Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = long-period grating (LPG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4065 KiB  
Article
Smartphone-Readable Optical-Fiber Quasi-Distributed Phosphorescent Temperature Sensor
by Tinko Eftimov, Irena Kostova, Samia Fouzar, Daniel Brabant, Kristian Nikolov and Veselin Vladev
Photonics 2024, 11(8), 694; https://doi.org/10.3390/photonics11080694 - 25 Jul 2024
Cited by 3 | Viewed by 1369
Abstract
In this paper we present the principle of operation, fabrication and performance of a phosphorescent optical-fiber quasi-distributed sensor with contactless smartphone interrogation. An array of short strong corrugated long-period gratings (C-LPG) is used as a platform to spatially locate and to excite the [...] Read more.
In this paper we present the principle of operation, fabrication and performance of a phosphorescent optical-fiber quasi-distributed sensor with contactless smartphone interrogation. An array of short strong corrugated long-period gratings (C-LPG) is used as a platform to spatially locate and to excite the phosphors whose time responses are temperature-dependent. The C-LPG array was fabricated using a pulsed CO2 laser. The quasi-distributed sensing array is excited by a UV LED and the normalized differential rise/decay time response measured by a smartphone is used as a measure of the temperature. The sensing spots have a volume smaller than 0.5 μL, can be separated by several millimeters to several meters and the interrogation can be simultaneous or in a sequence. The response and the sensitivity to temperature have been measured. The sensing array has been shown to measure abrupt and gradual temperature changes in space as well as time-dependent processes in the 0 °C to 100 °C range and with a measurement time of 1 s. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Photonics Sensors)
Show Figures

Figure 1

12 pages, 3876 KiB  
Article
SPR and Double Resonance LPG Biosensors for Helicobacter pylori BabA Antigen Detection
by Georgi Dyankov, Tinko Eftimov, Evdokiya Hikova, Hristo Najdenski, Vesselin Kussovski, Petia Genova-Kalou, Vihar Mankov, Hristo Kisov, Petar Veselinov, Sanaz Shoar Ghaffari, Mila Kovacheva-Slavova, Borislav Vladimirov and Nikola Malinowski
Sensors 2024, 24(7), 2118; https://doi.org/10.3390/s24072118 - 26 Mar 2024
Cited by 6 | Viewed by 2498
Abstract
Given the medical and social significance of Helicobacter pylori infection, timely and reliable diagnosis of the disease is required. The traditional invasive and non-invasive conventional diagnostic techniques have several limitations. Recently, opportunities for new diagnostic methods have appeared based on the recent advance [...] Read more.
Given the medical and social significance of Helicobacter pylori infection, timely and reliable diagnosis of the disease is required. The traditional invasive and non-invasive conventional diagnostic techniques have several limitations. Recently, opportunities for new diagnostic methods have appeared based on the recent advance in the study of H. pylori outer membrane proteins and their identified receptors. In the present study we assess the way in which outer membrane protein–cell receptor reactions are applicable in establishing a reliable diagnosis. Herein, as well as in other previous studies of ours, we explore the reliability of the binding reaction between the best characterized H. pylori adhesin BabA and its receptor, the blood antigen Leb. For the purpose we developed surface plasmon resonance (SPR) and double resonance long period grating (DR LPG) biosensors based on the BabA–Leb binding reaction for diagnosing H. pylori infection. In SPR detection, the sensitivity was estimated at 3000 CFU/mL—a much higher sensitivity than that of the RUT test. The DR LPG biosensor proved to be superior in terms of accuracy and sensitivity—concentrations as low as 102 CFU/mL were detected. Full article
(This article belongs to the Special Issue Innovative Sensors and IoT for AI-Enabled Smart Healthcare)
Show Figures

Figure 1

11 pages, 2723 KiB  
Article
Binding of SARS-CoV-2 Structural Proteins to Hemoglobin and Myoglobin Studied by SPR and DR LPG
by Georgi Dyankov, Petia Genova-Kalou, Tinko Eftimov, Sanaz Shoar Ghaffari, Vihar Mankov, Hristo Kisov, Petar Veselinov, Evdokia Hikova and Nikola Malinowski
Sensors 2023, 23(6), 3346; https://doi.org/10.3390/s23063346 - 22 Mar 2023
Cited by 5 | Viewed by 4012
Abstract
One of the first clinical observations related to COVID-19 identified hematological dysfunctions. These were explained by theoretical modeling, which predicted that motifs from SARS-CoV-2 structural proteins could bind to porphyrin. At present, there is very little experimental data that could provide reliable information [...] Read more.
One of the first clinical observations related to COVID-19 identified hematological dysfunctions. These were explained by theoretical modeling, which predicted that motifs from SARS-CoV-2 structural proteins could bind to porphyrin. At present, there is very little experimental data that could provide reliable information about possible interactions. The surface plasmon resonance (SPR) method and double resonance long period grating (DR LPG) were used to identify the binding of S/N protein and the receptor bind domain (RBD) to hemoglobin (Hb) and myoglobin (Mb). SPR transducers were functionalized with Hb and Mb, while LPG transducers, were only with Hb. Ligands were deposited by the matrix-assisted laser evaporation (MAPLE) method, which guarantees maximum interaction specificity. The experiments carried out showed S/N protein binding to Hb and Mb and RBD binding to Hb. Apart from that, they demonstrated that chemically-inactivated virus-like particles (VLPs) interact with Hb. The binding activity of S/N- and RBD proteins was assessed. It was found that protein binding fully inhibited heme functionality. The registered N protein binding to Hb/Mb is the first experimental fact that supports theoretical predictions. This fact suggests another function of this protein, not only binding RNA. The lower RBD binding activity reveals that other functional groups of S protein participate in the interaction. The high-affinity binding of these proteins to Hb provides an excellent opportunity for assessing the effectiveness of inhibitors targeting S/N proteins. Full article
Show Figures

Figure 1

15 pages, 3795 KiB  
Article
Capabilities of Double-Resonance LPG and SPR Methods for Hypersensitive Detection of SARS-CoV-2 Structural Proteins: A Comparative Study
by Tinko Eftimov, Petia Genova-Kalou, Georgi Dyankov, Wojtek J. Bock, Vihar Mankov, Sanaz Shoar Ghaffari, Petar Veselinov, Alla Arapova and Somayeh Makouei
Biosensors 2023, 13(3), 318; https://doi.org/10.3390/bios13030318 - 24 Feb 2023
Cited by 8 | Viewed by 2678
Abstract
The danger of the emergence of new viral diseases and their rapid spread demands apparatuses for continuous rapid monitoring in real time. This requires the creation of new bioanalytical methods that overcome the shortcomings of existing ones and are applicable for point-of-care diagnostics. [...] Read more.
The danger of the emergence of new viral diseases and their rapid spread demands apparatuses for continuous rapid monitoring in real time. This requires the creation of new bioanalytical methods that overcome the shortcomings of existing ones and are applicable for point-of-care diagnostics. For this purpose, a variety of biosensors have been developed and tested in proof-of-concept studies, but none of them have been introduced for commercial use so far. Given the importance of the problem, in this study, long-period grating (LPG) and surface plasmon resonance (SPR) biosensors, based on antibody detection, were examined, and their capabilities for SARS-CoV-2 structural proteins detection were established. Supersensitive detections of structural proteins in the order of several femtomoles were achieved by the LPG method, while the SPR method demonstrated a sensitivity of about one hundred femtomoles. The studied biosensors are compatible in sensitivity with ELISA and rapid antigen tests but, in contrast, they are quantitative, which makes them applicable for acute SARS-CoV-2 infection detection, especially during the early stages of viral replication. Full article
(This article belongs to the Special Issue Optical Fiber Biosensor)
Show Figures

Figure 1

20 pages, 10671 KiB  
Article
Novel Corrugated Long Period Grating Surface Balloon-Shaped Heterocore-Structured Plastic Optical Fibre Sensor for Microalgal Bioethanol Production
by Sanober Farheen Memon, Ruoning Wang, Bob Strunz, Bhawani Shankar Chowdhry, J. Tony Pembroke and Elfed Lewis
Sensors 2023, 23(3), 1644; https://doi.org/10.3390/s23031644 - 2 Feb 2023
Cited by 1 | Viewed by 2480
Abstract
A novel long period grating (LPG) inscribed balloon-shaped heterocore-structured plastic optical fibre (POF) sensor is described and experimentally demonstrated for real-time measurement of the ultra-low concentrations of ethanol in microalgal bioethanol production applications. The heterocore structure is established by coupling a 250 μm [...] Read more.
A novel long period grating (LPG) inscribed balloon-shaped heterocore-structured plastic optical fibre (POF) sensor is described and experimentally demonstrated for real-time measurement of the ultra-low concentrations of ethanol in microalgal bioethanol production applications. The heterocore structure is established by coupling a 250 μm core diameter POF between two 1000 μm diameter POFs, thus representing a large core—small core—large core configuration. Before coupling as a heterocore structure, the sensing region or small core fibre (SCF; i.e., 250 μm POF) is modified by polishing, LPG inscription, and macro bending into a balloon shape to enhance the sensitivity of the sensor. The sensor was characterized for ethanol–water solutions in the ethanol concentration ranges of 20 to 80 %v/v, 1 to 10 %v/v, 0.1 to 1 %v/v, and 0.00633 to 0.0633 %v/v demonstrating a maximum sensitivity of 3 × 106 %/RIU, a resolution of 7.9 × 10−6 RIU, and a limit of detection (LOD) of 9.7 × 10−6 RIU. The experimental results are included for the intended application of bioethanol production using microalgae. The characterization was performed in the ultra-low-level ethanol concentration range, i.e., 0.00633 to 0.03165 %v/v, that is present in real culturing and production conditions, e.g., ethanol-producing blue-green microalgae mixtures. The sensor demonstrated a maximum sensitivity of 210,632.8 %T/%v/v (or 5 × 106 %/RIU as referenced from the RI values of ethanol–water solutions), resolution of 2 × 10−4%v/v (or 9.4 × 10−6 RIU), and LOD of 4.9 × 10−4%v/v (or 2.3 × 10−5 RIU). Additionally, the response and recovery times of the sensor were investigated in the case of measurement in the air and the ethanol-microalgae mixtures. The experimentally verified, extremely high sensitivity and resolution and very low LOD corresponding to the initial rate of bioethanol production using microalgae of this sensor design, combined with ease of fabrication, low cost, and wide measurement range, makes it a promising candidate to be incorporated into the bioethanol production industry as a real-time sensing solution as well as in other ethanol sensing and/or RI sensing applications. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2022)
Show Figures

Figure 1

14 pages, 5049 KiB  
Article
Long Period Grating Mach–Zehnder Interferometer Based Immunosensor with Temperature and Bulk Refractive Index Compensation
by Peizhou Wu, Liangliang Liu, Stephen P. Morgan, Ricardo Correia and Serhiy Korposh
Biosensors 2022, 12(12), 1099; https://doi.org/10.3390/bios12121099 - 30 Nov 2022
Cited by 2 | Viewed by 2041
Abstract
A long period grating Mach–Zehnder interferometer (LPGMZI) that consists of two identical long period gratings (LPGs) in a single fibre was developed to measure immunoglobulin M (IgM). The measured spectrum has fringes due to the interference between the core mode and cladding mode. [...] Read more.
A long period grating Mach–Zehnder interferometer (LPGMZI) that consists of two identical long period gratings (LPGs) in a single fibre was developed to measure immunoglobulin M (IgM). The measured spectrum has fringes due to the interference between the core mode and cladding mode. This immunosensor inherits the advantages of an LPG and has the potential to compensate for unwanted signal changes due to bulk refractive index (RI) and temperature fluctuations by analysing interference fringes and their envelope. The external RI was measured from 1.3384 to 1.3670 in two different cases: (i) only the connecting section between the two LPGs is immersed or (ii) the whole LPGMZI is immersed. The fringes shift with an external RI in both scenarios, whereas the envelope stays still in case (i) or shifts at the same rate as the fringes in case (ii). The LPGMZI was also characterised at different temperatures between 25 °C and 30 °C by placing the whole LPGMZI in a water bath. The fringes and envelope shift at the same rate with temperature. The LPGMZI platform was then used to create an IgM immunosensor. The connecting section between the two LPGs was functionalised with anti-IgM and immersed into solutions with IgM concentrations from 20 μg/mL to 320 μg/mL. The fringes shift with IgM concentration and the envelope remains static. The results from this work show that LPGMZI has the potential to compensate for the temperature and bulk RI fluctuations and perform as a portable biosensor platform. Full article
(This article belongs to the Special Issue Lab on Fiber Optrodes: Towards Point of Care Applications)
Show Figures

Figure 1

12 pages, 1927 KiB  
Article
Improvement of Fiber Bragg Grating Wavelength Demodulation System by Cascading Generative Adversarial Network and Dense Neural Network
by Shuna Li, Sufen Ren, Shengchao Chen and Benguo Yu
Appl. Sci. 2022, 12(18), 9031; https://doi.org/10.3390/app12189031 - 8 Sep 2022
Cited by 16 | Viewed by 2744
Abstract
A high-performance, low-cost demodulation system is essential for fiber-optic sensor-based measurement applications. This paper presents a demodulation system for FBG sensors based on a long-period fiber grating (LPG) driven by artificial intelligence techniques. The LPG is applied as an edge filter to convert [...] Read more.
A high-performance, low-cost demodulation system is essential for fiber-optic sensor-based measurement applications. This paper presents a demodulation system for FBG sensors based on a long-period fiber grating (LPG) driven by artificial intelligence techniques. The LPG is applied as an edge filter to convert the spectrum drift of the FBG sensor into transmitted intensity variation, which is subsequently fed to the proposed sensor demodulation network to provide high-precision wavelength interrogation. The sensor demodulation network consists of a generative adversarial network (GAN) for data augmentation and a dense neural network (DNN) for wavelength interrogation, the former addresses the drawback that traditional machine learning models rely on a large-scale dataset for satisfactory performance, while the latter is used to model the relationship between transmitted intensity and wavelength for demodulation. Experiments demonstrate that the proposed system has excellent performance and can achieve wavelength interrogation precision of ±3 pm. In addition, the effectiveness of the GAN is demonstrated. With a wide demodulation range, high performance, and low cost, the system can provide a new platform for fiber-optic sensor-based measurement applications. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

45 pages, 17409 KiB  
Review
Phase-Inserted Fiber Gratings and Their Applications to Optical Filtering, Optical Signal Processing, and Optical Sensing: Review
by Chengliang Zhu, Lei Wang and Hongpu Li
Photonics 2022, 9(4), 271; https://doi.org/10.3390/photonics9040271 - 18 Apr 2022
Cited by 9 | Viewed by 5426
Abstract
Phase-inserted fiber gratings (PI-FGs) refer to those gratings where there exist a number of the phase-shifts (spatial spacing) among different sections (or local periods) of the gratings themselves. All the PI-FGs developed to date can mainly be divided into three categories: phase-shifted gratings, [...] Read more.
Phase-inserted fiber gratings (PI-FGs) refer to those gratings where there exist a number of the phase-shifts (spatial spacing) among different sections (or local periods) of the gratings themselves. All the PI-FGs developed to date can mainly be divided into three categories: phase-shifted gratings, phase-only sampled gratings, and phase-modulated gratings, of which the utilized gratings could be either the Bragg ones (FBGs) or the long-period ones (LPGs). As results of the proposed the PI-FGs where the numbers, quantities, and positions of the inserted phases along the fiber direction are optimally selected, PI-FGs have already been designed and used as various complex filters such as the ultra-narrow filters, the triangular (edge) filters, the high channel-count filters, and the flat-top band-pass/band-stop filters, which, however, are extremely difficult or even impossible to be realized by using the ordinary fiber gratings. In this paper, we have briefly but fully reviewed the past and recent advances on PI-FGs, in which the principles and design methods, the corresponding fabrication techniques, and applications of the different PI-FGs to the fields of optical filtering, optical signal processing, and optical sensing, etc., have been highlighted. Full article
(This article belongs to the Special Issue Advancements in Fiber Bragg Grating Research II)
Show Figures

Figure 1

22 pages, 4062 KiB  
Review
Optical Fiber Interferometers Based on Arc-Induced Long Period Gratings at INESC TEC
by Paulo Caldas and Gaspar Rego
Sensors 2021, 21(21), 7400; https://doi.org/10.3390/s21217400 - 7 Nov 2021
Cited by 7 | Viewed by 3295
Abstract
In this work, we review the most important achievements of an INESC TEC long-period-grating-based fiber optic Michelson and Mach–Zehnder configuration modal interferometer with coherence addressing and heterodyne interrogation as a sensing structure for measuring environmental refractive index and temperature. The theory for Long [...] Read more.
In this work, we review the most important achievements of an INESC TEC long-period-grating-based fiber optic Michelson and Mach–Zehnder configuration modal interferometer with coherence addressing and heterodyne interrogation as a sensing structure for measuring environmental refractive index and temperature. The theory for Long Period Grating (LPG) interferometers and coherence addressing and heterodyne interrogation is presented. To increase the sensitivity to external refractive index and temperature, several LPG interferometers parameters are studied, including order of cladding mode, a reduction of the fiber diameter, different type of fiber, cavity length and the antisymmetric nature of cladding modes. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technology in Portugal 2020-2021)
Show Figures

Figure 1

21 pages, 10953 KiB  
Article
Label-Free Creatinine Optical Sensing Using Molecularly Imprinted Titanium Dioxide-Polycarboxylic Acid Hybrid Thin Films: A Preliminary Study for Urine Sample Analysis
by Seung-Woo Lee, Soad Ahmed, Tao Wang, Yeawon Park, Sota Matsuzaki, Shinichi Tatsumi, Shigekiyo Matsumoto, Sergiy Korposh and Steve James
Chemosensors 2021, 9(7), 185; https://doi.org/10.3390/chemosensors9070185 - 17 Jul 2021
Cited by 11 | Viewed by 4066
Abstract
Creatinine (CR) is a representative metabolic byproduct of muscles, and its sensitive and selective detection has become critical in the diagnosis of kidney diseases. In this study, poly(acrylic acid) (PAA)-assisted molecularly imprinted (MI) TiO2 nanothin films fabricated via liquid phase deposition (LPD) [...] Read more.
Creatinine (CR) is a representative metabolic byproduct of muscles, and its sensitive and selective detection has become critical in the diagnosis of kidney diseases. In this study, poly(acrylic acid) (PAA)-assisted molecularly imprinted (MI) TiO2 nanothin films fabricated via liquid phase deposition (LPD) were employed for CR detection. The molecular recognition properties of the fabricated films were evaluated using fiber optic long period grating (LPG) and quartz crystal microbalance sensors. Imprinting effects were examined compared with nonimprinted (NI) pure TiO2 and PAA-assisted TiO2 films fabricated similarly without a template. In addition, the surface modification of the optical fiber section containing the LPG with a mesoporous base coating of silica nanoparticles, which was conducted before LPD-based TiO2 film deposition, contributed to the improvement of the sensitivity of the MI LPG sensor. The sensitivity and selectivity of LPGs coated with MI films were tested using CR solutions dissolved in different pH waters and artificial urine (near pH 7). The CR binding constants of the MI and NI films, which were calculated from the Benesi–Hildebrand plots of the wavelength shifts of the second LPG band recorded in water at pH 4.6, were estimated to be 67 and 7.8 M1, respectively, showing an almost ninefold higher sensitivity in the MI film. The mechanism of the interaction between the template and the TiO2 matrix and the film composition was investigated via ultraviolet–visible and attenuated total reflectance Fourier-transform infrared spectroscopy along with X-ray photoelectron spectroscopy analysis. In addition, morphological studies using a scanning electron microscope and atomic force microscope were conducted. The proposed system has the potential for practical use to determine CR levels in urine samples. This LPG-based label-free CR biosensor is innovative and expected to be a new tool to identify complex biomolecules in terms of its easy fabrication and simplicity in methodology. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Figure 1

17 pages, 5362 KiB  
Article
Numerical Analysis of Radiation Effects on Fiber Optic Sensors
by Sohel Rana, Harish Subbaraman, Austin Fleming and Nirmala Kandadai
Sensors 2021, 21(12), 4111; https://doi.org/10.3390/s21124111 - 15 Jun 2021
Cited by 14 | Viewed by 4056
Abstract
Optical fiber sensors (OFS) are a potential candidate for monitoring physical parameters in nuclear environments. However, under an irradiation field the optical response of the OFS is modified via three primary mechanisms: (i) radiation-induced attenuation (RIA), (ii) radiation-induced emission (RIE), and (iii) radiation-induced [...] Read more.
Optical fiber sensors (OFS) are a potential candidate for monitoring physical parameters in nuclear environments. However, under an irradiation field the optical response of the OFS is modified via three primary mechanisms: (i) radiation-induced attenuation (RIA), (ii) radiation-induced emission (RIE), and (iii) radiation-induced compaction (RIC). For resonance-based sensors, RIC plays a significant role in modifying their performance characteristics. In this paper, we numerically investigate independently the effects of RIC and RIA on three types of OFS widely considered for radiation environments: fiber Bragg grating (FBG), long-period grating (LPG), and Fabry-Perot (F-P) sensors. In our RIC modeling, experimentally calculated refractive index (RI) changes due to low-dose radiation are extrapolated using a power law to calculate density changes at high doses. The changes in RI and length are subsequently calculated using the Lorentz–Lorenz relation and an established empirical equation, respectively. The effects of both the change in the RI and length contraction on OFS are modeled for both low and high doses using FIMMWAVE, a commercially available vectorial mode solver. An in-depth understanding of how radiation affects OFS may reveal various potential OFS applications in several types of radiation environments, such as nuclear reactors or in space. Full article
(This article belongs to the Special Issue Optical Fiber Sensors in Radiation Environments)
Show Figures

Figure 1

9 pages, 1609 KiB  
Communication
Loss-Modulation-Based Wavelength-Range Shifting of Tunable EDF Ring Laser with Cascaded-Chirped Long-Period Fiber Grating for Temperature Measurement
by Koken Fukushima, Manuel Guterres Soares, Atsushi Wada, Satoshi Tanaka and Fumihiko Ito
Sensors 2021, 21(7), 2342; https://doi.org/10.3390/s21072342 - 27 Mar 2021
Cited by 7 | Viewed by 3019
Abstract
A novel tunable Erbium-doped fiber ring laser (EDFRL) with a cascaded-chirped long-period fiber grating (C-CLPG) as a wavelength selection filter is proposed from the viewpoint of the sensor use, in which a variable optical attenuator (VOA) is employed as an intracavity loss modulator [...] Read more.
A novel tunable Erbium-doped fiber ring laser (EDFRL) with a cascaded-chirped long-period fiber grating (C-CLPG) as a wavelength selection filter is proposed from the viewpoint of the sensor use, in which a variable optical attenuator (VOA) is employed as an intracavity loss modulator to change the oscillation wavelength region so that the resultant tuning wavelength range is widened. In the demonstrative experiment for temperature measurements, oscillation over the wavelength range of 12.85 nm (1557.62~1570.47 nm), which is more than three times range of the previously presented laser and is equivalent to 64 °C in terms of temperature change, was achieved, while a single-wavelength oscillation was maintained. In addition, a practical technique for realizing a temperature measurement by combining with the VOA control is also discussed. Full article
Show Figures

Figure 1

14 pages, 4937 KiB  
Communication
UV Inscription and Pressure Induced Long-Period Gratings through 3D Printed Amplitude Masks
by Ricardo Oliveira, Liliana M. Sousa, Ana M. Rocha, Rogério Nogueira and Lúcia Bilro
Sensors 2021, 21(6), 1977; https://doi.org/10.3390/s21061977 - 11 Mar 2021
Cited by 15 | Viewed by 2970
Abstract
In this work, we demonstrate for the first time the capability to inscribe long-period gratings (LPGs) with UV radiation using simple and low cost amplitude masks fabricated with a consumer grade 3D printer. The spectrum obtained for a grating with 690 µm period [...] Read more.
In this work, we demonstrate for the first time the capability to inscribe long-period gratings (LPGs) with UV radiation using simple and low cost amplitude masks fabricated with a consumer grade 3D printer. The spectrum obtained for a grating with 690 µm period and 38 mm length presented good quality, showing sharp resonances (i.e., 3 dB bandwidth < 3 nm), low out-of-band loss (~0.2 dB), and dip losses up to 18 dB. Furthermore, the capability to select the resonance wavelength has been demonstrated using different amplitude mask periods. The customization of the masks makes it possible to fabricate gratings with complex structures. Additionally, the simplicity in 3D printing an amplitude mask solves the problem of the lack of amplitude masks on the market and avoids the use of high resolution motorized stages, as is the case of the point-by-point technique. Finally, the 3D printed masks were also used to induce LPGs using the mechanical pressing method. Due to the better resolution of these masks compared to ones described on the state of the art, we were able to induce gratings with higher quality, such as low out-of-band loss (0.6 dB), reduced spectral ripples, and narrow bandwidths (~3 nm). Full article
(This article belongs to the Special Issue 25 Years of Long-Period Fiber Gratings)
Show Figures

Figure 1

13 pages, 1974 KiB  
Article
Refractive Index Sensors Based on Long-Period Grating in a Negative Curvature Hollow-Core Fiber
by Hanna Izabela Stawska and Maciej Andrzej Popenda
Sensors 2021, 21(5), 1803; https://doi.org/10.3390/s21051803 - 5 Mar 2021
Cited by 15 | Viewed by 3284
Abstract
Long-period optical fiber gratings (LPGs) are one of the widely used concepts for the sensing of refractive index (RI) changes. Negative curvature hollow-core fibers (NCHCFs), with their relatively large internal diameters that are easy to fill with liquids, appear as a very interesting [...] Read more.
Long-period optical fiber gratings (LPGs) are one of the widely used concepts for the sensing of refractive index (RI) changes. Negative curvature hollow-core fibers (NCHCFs), with their relatively large internal diameters that are easy to fill with liquids, appear as a very interesting medium to combine with the idea of LPGs and use for RI sensing. However, to date, there has been no investigation of the RI sensing capabilities of the NCHCF-based LPGs. The results presented in the paper do not only address this matter, but also compare the RI sensitivities of the NCHCFs alone and the gratings. By modeling two revolver-type fibers, with their internal diameters reflecting the results of the possible LPG-inscription process, the authors show that the fibers’ transmission windows shift in response to the RI change, resulting in changes in RI sensitivities as high as −4411 nm/RIU. On the contrary, the shift in the transmission dip of the NCHCF-based LPGs corresponds to a sensitivity of −658 nm/RIU. A general confirmation of these results was ensured by comparing the analytical formulas describing the sensitivities of the NCHCFs and the NCHCF-based LPGs. Full article
(This article belongs to the Special Issue Advanced Fiber Photonic Devices and Sensors)
Show Figures

Figure 1

11 pages, 2101 KiB  
Letter
Analysis of Long Period Gratings Inscribed by CO2 Laser Irradiation and Estimation of the Refractive Index Modulation
by Ana M. Rocha, Ana I. Machado, Telmo Almeida, Joana Vieira and Margarida Facão
Sensors 2020, 20(22), 6409; https://doi.org/10.3390/s20226409 - 10 Nov 2020
Cited by 3 | Viewed by 2020
Abstract
Long period gratings (LPGs) inscribed in single mode fibers (SMFs) using CO2 laser irradiation were modelled numerically using the coupled mode method. The model considers the specifications of the inscription technique, such as the shape of the refractive index modulation that mimics [...] Read more.
Long period gratings (LPGs) inscribed in single mode fibers (SMFs) using CO2 laser irradiation were modelled numerically using the coupled mode method. The model considers the specifications of the inscription technique, such as the shape of the refractive index modulation that mimics the circularly symmetric point-to-point laser irradiation profile. A simple expression for predicting the resonant wavelength was obtained assuming a two-mode coupling model. However, to explain the spectra of the experimental LPGs, it was necessary to assume a reasonably high refractive index change and a multimode coupling model. Furthermore, using the developed model and a genetic algorithm to fit experimental resonances to simulated ones, we were able to estimate the maximum refractive index change, obtaining a value of 2.2 × 10−3, confirming the high refractive index change. The proposed model also predicts a second order resonance for this high value of refractive index change that was confirmed experimentally. Hence, with this model, we found some significant differences in the LPGs behavior when compared with conventional ones, namely, the emergence of coupling between different cladding modes and the competition of first and second order resonances which change the LPG transmission spectrum. Full article
(This article belongs to the Special Issue 25 Years of Long-Period Fiber Gratings)
Show Figures

Figure 1

Back to TopTop