UV Inscription and Pressure Induced Long-Period Gratings through 3D Printed Amplitude Masks
Abstract
:1. Introduction
2. Materials and Methods
2.1. 3D Printed Amplitude Mask Fabrication
2.2. UV Inscription of LPGs through 3D Printed Amplitude Masks
2.3. Pressure Induced LPGs through 3D Printed Amplitude Masks
3. Experimental Results
3.1. UV Inscription of LPGs with 3D Printed Amplitude Masks
3.2. Pressure Induced LPG through 3D Printed Amplitude Masks
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vengsarkar, A.M.; Lemaire, P.J.; Judkins, J.B.; Bhatia, V.; Erdogan, T.; Sipe, J.E. Long-period fiber gratings as band-rejection filters. J. Lightwave Technol. 1996, 14, 58–65. [Google Scholar] [CrossRef]
- Vengsarkar, A.M.; Bergano, N.S.; Davidson, C.R.; Pedrazzani, J.R.; Judkins, J.B.; Lemaire, P.J. Long-period fiber-grating-based gain equalizers. Opt. Lett. 1996, 21, 336. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, C.W.; Vengsarkar, A.M. Spectrally shaped high-power amplified spontaneous emission sources incorporating long-period gratings. In Proceedings of the Optical Fiber Communications Conference; Optical Society of America: San Jose, CA, USA, 1996; Volume 2, pp. 29–30. [Google Scholar]
- Swart, P.L. Long-period grating filter with tunable attenuation for spectral equalization of erbium-doped fiber broadband light sources. Opt. Eng. 2004, 43, 280. [Google Scholar] [CrossRef]
- James, S.; Tatam, R. Optical fibre long-period grating sensors: Characteristics and application. Meas. Sci. Technol. 2003, 14, R49–R61. [Google Scholar] [CrossRef] [Green Version]
- Almeida, T.; Oliveira, R.; André, P.; Rocha, A.; Facão, M.; Nogueira, R. An automated technique to inscribe reproducible long-period gratings using a CO2 laser splicer. Opt. Lett. 2017, 42, 1994–1997. [Google Scholar] [CrossRef]
- Heck, M.; Krämer, R.G.; Ullsperger, T.; Goebel, T.A.; Richter, D.; TÜnnermann, A.; Nolte, S. Efficient long period fiber gratings inscribed with femtosecond pulses and an amplitude mask. Opt. Lett. 2019, 44, 3980–3983. [Google Scholar] [CrossRef]
- Almeida, T.; Shahpari, A.; Rocha, A.; Oliveira, R.; Guiomar, F.; Pinto, A.; Teixeira, A.; André, P.; Nogueira, R. Experimental Demonstration of Selective Core Coupling in Multicore Fibers of a 200 Gb/s DP-16QAM Signal. In Proceedings of the Optical Fiber Communication Conference; OSA: San Jose, CA, USA, 2016. [Google Scholar]
- Palai, P.; Satyanarayan, M.N.; Das, M.; Thyagarajan, K.; Pal, B.P. Characterization and simulation of long period gratings fabricated using electric discharge. Opt. Commun. 2001, 193, 181–185. [Google Scholar] [CrossRef]
- Savin, S.; Digonnet, M.J.F.; Kino, G.S.; Shaw, H.J. Tunable mechanically induced long-period fiber gratings. Opt. Lett. 2000, 25, 710–712. [Google Scholar] [CrossRef]
- Iezzi, V.L.; Boisvert, J.S.; Loranger, S.; Kashyap, R. 3D printed long period gratings for optical fibers. Opt. Lett. 2016, 41, 1865–1868. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, Y.; Lee, J.H. A 3-D-printed, temperature sensor based on mechanically-induced long period fibre gratings. J. Mod. Opt. 2020, 67, 469–474. [Google Scholar] [CrossRef]
- Rego, G.; Fernandes, J.R.A.; Santos, J.L.; Salgado, H.M.; Marques, P.V.S. New technique to mechanically induce long-period fibre gratings. Opt. Commun. 2003, 220, 111–118. [Google Scholar] [CrossRef]
- Yokouchi, T.; Suzaki, Y.; Nakagawa, K.; Yamauchi, M.; Kimura, M.; Mizutani, Y.; Kimura, S.; Ejima, S. Thermal tuning of mechanically induced long-period fiber grating. Appl. Opt. 2005, 44, 5024–5028. [Google Scholar] [CrossRef]
- Torres-Gómez, I.; Ceballos-Herrera, D.E.; Salas-Alcantara, K.M. Mechanically-induced long-period fiber gratings using laminated plates. Sensors 2020, 20, 2582. [Google Scholar] [CrossRef]
- Fujimaki, M.; Ohki, Y.; Brebner, J.L.; Roorda, S. Fabrication of long-period optical fiber gratings by use of ion implantation. Opt. Lett. 2000, 25, 88–89. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wang, L.A.; Chern, G.W. Corrugated long-period fiber gratings as strain, torsion, and bending sensors. J. Lightwave Technol. 2001, 19, 1159–1168. [Google Scholar] [CrossRef]
- Grubsky, V.; Feinberg, J. Fabrication of axially symmetric long-period gratings with a carbon dioxide laser. IEEE Photonics Technol. Lett. 2006, 18, 2296–2298. [Google Scholar] [CrossRef]
- Tian, F.; Kanka, J.; Zou, B.; Chiang, K.S.; Du, H. Long-period gratings inscribed in photonic crystal fiber by symmetric CO2 laser irradiation. Opt. Express 2013, 21, 13208–13218. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.T.; Han, W.T.; Paek, U.C.; Chung, Y. Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser. Microw. Opt. Technol. Lett. 2004, 41, 188–190. [Google Scholar] [CrossRef]
- Lu, W.; Lu, L.; Feng, F.; Shi, J. Low-cost amplitude mask for long-period grating fabrication. Optik 2014, 125, 3462–3464. [Google Scholar] [CrossRef]
- Patrick, H.J.; Askins, C.G.; McElhanon, R.W.; Friebele, E.J. Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings. Electron. Lett. 1997, 33, 1167–1168. [Google Scholar] [CrossRef]
- O’Regan, B.J.; Nikogosyan, D.N. Femtosecond UV long-period fibre grating fabrication with amplitude mask technique. Opt. Commun. 2011, 284, 5650–5654. [Google Scholar] [CrossRef]
- Liu, S.Y.; Tam, H.Y.; Demokan, M.S. Low-cost microlens array for long-period grating fabrication. Electron. Lett. 1999, 35, 79–81. [Google Scholar] [CrossRef]
- Hull, C.W. Apparatus for Production of Three-Dimensional Objects by Stereolithography. US4575330A, 11 March 1986. [Google Scholar]
- Chu, Y.; Fu, X.; Luo, Y.; Canning, J.; Tian, Y.; Cook, K.; Zhang, J.; Peng, G.-D. Silica optical fiber drawn from 3D printed preforms. Opt. Lett. 2019, 44, 5358–5361. [Google Scholar] [CrossRef]
- Berglund, G.D.; Tkaczyk, T.S. Fabrication of optical components using a consumer-grade lithographic printer. Opt. Express 2019, 27, 30405–30420. [Google Scholar] [CrossRef]
- Lindenmann, N.; Dottermusch, S.; Goedecke, M.L.; Hoose, T.; Billah, M.R.; Onanuga, T.P.; Hofmann, A.; Freude, W.; Koos, C. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. J. Lightwave Technol. 2015, 33, 755–760. [Google Scholar] [CrossRef] [Green Version]
- Anycubic 3D Printing. Available online: https://www.anycubic.com (accessed on 2 February 2021).
- MacDougall, T.W.; Pilevar, S.; Haggans, C.W.; Jackson, M.A. Generalized expression for the growth of long period gratings. IEEE Photonics Technol. Lett. 1998, 10, 1449–1451. [Google Scholar] [CrossRef]
- Mizunami, T.; Fukuda, T.; Hayashi, A. Fabrication and characterization of long-period-grating temperature sensors using Ge-B-co-doped photosensitive fibre and single-mode fibre. Meas. Sci. Technol. 2004, 15, 1467–1473. [Google Scholar] [CrossRef]
- Erdogan, T. Fiber grating spectra. J. Lightwave Technol. 1997, 15, 1277–1294. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.; Zhang, L.; Bennion, I. Sensitivity characteristics near the dispersion turning points of long-period fiber gratings in B/Ge codoped fiber. Opt. Lett. 2001, 26, 1755–1757. [Google Scholar] [CrossRef]
Grating | Dip Resonance | Wavelength (nm) | Dip Loss (dB) | 3 dB Bandwidth (nm) |
---|---|---|---|---|
1st LPG 1 | 1st | 1317.8 | 4.5 | 15.0 |
2nd | 1404.1 | 11.6 | 3.2 | |
3rd | 1586.2 | 17.7 | 2.8 | |
2nd LPG 2 | 1st | 1316.7 | 8.0 | 6.6 |
2nd | 1402.5 | 11.9 | 2.8 | |
3rd | 1585.6 | 17.4 | 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, R.; Sousa, L.M.; Rocha, A.M.; Nogueira, R.; Bilro, L. UV Inscription and Pressure Induced Long-Period Gratings through 3D Printed Amplitude Masks. Sensors 2021, 21, 1977. https://doi.org/10.3390/s21061977
Oliveira R, Sousa LM, Rocha AM, Nogueira R, Bilro L. UV Inscription and Pressure Induced Long-Period Gratings through 3D Printed Amplitude Masks. Sensors. 2021; 21(6):1977. https://doi.org/10.3390/s21061977
Chicago/Turabian StyleOliveira, Ricardo, Liliana M. Sousa, Ana M. Rocha, Rogério Nogueira, and Lúcia Bilro. 2021. "UV Inscription and Pressure Induced Long-Period Gratings through 3D Printed Amplitude Masks" Sensors 21, no. 6: 1977. https://doi.org/10.3390/s21061977
APA StyleOliveira, R., Sousa, L. M., Rocha, A. M., Nogueira, R., & Bilro, L. (2021). UV Inscription and Pressure Induced Long-Period Gratings through 3D Printed Amplitude Masks. Sensors, 21(6), 1977. https://doi.org/10.3390/s21061977