.; Remppis, B.A.; Kuck, K.H.; Najarian, K.B.; Gutterman, D.D.; et al. Cardiac contractility modulation improves long-term survival and hospitalizations in heart failure with reduced ejection fraction. Eur. J. Heart Fail. 2019, 21, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Brunckhorst, C.B.; Shemer, I.; Mika, Y.; Ben-Haim, S.A.; Burkhoff, D. Cardiac contractility modulation by non-excitatory currents: Studies in isolated cardiac muscle. Eur. J. Heart Fail. 2006, 8, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Masarone, D.; Kittleson, M.M.; D’Onofrio, A.; Falco, L.; Fumarulo, I.; Massetti, M.; Crea, F.; Aspromonte, N.; Pacileo, G. Basic science of cardiac contractility modulation therapy: Molecular and electrophysiological mechanisms. Heart Rhythm 2024, 21, 82–88. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Q.; Zhou, S.; Xiao, Y. Enhancing myocardial function with cardiac contractility modulation: Potential and challenges. ESC Heart Fail. 2024, 11, 1–12. [Google Scholar] [CrossRef]
- Wiegn, P.; Chan, R.; Jost, C.; Saville, B.R.; Parise, H.; Prutchi, D.; Carson, P.E.; Stagg, A.; Goldsmith, R.L.; Burkhoff, D. Safety, Performance, and Efficacy of Cardiac Contractility Modulation Delivered by the 2-Lead Optimizer Smart System: The FIX-HF-5C2 Study. Circ. Heart Fail. 2020, 13, e006512. [Google Scholar] [CrossRef]
- Abraham, W.T.; Kuck, K.H.; Goldsmith, R.L.; Lindenfeld, J.; Reddy, V.Y.; Carson, P.E.; Mann, D.L.; Saville, B.; Parise, H.; Chan, R.; et al. A Randomized Controlled Trial to Evaluate the Safety and Efficacy of Cardiac Contractility Modulation. JACC Heart Fail. 2018, 6, 874–883. [Google Scholar] [CrossRef]
- Bazoukis, G.; Saplaouras, A.; Efthymiou, P.; Yiannikourides, A.; Liu, T.; Letsas, K.P.; Efremidis, M.; Lampropoulos, K.; Xydonas, S.; Tse, G.; et al. Cardiac contractility modulation in patients with heart failure—A review of the literature. Heart Fail. Rev. 2024, 29, 689–705. [Google Scholar] [CrossRef]
- Romano, L.R.; Polimeni, A.; Indolfi, C.; Curcio, A. Management of Cardiac Rhythm Disorders in Cardio-oncology. Arrhythm. Electrophysiol. Rev. 2025, 14, e05. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Cardiac fibrosis. Cardiovasc. Res. 2021, 117, 1450–1488. [Google Scholar] [CrossRef] [PubMed]
- Marchiano, S.; Nakamura, K.; Reinecke, H.; Neidig, L.; Lai, M.; Kadota, S.; Perbellini, F.; Yang, X.; Klaiman, J.M.; Blakely, L.P.; et al. Gene editing to prevent ventricular arrhythmias associated with cardiomyocyte cell therapy. Cell Stem Cell 2023, 30, 396–414.e9. [Google Scholar] [CrossRef]
- Averbuch, T.; Sullivan, K.; Sauer, A.; Mamas, M.A.; Voors, A.A.; Gale, C.P.; Metra, M.; Ravindra, N.; Van Spall, H.G.C. Applications of artificial intelligence and machine learning in heart failure. Eur. Heart J. Digit. Health 2022, 3, 311–322. [Google Scholar] [CrossRef]
- Motta, S.E.; Lintas, V.; Fioretta, E.S.; Hoerstrup, S.P.; Emmert, M.Y. Off-the-shelf tissue engineered heart valves for in situ regeneration: Current state, challenges and future directions. Expert Rev. Med. Devices 2018, 15, 35–45. [Google Scholar] [CrossRef]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Temirkhanova, K.; Saparov, A. Novel Therapies for the Treatment of Cardiac Fibrosis Following Myocardial Infarction. Biomedicines 2022, 10, 2178. [Google Scholar] [CrossRef]
- Brunetti, N.D.; Curcio, A.; Nodari, S.; Parati, G.; Carugo, S.; Molinari, M.; Acquistapace, F.; Gensini, G.; Molinari, G. The Italian Society of Cardiology and Working Group on Telecardiology and Informatics 2023 updated position paper on telemedicine and artificial intelligence in cardiovascular disease. J. Cardiovasc. Med. 2023, 24 (Suppl. S2), e168–e177. [Google Scholar] [CrossRef]
- Curcio, A.; Romano, L.R.; Augusto, F.M.; Canino, G.; Coluccio, E.; Polimeni, A.; Indolfi, C. Real-time technical support for guiding remotely ICD/CRT-D implantation. Front. Cardiovasc. Med. 2025, 12, 1525151. [Google Scholar] [CrossRef]
- Ellenbogen, K.A.; Auricchio, A.; Burri, H.; Gold, M.R.; Leclercq, C.; Leyva, F.; Linde, C.; Jastrzebski, M.; Prinzen, F.; Vernooy, K. The evolving state of cardiac resynchronization therapy and conduction system pacing: 25 years of research at EP Europace journal. Europace 2023, 25, euad168. [Google Scholar] [CrossRef]
- Cha, Y.M.; Attia, I.Z.; Metzger, C.; Lopez-Jimenez, F.; Tan, N.Y.; Cruz, J.; Upadhyay, G.A.; Mullane, S.; Harrell, C.; Kinar, Y.; et al. Machine learning for prediction of ventricular arrhythmia episodes from intracardiac electrograms of automatic implantable cardioverter-defibrillators. Heart Rhythm 2024, 21, 2295–2302. [Google Scholar] [CrossRef]
- Kolk, M.Z.H.; Ruipérez-Campillo, S.; Wilde, A.A.M.; Knops, R.E.; Narayan, S.M.; Tjong, F.V.Y. Prediction of sudden cardiac death using artificial intelligence: Current status and future directions. Heart Rhythm 2025, 22, 756–766. [Google Scholar] [CrossRef]
- Stevenson, L.W.; Ross, H.J.; Rathman, L.D.; Boehmer, J.P. Remote Monitoring for Heart Failure Management at Home. J. Am. Coll. Cardiol. 2023, 81, 2272–2291. [Google Scholar] [CrossRef]
- Capuani, S.; Malgir, G.; Chua, C.Y.X.; Grattoni, A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng. Transl. Med. 2022, 7, e10300. [Google Scholar] [CrossRef]
- Sprague, E.A.; Pomeranz, M.L.; Odess, I.; Furnish, S.M.; Granada, J.F. Surface material, surface treatment and nanotechnology in cardiovascular stent development. EuroIntervention 2008, 4 (Suppl. SC), C60–C62. [Google Scholar]
- Kato, T.S.; Chokshi, A.; Singh, P.; Khawaja, T.; Cheema, F.; Akashi, H.; Shahzad, K.; Iwata, S.; Homma, S.; Takayama, H.; et al. Effects of Continuous-Flow Versus Pulsatile-Flow Left Ventricular Assist Devices on Myocardial Unloading and Remodeling. Circ. Heart Fail. 2011, 4, 546–553. [Google Scholar] [CrossRef]
- Ternacle, J.; Hecht, S.; Eltchaninoff, H.; Salaun, E.; Clavel, M.A.; Côté, N.; Pibarot, P. Durability of transcatheter aortic valve implantation. EuroIntervention 2024, 20, e845–e864. [Google Scholar] [CrossRef]
- Leone, P.P.; Scotti, A.; Ho, E.C.; Assafin, M.; Doolittle, J.; Chau, M.; Slipczuk, L.; Levitus, M.; Regazzoli, D.; Mangieri, A.; et al. Prosthesis Tailoring for Patients Undergoing Transcatheter Aortic Valve Implantation. J. Clin. Med. 2023, 12, 338. [Google Scholar] [CrossRef]
- Rezvova, M.A.; Klyshnikov, K.Y.; Gritskevich, A.A.; Ovcharenko, E.A. Polymeric Heart Valves Will Displace Mechanical and Tissue Heart Valves: A New Era for the Medical Devices. Int. J. Mol. Sci. 2023, 24, 3963. [Google Scholar] [CrossRef]
- Forrest, J.K.; Mangi, A.A.; Popma, J.J.; Khabbaz, K.; Reardon, M.J.; Kleiman, N.S.; Yakubov, S.J.; Watson, D.; Kodali, S.; George, I.; et al. Early Outcomes with the Evolut PRO Repositionable Self-Expanding Transcatheter Aortic Valve with Pericardial Wrap. JACC Cardiovasc. Interv. 2018, 11, 160–168. [Google Scholar] [CrossRef]
- Dowling, C.; Firoozi, S.; Brecker, S.J. First-in-Human Experience with Patient-Specific Computer Simulation of TAVR in Bicuspid Aortic Valve Morphology. JACC Cardiovasc. Interv. 2020, 13, 184–192. [Google Scholar] [CrossRef]
- Faletra, F.F.; Pozzoli, A.; Agricola, E.; Biasco, L.; Leo, L.A.; Taramasso, M.; Pasotti, E.; Kuwata, S.; Moccetti, M.; Tanner, F.C.; et al. Echocardiographic-fluoroscopic fusion imaging for transcatheter mitral valve repair guidance. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 715–726. [Google Scholar] [CrossRef]
- Denti, P.; Sala, A.; Belluschi, I.; Alfieri, O. Over 15 years: The advancement of transcatheter mitral valve repair. Ann. Cardiothorac. Surg. 2021, 10, 15–27. [Google Scholar] [CrossRef]
- Long, A.; Haggerty, C.M.; Finer, J.; Hartzel, D.; Jing, L.; Keivani, A.; Kelsey, C.; Rocha, D.; Ruhl, J.; vanMaanen, D.; et al. Deep Learning for Echo Analysis, Tracking, and Evaluation of Mitral Regurgitation (DELINEATE-MR). Circulation 2024, 150, 911–922. [Google Scholar] [CrossRef]
Device/Procedure | Mechanism of Action | Molecular Effects | Structural/Functional Effects |
---|---|---|---|
IABP | ↓ Afterload, ↑ coronary perfusion | ↓ TNF-α/IL-6, ↑ NO (via eNOS), modulation of coagulation and fibrinolysis | ↓ LV wall stress, ↑ coronary flow, improved endothelial function |
Impella | Direct LV unloading via axial flow | ↓ NF-κB, ↓ chemokine ligands, acquired vWF disease (via ADAMTS13 activation) | ↓ LV pressure/volume, preserved perfusion, reduced oxygen demand |
TAVI | Relief of pressure overload in aortic stenosis | ↓ NFAT/calcineurin, ↓ TGF-β, ↑ SERCA2a, ↑ PCr/ATP ratio | ↓ LV mass and fibrosis, improved diastolic/systolic function, reverse hypertrophy |
MitraClip (TEER) | Reduction in MR and volume overload | ↓ NFAT/CaMKII, ↓ RyR2 activity, ↑ SERCA2a, ↓ pro-arrhythmic signaling | ↓ LVEDV, ↑ CO, improved NYHA class, partial reverse remodeling |
TriClip (TEER) | Reduction in TR and RV volume overload | ↓ ROS, ↓ TGF-β, ↓ RAAS, improved mitochondrial function | ↓ RV dilation, improved interventricular interaction, indirect ↑ in LV filling and output |
LVAD | Continuous mechanical LV unloading | ↓ hypertrophic gene expression, ↑ SERCA2a, ↑ oxidative phosphorylation, ↓ IL-6/TNF-α | ↓ LVEDP/volume, persistent ECM stiffness due to ↑ collagen crosslinking |
ECMO | Systemic perfusion | ↑ cytokines (IL-6, IFN-γ), systemic inflammation, endothelial activation | ↑ LV wall stress if not vented, risk of pulmonary edema and thrombosis |
Therapy/Device | Target Condition | Molecular Effects | Structural/Clinical Outcomes |
---|---|---|---|
CRT | HF with LBBB | ↑ SERCA2a, ↑ PLN phosphorylation, ↑ Connexin-43, ↓ TGF-β | ↓ LV volumes, ↑ EF, ↓ fibrosis, improved synchrony |
Conduction System Pacing | PICM prevention, bradyarrhythmias | Physiological conduction system activation, ↓ MMP/TIMP imbalance, ↓ fibrotic signaling | ↓ dyssynchrony, ↑ EF, better long-term remodeling |
RV Apical Pacing | Bradycardia | ↑ MMP-2/9, ↑ TIMP-1/3, ECM expansion, myofibrillar disarray | Septal thinning, lateral hypertrophy, ↓ contractility, ↑ fibrosis (PICM) |
CCM | HF with reduced/preserved EF | ↑ PLN phosphorylation, ↑ NCX1, ↑ GATA4/NFAT, ↑ myofibrillar organization | ↓ chamber stiffness, preserved wall thickness, ↑ contractility, ↑ compliance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, L.R.; Plutino, P.; Lopes, G.; Quarta, R.; Calvelli, P.; Indolfi, C.; Polimeni, A.; Curcio, A. Molecular Mechanisms of Cardiac Adaptation After Device Deployment. J. Cardiovasc. Dev. Dis. 2025, 12, 291. https://doi.org/10.3390/jcdd12080291
Romano LR, Plutino P, Lopes G, Quarta R, Calvelli P, Indolfi C, Polimeni A, Curcio A. Molecular Mechanisms of Cardiac Adaptation After Device Deployment. Journal of Cardiovascular Development and Disease. 2025; 12(8):291. https://doi.org/10.3390/jcdd12080291
Chicago/Turabian StyleRomano, Letizia Rosa, Paola Plutino, Giovanni Lopes, Rossella Quarta, Pierangelo Calvelli, Ciro Indolfi, Alberto Polimeni, and Antonio Curcio. 2025. "Molecular Mechanisms of Cardiac Adaptation After Device Deployment" Journal of Cardiovascular Development and Disease 12, no. 8: 291. https://doi.org/10.3390/jcdd12080291
APA StyleRomano, L. R., Plutino, P., Lopes, G., Quarta, R., Calvelli, P., Indolfi, C., Polimeni, A., & Curcio, A. (2025). Molecular Mechanisms of Cardiac Adaptation After Device Deployment. Journal of Cardiovascular Development and Disease, 12(8), 291. https://doi.org/10.3390/jcdd12080291