Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = long-fiber-reinforced thermoplastics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 13801 KB  
Article
Multiscale Interlaminar Enhancement of CNT Network/CF Hybrid Composites and In Situ Monitoring of Crack Propagation Behavior
by Tianshu Li, Fenghui Shi, Hongchen Yan, Min Li, Shaokai Wang, Yizhuo Gu and Baoyan Zhang
Polymers 2026, 18(2), 293; https://doi.org/10.3390/polym18020293 - 21 Jan 2026
Viewed by 105
Abstract
It has long been desired to achieve mechanical enhancement and structural health monitoring by introducing carbon nanotubes (CNTs) into traditional carbon fiber (CF) composites. Herein, the initiation of micro-damage and crack propagation has been investigated by utilizing in situ electrical resistance changes in [...] Read more.
It has long been desired to achieve mechanical enhancement and structural health monitoring by introducing carbon nanotubes (CNTs) into traditional carbon fiber (CF) composites. Herein, the initiation of micro-damage and crack propagation has been investigated by utilizing in situ electrical resistance changes in interlaminar hybrid CNT network/CF composites during the shear loading process. The results show a clear relationship between the crack propagation and the electrical resistance response particularly when approaching the failure of the single-layer CNT network hybrid composites. Furthermore, the chemically modified CNT network exhibits evident enhancement on main mechanical properties of the CF composites, superior to the thermoplastic toughening method. The characterizations manifest that the multiscale interlayered CNT/CF structure can simultaneously resist the crack propagation along both the in-plane direction and the cross-plane direction, which consequently enhances the flexural and compressive strengths of the composite material. This discovery provides a novel idea for the potential application of CNT network/CF hybrid composites in the integration of mechanical reinforcement and structural health monitoring, namely, that the CNT network acts not only as a reinforcing phase but also as a sensor for the structural health monitoring of the composites. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

17 pages, 7009 KB  
Article
Performance Degradation Mechanism of Hemp Fiber-Reinforced Polypropylene Composites Under Accelerated Aging
by Wei Guo, Xiaorui Liu, Feng Zhao, Huayao Huang and Bo Li
Polymers 2025, 17(24), 3309; https://doi.org/10.3390/polym17243309 - 14 Dec 2025
Viewed by 410
Abstract
In the context of increasing resource scarcity and environmental concerns, the development of green composite materials is essential for promoting sustainability in the automotive industry. However, poor interfacial compatibility between plant fibers and polypropylene (PP), as well as the performance deterioration under complex [...] Read more.
In the context of increasing resource scarcity and environmental concerns, the development of green composite materials is essential for promoting sustainability in the automotive industry. However, poor interfacial compatibility between plant fibers and polypropylene (PP), as well as the performance deterioration under complex environmental aging conditions, severely limits their engineering applications. In this study, a synergistic interfacial modification strategy combining alkali treatment of hemp fibers (HFs) with polypropylene grafted maleic anhydride (PP-g-MAH) was employed to enhance fiber–matrix interaction. Hemp fiber-reinforced polypropylene composites (HFRPs) with varying fiber contents (7.5–30 wt%) were fabricated via injection molding. Accelerated aging tests were conducted on the compatibilized HFRPs for up to 2400 h under ultraviolet–thermal–moisture coupled conditions, in accordance with the SAE J2527 standard. The evolution of surface color, mechanical properties, chemical structure, and microstructure was systematically characterized. After aging, surface whitening of the composites was observed. Tensile strength and impact strength decreased by 9.57–22.12% and 38.68–46.03%, respectively, while flexural strength remained relatively stable due to the supporting effect of the fiber skeleton. The aging of compatibilized HFRPs follows an outside-in progressive degradation mechanism, characterized by a stepwise cascade of surface oxidation, crack propagation, moisture ingress, interfacial degradation, and mechanical performance deterioration. These findings offer valuable insights into the long-term durability of natural fiber-reinforced thermoplastic composites and provide theoretical and practical guidance for their structural design and application in demanding service environments. Full article
Show Figures

Figure 1

16 pages, 2115 KB  
Article
Hygrothermal Aging and Thermomechanical Characterization of As-Manufactured Tidal Turbine Blade Composites
by Paul Murdy, Robynne E. Murray, David Barnes, Ariel F. Lusty, Erik G. Rognerud, Peter J. Creveling and Daniel Samborsky
J. Mar. Sci. Eng. 2025, 13(9), 1790; https://doi.org/10.3390/jmse13091790 - 16 Sep 2025
Cited by 1 | Viewed by 733
Abstract
This study investigates the hygrothermal aging behavior and thermomechanical properties of as-manufactured glass fiber-reinforced epoxy and thermoplastic composite tidal turbine blades. The blades were previously deployed in a marine environment and subsequently analyzed through a comprehensive suite of material characterization techniques, including hygrothermal [...] Read more.
This study investigates the hygrothermal aging behavior and thermomechanical properties of as-manufactured glass fiber-reinforced epoxy and thermoplastic composite tidal turbine blades. The blades were previously deployed in a marine environment and subsequently analyzed through a comprehensive suite of material characterization techniques, including hygrothermal aging, dynamic mechanical analysis (DMA), tensile testing and X-ray computed tomography (XCT). Hygrothermal aging experiments revealed that while thermoplastic composites exhibited lower overall water absorption (0.78% vs. 0.47%), they had significantly higher diffusion coefficients than epoxy (2.1 vs. 12.1 × 10−13 m2s−1), suggesting faster saturation in operational environments. DMA results demonstrated that water ingress caused plasticization in epoxy matrices, reducing the glass transition temperature and increasing damping (112 °C to 104 °C), while thermoplastic composites showed more stable thermal behavior (87 °C glass transition temperature). Tensile testing revealed substantial reductions in ultimate strength (>40%) for both materials after prolonged water exposure, with minimal change in elastic modulus, highlighting the role of matrix degradation over fiber reinforcement. XCT image analysis showed that both composites were manufactured with high quality: no large voids or cracks were present, and the degree of misalignment was low. These findings inform future marine renewable energy composite designs by emphasizing the critical influence of moisture on long-term structural integrity and the need for optimized material systems in harsh marine environments. This work provides a rare real-world comparison of epoxy and recyclable thermoplastic tidal turbine blades, showing how laboratory aging tests and advanced imaging reveal the influence of material and manufacturing choices on long-term marine durability. Full article
Show Figures

Figure 1

13 pages, 3483 KB  
Review
Review and Experimental Update on Manufacturing of Hybrid Carbon Fiber Composites for Space Use
by Alice Proietti, Dounia Noqra, Fabrizio Quadrini and Loredana Santo
Appl. Sci. 2025, 15(18), 9863; https://doi.org/10.3390/app15189863 - 9 Sep 2025
Cited by 1 | Viewed by 2384
Abstract
Hybrid materials have multifunctional capabilities that are particularly attractive for space applications in order to overcome issues related to the harshness of the environment, especially during long-duration missions. Hybridization is traditionally carried out by mixing reinforcements of different natures, such as carbon with [...] Read more.
Hybrid materials have multifunctional capabilities that are particularly attractive for space applications in order to overcome issues related to the harshness of the environment, especially during long-duration missions. Hybridization is traditionally carried out by mixing reinforcements of different natures, such as carbon with glass/kevlar fibers, or by integrating nanomaterials into the composite structure. Promising results in terms of improved toughness, ductility, and damping ability have been recorded by placing a thermoplastic interlayer between adjacent thermosetting plies reinforced with carbon fibers. These hybrid materials have additional functionalities such as thermoformability and repairability, which make them suitable for several industrial applications. In this work, a literature review on hybrid composites is presented and experimental results on the manufacturing of hybrid carbon fiber epoxy/PEEK laminates are reported. Thermoplastic films of 25 μm and 200 μm thickness have been used as well as two manufacturing procedures. The high-thickness interlayer laminate, that was compression-molded at 250 °C, showed the highest mechanical properties with a bending strength of 340 MPa and an elastic moules of 50 GPa. The other composite, that was molded at 350 °C, exhibited reduced mechanical properties. Full article
(This article belongs to the Special Issue Feature Review Papers in Section Applied Industrial Technologies)
Show Figures

Figure 1

50 pages, 5366 KB  
Review
Fiber-Reinforced Composites Used in the Manufacture of Marine Decks: A Review
by Lahiru Wijewickrama, Janitha Jeewantha, G. Indika P. Perera, Omar Alajarmeh and Jayantha Epaarachchi
Polymers 2025, 17(17), 2345; https://doi.org/10.3390/polym17172345 - 29 Aug 2025
Cited by 4 | Viewed by 4773
Abstract
Fiber-reinforced composites (FRCs) have emerged as transformative alternatives to traditional marine construction materials, owing to their superior corrosion resistance, design flexibility, and strength-to-weight ratio. This review comprehensively examines the current state of FRC technologies in marine deck and underwater applications, with a focus [...] Read more.
Fiber-reinforced composites (FRCs) have emerged as transformative alternatives to traditional marine construction materials, owing to their superior corrosion resistance, design flexibility, and strength-to-weight ratio. This review comprehensively examines the current state of FRC technologies in marine deck and underwater applications, with a focus on manufacturing methods, durability challenges, and future innovations. Thermoset polymer composites, particularly those with epoxy and vinyl ester matrices, continue to dominate marine applications due to their mechanical robustness and processing maturity. In contrast, thermoplastic composites such as Polyether Ether Ketone (PEEK) and Polyether Ketone Ketone (PEKK) offer advantages in recyclability and hydrothermal performance but are hindered by higher processing costs. The review evaluates the performance of various fiber types, including glass, carbon, basalt, and aramid, highlighting the trade-offs between cost, mechanical properties, and environmental resistance. Manufacturing processes such as vacuum-assisted resin transfer molding (VARTM) and automated fiber placement (AFP) enable efficient production but face limitations in scalability and in-field repair. Key durability concerns include seawater-induced degradation, moisture absorption, interfacial debonding, galvanic corrosion in FRP–metal hybrids, and biofouling. The paper also explores emerging strategies such as self-healing polymers, nano-enhanced coatings, and hybrid fiber architectures that aim to improve long-term reliability. Finally, it outlines future research directions, including the development of smart composites with embedded structural health monitoring (SHM), bio-based resin systems, and standardized certification protocols to support broader industry adoption. This review aims to guide ongoing research and development efforts toward more sustainable, high-performance marine composite systems. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

20 pages, 5397 KB  
Article
Continuously Formed Fiber-Reinforced Thermoplastic Composite Rebar for Concrete Reinforcement
by Jacob C. Clark, William G. Davids, Roberto A. Lopez-Anido, Andrew P. Schanck and Cody A. Sheltra
J. Compos. Sci. 2025, 9(7), 378; https://doi.org/10.3390/jcs9070378 - 18 Jul 2025
Cited by 2 | Viewed by 2582
Abstract
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during [...] Read more.
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during construction. FRP reinforcing bars made with fiber-reinforced thermoplastic polymers (FRTP) address this limitation; however, their high processing viscosity presents manufacturing challenges. In this study, the Continuous Forming Machine, a novel pultrusion device that uses pre-consolidated fiber-reinforced thermoplastic tapes as feedstock, is described and used to fabricate 12.7 mm nominal diameter thermoplastic composite rebars. Simple bend tests on FRTP rebar that rely on basic equipment are performed to verify its ability to be field-formed. The manual bending technique demonstrated here is practical and straightforward, although it does result in some fiber misalignment. Subsequently, surface deformations are introduced to the rebar to promote mechanical bonding with concrete, and tensile tests of the bars are conducted to determine their mechanical properties. Finally, flexural tests of simply-supported, 6 m long beams reinforced with FRTP rebar are performed to assess their strength and stiffness as well as the practicality of using FRTP rebar. The beam tests demonstrated the prototype FRTP rebar’s potential for reinforcing concrete beams, and the beam load–deformation response and capacity agree well with predictions developed using conventional structural analysis principles. Overall, the results of the research reported indicate that thermoplastic rebars manufactured via the Continuous Forming Machine are a promising alternative to both steel and conventional thermoset composite rebar. However, both the beam and tension test results indicate that improvements in material properties, especially elastic modulus, are necessary to meet the requirements of current FRP rebar specifications. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

15 pages, 2854 KB  
Review
A Review on the Applications of Basalt Fibers and Their Composites in Infrastructures
by Wenlong Yan, Jianzhe Shi, Xuyang Cao, Meng Zhang, Lei Li and Jingyi Jiang
Buildings 2025, 15(14), 2525; https://doi.org/10.3390/buildings15142525 - 18 Jul 2025
Cited by 5 | Viewed by 2460
Abstract
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or [...] Read more.
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or grids, followed by concrete structures reinforced with BFRP bars, asphalt pavements, and cementitious composites reinforced with chopped basalt fibers in terms of mechanical behaviors and application examples. The load-bearing capacity of the strengthened structures can be increased by up to 60%, compared with those without strengthening. The lifespan of the concrete structures reinforced with BFRP can be extended by up to 50 years at least in harsh environments, which is much longer than that of ordinary reinforced concrete structures. In addition, the fatigue cracking resistance of asphalt can be increased by up to 600% with basalt fiber. The newly developed technologies including anchor bolts using BFRPs, self-sensing BFRPs, and BFRP–concrete composite structures are introduced in detail. Furthermore, suggestions are proposed for the forward-looking technologies, such as long-span bridges with BFRP cables, BFRP truss structures, BFRP with thermoplastic resin matrix, and BFRP composite piles. Full article
Show Figures

Figure 1

21 pages, 303 KB  
Review
Cytotoxicity and Endocrine Disruption in Materials Used for Removable Orthodontic Retainers: A Comprehensive Review
by Katarzyna Chojnacka and Marcin Mikulewicz
Dent. J. 2025, 13(6), 269; https://doi.org/10.3390/dj13060269 - 17 Jun 2025
Cited by 6 | Viewed by 4099
Abstract
Objective: To evaluate the cytotoxicity and endocrine-disrupting potential of materials used in removable orthodontic retainers. Methods: A literature search (2015–2025) covered in vitro cytotoxicity, estrogenicity, in vivo tissue responses, and clinical biomarkers in PMMA plates, thermoplastic foils, 3D-printed resins, PEEK, and fiber-reinforced composites. [...] Read more.
Objective: To evaluate the cytotoxicity and endocrine-disrupting potential of materials used in removable orthodontic retainers. Methods: A literature search (2015–2025) covered in vitro cytotoxicity, estrogenicity, in vivo tissue responses, and clinical biomarkers in PMMA plates, thermoplastic foils, 3D-printed resins, PEEK, and fiber-reinforced composites. Results: Thirty-eight in vitro and ten clinical studies met inclusion criteria, identified via a structured literature search of electronic databases (2015–2025). Photopolymer resins demonstrated the highest cytotoxicity, whereas thermoplastics and PMMA exhibited predominantly mild effects, which diminished further following 24 h water storage. Bisphenol-type compound release was reported, but systemic exposure remained below regulatory limits. No statistically significant mucosal alterations or endocrine-related effects were reported in clinical studies. Conclusions: Retainer materials are generally biocompatible, though data on long-term endocrine effects are limited. Standardized biocompatibility assessment protocols are necessary to enable comparative evaluation across diverse orthodontic materials. Single-use thermoplastics contribute to microplastic release and pose end-of-life management challenges, raising concerns regarding environmental sustainability. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
13 pages, 2360 KB  
Article
Relation Between Injection Molding Conditions, Fiber Length, and Mechanical Properties of Highly Reinforced Long Fiber Polypropylene: Part II Long-Term Creep Performance
by Jon Haitz Badiola, U. Astobitza, M. Iturrondobeitia, A. Burgoa, J. Ibarretxe and A. Arriaga
Polymers 2025, 17(12), 1630; https://doi.org/10.3390/polym17121630 - 12 Jun 2025
Cited by 2 | Viewed by 1308
Abstract
This study investigates the long-term mechanical performance of highly reinforced long glass fiber thermoplastic polypropylene composites, focusing on the effects of processing parameters, fiber length, and skin–core structures. Dynamic mechanical and creep analyses were conducted to evaluate the impact of injection molding on [...] Read more.
This study investigates the long-term mechanical performance of highly reinforced long glass fiber thermoplastic polypropylene composites, focusing on the effects of processing parameters, fiber length, and skin–core structures. Dynamic mechanical and creep analyses were conducted to evaluate the impact of injection molding on the final microstructure and long-term mechanical properties. The findings confirm that a significant microstructural change occurs at a fiber length of 1000 µm, which strongly influences the material’s mechanical behavior. Samples with fiber lengths above this threshold reveal greater creep resistance due to the reduced flowability that leads to more entangled, three-dimensional fiber networks in the core. This structure limits chain mobility and consequently improves the resistance to long-term deformation under load. Conversely, fiber lengths below 1000 µm promote a planar arrangement of fibers, which enhances chain relaxation, fiber orientation, and creep strain. Specifically, samples with fiber lengths exceeding 1000 µm exhibited up to a 15% lower creep strain compared to shorter fiber samples. Additionally, a direct relationship is observed between the findings in the viscoelastic response and quasi-static tensile properties from previous studies. Finally, the impact of the microstructure is more pronounced at low temperatures and becomes nearly negligible at high temperatures, indicating that beyond the glass transition temperature, the microstructural effect diminishes gradually until it becomes almost non-existent. Full article
(This article belongs to the Special Issue Advances in Polymer Molding and Processing)
Show Figures

Graphical abstract

18 pages, 2542 KB  
Article
From Plant to Polymers: Micro-Processing Sisal Fiber-Reinforced PLA/PHA Bio-LFTs at Laboratory Scale
by Rumeysa Yıldırım, Nursel Karakaya, Bas Liebau, Tim Welten, Beyza Bayram, Mehmet Kodal and Güralp Özkoç
Polymers 2025, 17(12), 1618; https://doi.org/10.3390/polym17121618 - 11 Jun 2025
Cited by 1 | Viewed by 1452
Abstract
This study explores the development of long fiber-reinforced thermoplastic (LFT) composites based on blends of poly(lactic acid) (PLA) and polyhydroxyalkanoate (PHA), reinforced with sisal fibers. A novel lab-scale LFT line was employed to fabricate the long fiber composites, effectively addressing the challenges associated [...] Read more.
This study explores the development of long fiber-reinforced thermoplastic (LFT) composites based on blends of poly(lactic acid) (PLA) and polyhydroxyalkanoate (PHA), reinforced with sisal fibers. A novel lab-scale LFT line was employed to fabricate the long fiber composites, effectively addressing the challenges associated with dispersing and processing high-aspect-ratio natural fibers. The rheological, mechanical, thermal, and morphological properties of the resulting bio-LFT composites were systematically characterized using FTIR, SEM, rotational rheology, mechanical testing, DSC, and TGA. The results demonstrated generally homogeneous fiber dispersion, although limited interfacial adhesion between the fibers and polymer matrix was observed. Mechanical tests revealed that sisal fiber incorporation significantly enhanced tensile strength and stiffness, while impact toughness decreased. Thermal analyses showed improved crystallinity and thermal stability with increasing PHA content and fiber reinforcement. Overall, this work highlights the potential of natural fibers to create high-performance, sustainable biocomposites and lays a solid foundation for future advancements in developing eco-friendly structural materials. Full article
Show Figures

Graphical abstract

13 pages, 3459 KB  
Article
Incremental Forming of Natural Fiber-Reinforced Polypropylene Composites: Considerations on Formability Limits and Energy Consumption
by Antonio Formisano, Dario De Fazio, Giuseppe Irace and Massimo Durante
Materials 2025, 18(12), 2688; https://doi.org/10.3390/ma18122688 - 7 Jun 2025
Cited by 2 | Viewed by 1078
Abstract
Incremental sheet forming originated as an excellent alternative to conventional forming techniques for incrementally deforming flat metal sheets into complex three-dimensional profiles. Recently, its use has been extended to polymers and composites. Among these, the use of natural fiber-reinforced composites is increasing considerably [...] Read more.
Incremental sheet forming originated as an excellent alternative to conventional forming techniques for incrementally deforming flat metal sheets into complex three-dimensional profiles. Recently, its use has been extended to polymers and composites. Among these, the use of natural fiber-reinforced composites is increasing considerably compared to synthetic fiber-reinforced composites, due to the availability and unique properties of natural fibers in polymer applications. One of the dominant thermoplastics used as a matrix is polypropylene. This experimental study focuses on the incremental forming of natural fiber-reinforced polypropylene composites. Cones and spherical caps were manufactured from composite laminates of polypropylene reinforced with hemp and flax long-fiber fabrics. The formability limits, observed through failures and defects, as well as the forming forces, power, and energy consumption, were investigated to examine the feasibility of incremental forming applied to these composite materials; based on the results obtained, it is possible to say that the process can manufacture components with not very high wall angles but under low load conditions and allowing to limit the energy impact. Full article
(This article belongs to the Special Issue Manufacturing and Recycling of Natural Fiber-Reinforced Composites)
Show Figures

Figure 1

34 pages, 11753 KB  
Review
Fused Deposition Modeling of Polymer Composites: Development, Properties and Applications
by Aldobenedetto Zotti, Teresa Paduano, Francesco Napolitano, Simona Zuppolini, Mauro Zarrelli and Anna Borriello
Polymers 2025, 17(8), 1054; https://doi.org/10.3390/polym17081054 - 14 Apr 2025
Cited by 13 | Viewed by 3697
Abstract
This review summarizes recent research advancements in thermoplastic composites used in Fused Deposition Modeling (FDM) processes. Since its development in 1988, FDM has emerged as one of the primary emerging technologies of Industry 4.0, receiving attention in fields such as industrial manufacturing, automotive, [...] Read more.
This review summarizes recent research advancements in thermoplastic composites used in Fused Deposition Modeling (FDM) processes. Since its development in 1988, FDM has emerged as one of the primary emerging technologies of Industry 4.0, receiving attention in fields such as industrial manufacturing, automotive, aerospace, and others, particularly for rapid prototyping and customization. The intention is to make available a guideline for 3D printing researchers, analyzing the properties and performance characteristics of different polymers and polymeric composites. The review analysis covers various reinforcing agents, including particles/nanoparticles, short fibers, and long fibers, identifying critical parameters of the FDM process which affect printed part quality, integrity and final geometry. Major attention is devoted to the different techniques employed for composite filament fabrication, mostly for structural elements and parts. An extensive overview of various FDM composites and fiber-reinforced composites by polymer matrices such as PLA, ABS, and PEEK is presented, with their mechanical and thermal properties reported for specific applications. Current challenges and prospective future research directions are also outlined, mainly focusing on the enhancement of material performance and sustainability. Full article
Show Figures

Graphical abstract

15 pages, 1550 KB  
Article
Optimization of Injection Molding Process for High-Strength and Lightweight Back Rest of Firefighters Using Carbon Fiber Composites of Long Fiber Thermoplastic with Flame Retardants
by Kyoung-Jae Min, Joon-Hyuk Song, Hyun Tak and Bhum-Keun Song
Materials 2025, 18(5), 1112; https://doi.org/10.3390/ma18051112 - 28 Feb 2025
Viewed by 1112
Abstract
This study focuses on reducing the weight of oxygen respirators in firefighters’ personal protective equipment (PPE), which currently accounts for about 56% of the total weight. The heavy PPE, weighing between 20 and 25 kg, restricts movement and can lead to musculoskeletal injuries. [...] Read more.
This study focuses on reducing the weight of oxygen respirators in firefighters’ personal protective equipment (PPE), which currently accounts for about 56% of the total weight. The heavy PPE, weighing between 20 and 25 kg, restricts movement and can lead to musculoskeletal injuries. To address this, the study investigates using a carbon fiber-reinforced composite for the backrest of the oxygen respirator to reduce weight while maintaining strength. The backrest was fabricated using a long-fiber thermoplastic (LFT) composite made with PA66 resin and 30wt.% carbon fiber content. Initially, the injection-molding process conditions were identified to achieve a tensile strength of 85 MPa or higher. Additionally, flame retardants were added to improve fire resistance, with AF-480 at 5 wt.% found to be the best option. Subsequently, optimal injection conditions were set by fabricating the back rest with the composite by applying the Taguchi method to satisfy the required tensile strength. As a result, the composite material achieved a 12.8% weight reduction while maintaining the required strength. This development is expected to significantly improve firefighter safety, leading to more effective firefighting and reduced human and property damage. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

19 pages, 5397 KB  
Article
Novel Processes for the Production of Continuous Carbon Fiber-Reinforced Thermoplastic Polymers via Additive Manufacturing and Comparisons
by Simon Zeidler, Nikolas Matkovic, Florian Kößler, Alexander Puchta and Jürgen Fleischer
Polymers 2025, 17(5), 584; https://doi.org/10.3390/polym17050584 - 22 Feb 2025
Cited by 1 | Viewed by 2320
Abstract
Continuous fiber-reinforced polymer (CoFRP) parts offer significant potential for reducing future product consumption and CO2 emissions due to their high tensile properties and low density. Additive manufacturing enables the tool-free production of complex geometries with optimal material utilization, making it a promising [...] Read more.
Continuous fiber-reinforced polymer (CoFRP) parts offer significant potential for reducing future product consumption and CO2 emissions due to their high tensile properties and low density. Additive manufacturing enables the tool-free production of complex geometries with optimal material utilization, making it a promising approach for creating load-path-optimized CoFRP parts. Recent advancements have integrated continuous fibers into laser sintering processes, allowing for the support-free production of complex parts with improved material properties. However, additive manufacturing faces challenges such as long production times, small component dimensions, and defects like high void content. New processes, including Arburg Polymer Freeforming (APF), robotic direct extrusion (DES) and the integration of thermoplastic tapes, and laser sintering, have enabled the production of CoFRPs to address these issues. A comparison of these new processes with existing material extrusion methods is necessary to determine the most suitable approach for specific tasks. The fulfillment factor is used to compare composites with different matrix and fiber materials, representing the percentage of experimentally achieved material properties relative to the theoretical maximum according to the Voigt model. The fulfillment factor varies significantly across different processes and materials. For FFF processes, the fulfillment factor ranges from 20% to 77% for stiffness and 14% to 84% for strength, with an average of 52% and 37%, respectively. APF shows a high fulfillment factor for stiffness (94%) but is lower for strength (23%), attributed to poor fiber–matrix bonding and process-induced pores. The new DES process improves the fulfillment factor due to additional consolidation steps, achieving above-average values for strength (67%). The CoFRP produced by the novel LS process also shows a high fulfillment factor for stiffness (85%) and an average fulfillment factor for strength (39%), influenced by suboptimal process parameters and defects. Full article
Show Figures

Figure 1

19 pages, 8782 KB  
Article
Polyvinyl Butyral Addition Effects on Notched Charpy Impact Strength of Injection-Molded Glass Fiber-Reinforced Polypropylene
by Tetsuo Takayama, Yuuki Yuasa and Quan Jiang
Polymers 2024, 16(24), 3472; https://doi.org/10.3390/polym16243472 - 12 Dec 2024
Cited by 3 | Viewed by 1726 | Correction
Abstract
Glass short fiber-reinforced thermoplastics (GSFRTPs) are a cost-effective alternative to other short fiber-reinforced thermoplastics (SFRTPs). Their excellent mechanical properties make them a suitable material for components that require rigidity and light weight in widely diverse fields, including transportation and office automation equipment. The [...] Read more.
Glass short fiber-reinforced thermoplastics (GSFRTPs) are a cost-effective alternative to other short fiber-reinforced thermoplastics (SFRTPs). Their excellent mechanical properties make them a suitable material for components that require rigidity and light weight in widely diverse fields, including transportation and office automation equipment. The melt-mixing process is used to shorten glass fibers. The notched impact strength of molded products is strongly affected by the fiber length. An important issue is how to conduct melt-molding processing while keeping the fibers long. In this regard, a survey of cases in which additives were used to increase the fiber length revealed no useful reports. However, a growing trend toward the reuse of plastic material wastes has emerged. When reusing GSFRTP wastes, the objective is to recycle the material as GSFRTPs. This promotion of the reuse of GSFRTPs necessitates the production of molded products with the fiber length maintained to the greatest extent feasible. Moreover, GSFRTPs should be recycled in a manner consistent with the original GSFRTPs. In recent years, there has also been a growing movement to reuse polyvinyl butyral (PVB) in accordance with Sustainable Development Goals (SDGs). It has been established that PVB can be extracted from the laminated glass state with high efficiency using mechanical methods. This study evaluated the mechanical properties of GSFRTPs with a PP matrix when PVB was added. The results show that the incorporation of PVB and maleic anhydride-modified PP in quantities of less than 1 wt% into GSFRTPs leads to sizing effects wherein the fibers are dispersed in bundles. Furthermore, this combination enhances the notched impact strength of the resulting molded product by 0.5 kJ/m2 at the maximum. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop