Fiber-Reinforced Composites Used in the Manufacture of Marine Decks: A Review
Abstract
1. Introduction
1.1. Overview of Marine Deck Applications and Their Structural Demands
1.2. Conventional Materials and Their Limitations in Marine Environments
1.3. Alternative Solutions: Fiber-Reinforced Composites (FRCs)
1.4. Key Benefits of FRCs: Lightweight, High Strength, and Corrosion Resistance
1.5. Importance of Underwater Applications for Marine Decks
1.6. Significance of the Review
2. Types of FRC for Marine Decks and Underwater Applications
2.1. Introduction to Resin Systems in Marine Applications
2.1.1. Thermoset Resins in Marine Applications
2.1.2. Thermoplastic Resins in Marine Applications
2.1.3. Comparative Analysis: Thermoset vs. Thermoplastic
2.2. Fiber Types
2.2.1. Glass Fiber-Reinforced Polymers in Marine Applications
2.2.2. Carbon Fiber-Reinforced Polymers in Marine Applications
2.2.3. Basalt Fiber-Reinforced Polymers in Marine Applications
2.2.4. Aramid Fiber-Reinforced Polymers in Marine Applications
2.3. Nano Materials in FRC
2.4. Manufacturing Processes of Fiber-Reinforced Composites in the Marine Industry
2.4.1. Common Manufacturing Processes in the Marine Industry
- i.
- VARTM and RTM
- ii.
- AFP and ATL
- iii.
- Pultrusion and filament winding
2.4.2. Emerging Method—AM in the Marine Industry
3. Performance Evaluation in Marine Environments
3.1. Mechanical Testing Under Submerged Conditions
3.2. Hydrothermal Aging and Moisture Absorption
3.3. Corrosion and Biofouling Resistance in Marine FRCs
3.4. Fire and Thermal Stability in Marine Deck Composites
4. Applications of FRCs in Marine Decks and Underwater Structures
4.1. Naval and Commercial Ships
4.2. Offshore Oil and Gas Platforms
Material | Application | Key Advantage | Examples | Ref. |
---|---|---|---|---|
GFRP/Vinyl Ester CFRP/Epoxy | Walkways | Slip resistance, chemical inertness | Stairways and walkways e.g., Figure 12a | [1,306] |
GFRP | Helidecks | Fire resistance, high strength | Helidecks on oil platforms | [310] |
CFRP/Thermoplastic CFRP/Epoxy | Risers | Fatigue resistance, buoyancy | Deep-water production risers e.g., Figure 12b | [1,3,8,22] |
4.3. Submarines and Underwater Structures
Material | Application | Key Advantages | Example | Ref |
---|---|---|---|---|
High-modulus CFRP | Pressure hulls | Collapse depths, 20–30% weight savings | Trident-class, unmanned subs | [2,12,320] |
GFRC/epoxy | Sonar domes | <1 dB transmission loss | Naval sonar domes | [1,320] |
CFRP GFRP | Buoyancy modules | Strength-to-weight ratios, corrosion resistance | ROVs, AUVs e.g., Figure 13a,b | [23,318,319] |
4.4. Floating Infrastructure and Sustainability Outlook
5. Challenges and Limitations of FRCs in Marine Deck Applications
5.1. Long-Term Durability Concerns
5.2. Manufacturing and Repairability Challenges
5.3. Regulatory and Certification Issues
5.4. Economic and Sustainability Considerations
6. Future Prospects and Research Directions
6.1. Self-Healing and Smart Composites for Structural Longevity
6.2. Advanced Coating Technologies for Durability and Biofouling Resistance
6.3. Bio-Based and Sustainable Composite Systems
6.4. Hybrid Composite Systems for Marine Applications
7. Conclusions
7.1. Summary of Key Findings
7.2. Potential of FRCs in Marine Decks
7.3. Recommendations
- Industry Adoption: Standardize accelerated aging protocols and certification pathways for novel FRCs to streamline regulatory approval.
- Research Focus: Prioritize in situ performance validation of self-healing systems, scalable recycling methods, and multifunctional coatings combining antifouling/fire retardancy.
- Policy and Collaboration: Foster cross-sector partnerships to commercialize bio-based composites and digital twins for lifecycle management.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFP | Automated Fiber Placement |
APP | Ammonium Polyphosphate |
ATH | Aluminum Trihydroxide |
AUV | Autonomous Underwater Vehicle |
BFRP | Basalt Fiber-Reinforced Polymer |
CFRP | Carbon Fiber-Reinforced Polymer |
CNTs | Carbon Nanotubes |
CSM | Chop-Strand Mat |
DCPD | Dicyclopentadiene |
DGEBA | Diglycidyl Ether of Bisphenol A |
DIC | Digital Image Correlation |
DMA | Dynamic Mechanical Analysis |
ECN | Epoxy Cresol Novolac |
E-glass | Electrical-Grade Glass Fiber |
EIS | Electrochemical Impedance Spectroscopy |
EOL | End-of-Life |
EPN | Epoxy Phenol Novolac |
FBGs | Fiber Bragg Gratings |
FDM | Fused Deposition Modeling |
FEA | Finite Element Analysis |
FRCs | Fiber-Reinforced Composites |
FTIR | Fourier-Transform Infrared Spectroscopy |
GFRP | Glass Fiber-Reinforced Polymer |
HM | High-Modulus (carbon fiber) |
HS | High-Strength (carbon fiber) |
ILSS | Interlaminar Shear Strength |
IM | Intermediate-Modulus (carbon fiber) |
MDH | Magnesium Hydroxide |
PA | Polyamide |
PEEK | Polyether Ether Ketone |
PEKK | Polyether Ketone Ketone |
PHA | Polyhydroxyalkanoates |
PLA | Polylactic Acid |
PP | Polypropylene |
ROV | Remotely Operated Vehicle |
RTM | Resin Transfer Molding |
S-glass | High-Strength Glass Fiber |
SEM | Scanning Electron Microscopy |
SHM | Structural Health Monitoring |
TCPs | Thermoplastic Composite Pipes |
Td | Thermal Decomposition Temperature |
Tg | Glass Transition Temperature |
TGDDM | Tetraglycidyl Diaminodiphenyl Methane |
VARTM | Vacuum-Assisted Resin Transfer Molding |
References
- Rubino, F.; Nisticò, A.; Tucci, F.; Carlone, P. Marine application of fiber reinforced composites: A review. J. Mar. Sci. Eng. 2020, 8, 26. [Google Scholar] [CrossRef]
- Gerwick, B.C., Jr. Construction of Marine and Offshore Structures, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Li, H.; Zhang, K.; Fan, X.; Cheng, H.; Xu, G.; Suo, H. Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites. Compos. Part B Eng. 2019, 173, 106910. [Google Scholar] [CrossRef]
- Diniță, A.; Ripeanu, R.G.; Ilincă, C.N.; Cursaru, D.; Matei, D.; Naim, R.I.; Tănase, M.; Portoacă, A.I. Advancements in Fiber-Reinforced Polymer Composites: A Comprehensive Analysis. Polymers 2024, 16, 2. [Google Scholar] [CrossRef]
- Dhandapani, A.; Krishnasamy, S.; Thiagamani, S.M.K.; Periasamy, D.; Muthukumar, C.; Sundaresan, T.K.; Ali, S.; Kurniawan, R. Evolution, Prospects, and Predicaments of Polymers in Marine Applications: A Potential Successor to Traditional Materials. Recycling 2024, 9, 8. [Google Scholar] [CrossRef]
- Zhang, H.; Kong, F.; Dun, Y.; Chen, X.; Chen, Q.; Zhao, X.; Tang, Y.; Zuo, Y. Degradation of Carbon Fiber-Reinforced Polymer Composites in Salt Water and Rapid Evaluation by Electrochemical Impedance Spectroscopy. Materials 2023, 16, 1676. [Google Scholar] [CrossRef]
- Gu, J.D. Microbial Biofilms, Fouling, Corrosion, and Biodeterioration of Materials, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Chesterton, C.; Butler, H.O.; Gillet, N.; Wang, C.; Ja’e, I.A.; Reda, A.; Odijie, A.C. Review of Composite Marine Risers for Deep-Water Applications: Design, Development and Mechanics. J. Compos. Sci. 2022, 6, 96. [Google Scholar] [CrossRef]
- Luthada, P. Tension-Tension Fatigue Testing of Pultruded Carbon Fibre Composite Profiles. Master’s Thesis, Aalto University, Espoo, Finland, 2016; pp. 1–95. [Google Scholar] [CrossRef]
- Kotsikos, G.; Evans, J.T.; Gibson, A.G.; Hale, J.M. Environmentally enhanced fatigue damage in glass fibre reinforced composites characterized by acoustic emission. Compos. Part A Appl. Sci. Manuf. 2000, 31, 969–977. [Google Scholar] [CrossRef]
- Arhant, M.; Davies, P. Thermoplastic matrix composites for marine applications. In Marine Composites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 31–53. [Google Scholar]
- Shyha, I.; Huo, D. Engineering Materials Advances in Machining of Composite Materials Conventional and Non-Conventional Processes; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Molavizadeh, A.; Rezaei, A. Progressive Damage Analysis and Optimization of Winding Angle and Geometry for a Composite Pressure Hull Wound Using Geodesic and Planar Patterns. Appl. Compos. Mater. 2019, 26, 1021–1040. [Google Scholar] [CrossRef]
- Qureshi, J. A Review of Fibre Reinforced Polymer Bridges. Fibers 2023, 11, 4–6. [Google Scholar] [CrossRef]
- Harper, L.; Clifford, M. Design and Manufacture of Structural Composites; University of Nottingham: Nottingham, UK, 2022. [Google Scholar]
- Newcomb, B.A.; Chae, H.G. The properties of carbon fibers. In Handbook of Properties of Textile and Technical Fibres; Woodhead Publishing: Cambridge, UK, 2018; pp. 841–871. [Google Scholar] [CrossRef]
- Avanzini, A.; Battini, D.; Petrogalli, C.; Pandini, S.; Donzella, G. Anisotropic Behaviour of Extruded Short Carbon Fibre Reinforced PEEK Under Static and Fatigue Loading. Appl. Compos. Mater. 2022, 29, 1041–1060. [Google Scholar] [CrossRef]
- Kedari, V.R.; Farah, B.I.; Hsiao, K.T. Effects of vacuum pressure, inlet pressure, and mold temperature on the void content, volume fraction of polyester/e-glass fiber composites manufactured with VARTM process. J. Compos. Mater. 2011, 45, 2727–2742. [Google Scholar] [CrossRef]
- Brasington, A.; Sacco, C.; Halbritter, J.; Wehbe, R.; Harik, R. Automated fiber placement: A review of history, current technologies, and future paths forward. Compos. Part C Open Access 2021, 6, 100182. [Google Scholar] [CrossRef]
- José-Trujillo, E.; Rubio-González, C.; Rodríguez-González, J.A. Seawater ageing effect on the mechanical properties of composites with different fiber and matrix types. J. Compos. Mater. 2019, 53, 3229–3241. [Google Scholar] [CrossRef]
- Le Gué, L.; Davies, P.; Arhant, M.; Vincent, B.; Verbouwe, W. Basalt fibre degradation in seawater and consequences for long term composite reinforcement. Compos. Part A Appl. Sci. Manuf. 2024, 179, 108027. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Reda, A.; Shahin, M.A.; Sultan, I.A.; Beddu, S.B.; Ja’e, I.A. State-of-the-art review of composite marine risers for floating and fixed platforms in deep seas. Appl. Ocean Res. 2023, 138, 103624. [Google Scholar] [CrossRef]
- Papadakis, A.Z.; Tsouvalis, N.G. An Experimental and Numerical Study of CFRP Pressure Housings for Deep Sea Environment Research An Experimental and Numerical Study of CFRP Pressure Housings for Deep Sea Environment Research. In Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference, Rhodes, Greece, 26 June–1 July 2016. [Google Scholar]
- Islami, D.P.; Muzaqih, A.F.; Adiputra, R.; Prabowo, A.R.; Firdaus, N.; Ehlers, S.; Braun, M.; Jurkovič, M.; Smaradhana, D.F.; Carvalho, H. Structural design parameters of laminated composites for marine applications: Milestone study and extended review on current technology and engineering. Results Eng. 2024, 24, 103195. [Google Scholar] [CrossRef]
- Arwood, Z.; Cousins, D.S.; Young, S.; Stebner, A.P.; Penumadu, D. Infusible thermoplastic composites for wind turbine blade manufacturing: Static characterization of thermoplastic laminates under ambient conditions. Compos. Part C Open Access 2023, 11, 100365. [Google Scholar] [CrossRef]
- Elen, M.; Kumar, V.; Fifield, L.S. Feasibility of Recovering and Recycling Polymer Composites from End-of-Life Marine Renewable Energy Structures: A Review. Sustainability 2024, 16, 10515. [Google Scholar] [CrossRef]
- Aristizábal, S.L.; Chisca, S.; Pulido, B.A.; Nunes, S.P. Preparation of PEEK Membranes with Excellent Stability Using Common Organic Solvents. Ind. Eng. Chem. Res. 2020, 59, 5218–5226. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Tran, P.; Ren, X.; Zhang, G.; Mendis, P. Fire Performance of Maritime Composites; Elsevier Ltd.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Bel Haj Frej, H.; Léger, R.; Perrin, D.; Ienny, P. A Novel Thermoplastic Composite for Marine Applications: Comparison of the Effects of Aging on Mechanical Properties and Diffusion Mechanisms. Appl. Compos. Mater. 2021, 28, 899–922. [Google Scholar] [CrossRef]
- Scattareggia Marchese, S.; Epasto, G.; Crupi, V.; Garbatov, Y. Tensile Response of Fibre-Reinforced Plastics Produced by Additive Manufacturing for Marine Applications. J. Mar. Sci. Eng. 2023, 11, 334. [Google Scholar] [CrossRef]
- Li, W.; Krehl, J.; Gillespie, J.W.; Heider, D.; Endrulat, M.; Hochrein, K.; Dunham, M.G.; Dubois, C.J. Process and performance evaluation of the vacuum-assisted process. J. Compos. Mater. 2004, 38, 1803–1814. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, M.; Chohan, J.S. Material-specific properties and applications of additive manufacturing techniques: A comprehensive review. Bull. Mater. Sci. 2021, 44, 181. [Google Scholar] [CrossRef]
- Cao, S.; Wang, J.D.; Chen, H.S.; Chen, D.R. Progress of marine biofouling and antifouling technologies. Chinese Sci. Bull. 2011, 56, 598–612. [Google Scholar] [CrossRef]
- Khan, T.; Jawaid, M. Green Hybrid Composite in Engineering and Non-Engineering Applications; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Weber, F.; Esmaeili, N. Marine biofouling and the role of biocidal coatings in balancing environmental impacts. Biofouling 2023, 39, 661–681. [Google Scholar] [CrossRef]
- Banerjee, I.; Pangule, R.C.; Kane, R.S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23, 690–718. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, A.; Fam, A.; Asce, M. Environmental Aging Effect on Tensile Properties of GFRP Made of Furfuryl Alcohol Bioresin Compared to Epoxy. J. Compos. Constr. 2014, 18, 04014010. [Google Scholar] [CrossRef]
- Bel Haj Frej, H.; Léger, R.; Perrin, D.; Ienny, P. Effect of aging temperature on a thermoset-like novel acrylic thermoplastic composite for marine vessels. J. Compos. Mater. 2021, 55, 2673–2691. [Google Scholar] [CrossRef]
- Teijido, R.; Ruiz-Rubio, L.; Lanceros-Méndez, S.; Zhang, Q.; Vilas-Vilela, J.L. Sustainable Bio-Based Epoxy Resins with Tunable Thermal and Mechanic Properties and Superior Anti-Corrosion Performance. Polymers 2023, 15, 4180. [Google Scholar] [CrossRef] [PubMed]
- Swan, S.; Yuksel, T.; Kim, D.; Gurocak, H. Automation of the vacuum assisted resin transfer molding process for recreational composite yachts. Polym. Compos. 2017, 38, 2411–2424. [Google Scholar] [CrossRef]
- Lee, H.; Jung, K.; Park, H. Study on structural design and analysis of composite boat hull manufactured by resin infusion simulation. Materials 2021, 14, 5918. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, G.S.; Hejjaji, A.; Pothnis, J.R.; Portela, A.; Comer, A.J. In-situ polymerizable thermoplastic and bio-epoxy based composites for offshore renewable energy applications. Polym. Compos. 2024, 45, 13812–13828. [Google Scholar] [CrossRef]
- Ibarra, R.M. Carbon Fiber Recovery using Subcritical and Supercritical Fluids for Chemical Recycling of Thermoset Composite Materials Carbon Fiber Recovery Using Subcritical and Supercritical Fluids. Ph.D. Thesis, UANL, San Nicolás de los Garza, Mexico, 2014. [Google Scholar]
- Kuroyanagi, M.; Yamaguchi, A.; Hashimoto, T.; Urushisaki, M.; Sakaguchi, T.; Kawabe, K. Novel degradable acetal-linkage-containing epoxy resins with high thermal stability: Synthesis and application in carbon fiber-reinforced plastics. Polym. J. 2022, 54, 313–322. [Google Scholar] [CrossRef]
- Wang, T.; Xia, L.; Ni, M.; Pan, S.; Luo, C. Fundamentals of Infrared Heating and Their Application in Thermosetting Polymer Curing: A Review. Coatings 2024, 14, 1560. [Google Scholar] [CrossRef]
- Bi, L.; Godwin, B.; Baran, M.J.; Nazir, R.; Wulff, J.E. A Cleavable Crosslinking Strategy for Commodity Polymer Functionalization and Generation of Reprocessable Thermosets. Angew. Chemie Int. Ed. 2023, 62, e202304708. [Google Scholar] [CrossRef]
- Ogata, M.; Kinjo, N.; Kawata, T. Effects of crosslinking on physical properties of phenol–formaldehyde novolac cured epoxy resins. J. Appl. Polym. Sci. 1993, 48, 583–601. [Google Scholar] [CrossRef]
- De Nograro, F.F.; Guerrero, P.; Corcuera, M.A.; Mondragon, I. Effects of chemical structure of hardener on curing evolution and on the dynamic mechanical behavior of epoxy resins. J. Appl. Polym. Sci. 1995, 56, 177–192. [Google Scholar] [CrossRef]
- Nodehi, M. Epoxy, polyester and vinyl ester based polymer concrete: A review. Innov. Infrastruct. Solut. 2022, 7, 64. [Google Scholar] [CrossRef]
- Ribeiro, M.C.S.; Tavares, C.M.L.; Ferreira, A.J.M. Chemical Resistance of Epoxy and Polyester Polymer Concrete to Acids and Salts. J. Polym. Eng. 2002, 22, 27–44. [Google Scholar] [CrossRef]
- Luo, X.; Li, Y.; Li, S.; Liu, X. Enhancement of Mechanical Properties and Bonding Properties of Flake-Zinc-Powder-Modified Epoxy Resin Composites. Polymers 2022, 14, 5323. [Google Scholar] [CrossRef]
- Lu, S.J.; Yang, T.; Xiao, X.; Zhu, X.Y.; Wang, J.; Zang, P.Y.; Liu, J.A. Mechanical Properties of the Epoxy Resin Composites Modified by Nanofiller under Different Aging Conditions. J. Nanomater. 2022, 2022, 6358713. [Google Scholar] [CrossRef]
- Wang, Y.; Mertiny, P. Mechanical and Thermal Properties of Epoxy Resin upon Addition of Low-Viscosity Modifier. Polymers 2024, 16, 2403. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Satapathy, A. Physico-mechanical characterization and thermal property evaluation of polyester composites filled with walnut shell powder. Polym. Polym. Compos. 2022, 30, 09673911221077808. [Google Scholar] [CrossRef]
- Wilson García, N.A.; Almaral Sánchez, J.L.; Vargas Ortiz, R.Á.; Hurtado Macías, A.; Flores Ramírez, N.; Aguilar Palazuelos, E.; Flores Valenzuela, J.; Castro Beltrán, A.; Alvarado Beltrán, C.G. Physical and mechanical properties of unsaturated polyester resin matrix from recycled PET (based PG) with corn straw fiber. J. Appl. Polym. Sci. 2021, 138, 51305. [Google Scholar] [CrossRef]
- Baghloul, R.; Babouri, L.; Hebhoub, H.; Boukhelf, F.; El Mendili, Y. Assessment of Mechanical Behavior and Microstructure of Unsaturated Polyester Resin Composites Reinforced with Recycled Marble Waste. Buildings 2024, 14, 3877. [Google Scholar] [CrossRef]
- Ferdous, W.; Schubel, P.; Manalo, A.; Yu, P.; Salih, C.; Abousnina, R.; Heyer, T. Tensile fatigue behavior of polyester and vinyl ester based gfrp laminates—A comparative evaluation. Polymers 2021, 13, 386. [Google Scholar] [CrossRef]
- Ranjan, J.K.; Goswami, S. Mechanical and thermomechanical properties of vinyl ester/polyurethane IPN based nano-composites. Polym. Polym. Compos. 2021, 29, S117–S129. [Google Scholar] [CrossRef]
- Tu, R.; Sodano, H.A. Additive manufacturing of high-performance vinyl ester resin via direct ink writing with UV-thermal dual curing. Addit. Manuf. 2021, 46, 102180. [Google Scholar] [CrossRef]
- Perrot, Y.; Baley, C.; Grohens, Y.; Davies, P. Damage resistance of composites based on glass fibre reinforced low styrene emission resins for marine applications. Appl. Compos. Mater. 2007, 14, 67–87. [Google Scholar] [CrossRef]
- Gobikannan, T.; Portela, A.; Haldar, A.K.; Nash, N.H.; Bachour, C.; Manolakis, I.; Comer, A.J. Flexural properties and failure mechanisms of infusible thermoplastic- and thermosetting based composite materials for marine applications. Compos. Struct. 2021, 273, 114276. [Google Scholar] [CrossRef]
- Mortazavi, S.M.M.; Jafarian, H.; Ahmadi, M.; Ahmadjo, S. Characteristics of linear/branched polyethylene reactor blends synthesized by metallocene/late transitional metal hybrid catalysts. J. Therm. Anal. Calorim. 2016, 123, 1469–1478. [Google Scholar] [CrossRef]
- Nash, N.H.; Portela, A.; Bachour-Sirerol, C.I.; Manolakis, I.; Comer, A.J. Effect of environmental conditioning on the properties of thermosetting- and thermoplastic-matrix composite materials by resin infusion for marine applications. Compos. Part B Eng. 2019, 177, 107271. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, Q.; Nie, Y.; Zhang, J.; Yang, L. A Review of Combustion and Flame Spread over Thermoplastic Materials: Research Advances and Prospects. Fire 2023, 6, 125. [Google Scholar] [CrossRef]
- Oladele, I.O.; Okoro, C.J.; Taiwo, A.S.; Onuh, L.N.; Agbeboh, N.I.; Balogun, O.P.; Olubambi, P.A.; Lephuthing, S.S. Modern Trends in Recycling Waste Thermoplastics and Their Prospective Applications: A Review. J. Compos. Sci. 2023, 7, 198. [Google Scholar] [CrossRef]
- Ochigue, P.C.D.; Aguilos, M.A.; Lubguban, A.A.; Bacosa, H.P. Circular Economy Solutions: The Role of Thermoplastic Waste in Material Innovation. Sustainability 2025, 17, 764. [Google Scholar] [CrossRef]
- Liang, X.; Cha, D.K.; Xie, Q. Properties, production, and modification of polyhydroxyalkanoates. Resour. Conserv. Recycl. Adv. 2024, 21, 200206. [Google Scholar] [CrossRef]
- Kürkçüoǧlu, I.; Koüroǧlu, A.; Özkr, S.E.; Özdemir, T. A comparative study of polyamide and PMMA denture base biomaterials: I. thermal, mechanical, and dynamic mechanical properties. Int. J. Polym. Mater. Polym. Biomater. 2012, 61, 768–777. [Google Scholar] [CrossRef]
- Cosse, R.L.; van der Most, T.; Voet, V.S.D.; Folkersma, R.; Loos, K. Improving the Long-Term Mechanical Properties of Thermoplastic Short Natural Fiber Compounds by Using Alternative Matrices. Biomimetics 2025, 10, 46. [Google Scholar] [CrossRef]
- Pedroso, J.M.; Enger, M.; Bandeira, P.; Magalhães, F.D. Comparative Study of Friction and Wear Performance of PEK, PEEK and PEKK Binders in Tribological Coatings. Polymers 2022, 14, 4008. [Google Scholar] [CrossRef]
- Nie, S.; Liu, L.; Hong, N.; Hu, Y. Thermal decomposition of polypropylene by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. J. Therm. Anal. Calorim. 2014, 118, 295–298. [Google Scholar] [CrossRef]
- Hujuri, U.; Ghoshal, A.; Gumma, S. Temperature-Dependent Pyrolytic Product Evolution Profile for Polypropylene. J. Appl. Polym. Sci. 2011, 119, 2318–2325. [Google Scholar] [CrossRef]
- Korycki, A.; Carassus, F.; Tramis, O.; Garnier, C.; Djilali, T.; Chabert, F. Polyaryletherketone Based Blends: A Review. Polymers 2023, 15, 3943. [Google Scholar] [CrossRef]
- Stankovic, D.; Obande, W.; Devine, M.; Bajpai, A.; Brádaigh, C.M.Ó.; Ray, D. Accelerated seawater ageing and fatigue performance of glass fibre reinforced thermoplastic composites for marine and tidal energy applications. Compos. Part C Open Access 2024, 14, 100470. [Google Scholar] [CrossRef]
- Vaidya, U.K.; Chawla, K.K. Processing of fibre reinforced thermoplastic composites. Int. Mater. Rev. 2008, 53, 185–218. [Google Scholar] [CrossRef]
- Rowell, R.M. Fiber Webs. In Handbook of Wood Chemistry and Wood Composites; Taylor & Francis: Washington, DC, USA, 2012; pp. 474–489. [Google Scholar] [CrossRef]
- Fukala, I.; Kučera, I. Natural Polyhydroxyalkanoates—An Overview of Bacterial Production Methods. Molecules 2024, 29, 2293. [Google Scholar] [CrossRef] [PubMed]
- Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 2014, 8, 791–808. [Google Scholar] [CrossRef]
- Shah, S.Z.H.; Megat-Yusoff, P.S.M.; Karuppanan, S.; Choudhry, R.S.; Sajid, Z. Off-Axis and On-Axis Performance of Novel Acrylic Thermoplastic (Elium®) 3D Fibre-Reinforced Composites under Flexure Load. Polymers 2022, 14, 2225. [Google Scholar] [CrossRef]
- Li, M.X.; Mo, H.L.; Lee, S.K.; Ren, Y.; Zhang, W.; Choi, S.W. Rapid Impregnating Resins for Fiber-Reinforced Composites Used in the Automobile Industry. Polymers 2023, 15, 4192. [Google Scholar] [CrossRef] [PubMed]
- Post, W.; Susa, A.; Blaauw, R.; Molenveld, K.; Knoop, R.J.I. A Review on the Potential and Limitations of Recyclable Thermosets for Structural Applications. Polym. Rev. 2020, 60, 359–388. [Google Scholar] [CrossRef]
- Ghosal, M.; Chakraborty, A.K. Application of thermosetting v/s thermoplastic polymeric composites and polymeric nanocomposites in cement concrete for greater sustainability. Mater. Today Proc. 2020, 43, 2311–2316. [Google Scholar] [CrossRef]
- Salmi, A. Enhancing durability and sustainability in concrete with fibre-reinforced composites. J. Water L. Dev. 2024, 48–54. [Google Scholar] [CrossRef]
- Chen, Y.D.; Li, P. Da Anti-corrosion performance of a novel ECC-GFRP spiral-confined RC column. Case Stud. Constr. Mater. 2024, 20, e03241. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, S.; Singh, S.; Sreenivasa, S.; Bains, P.S.; Sharma, R. Recent developments in the mechanical properties and recycling of fiber-reinforced polymer composites. Polym. Compos. 2024, 46, 3883–3903. [Google Scholar] [CrossRef]
- Adekomaya, O.; Majozi, T. 23—Industrial and biomedical applications of fiber reinforced composites. In Fiber Reinforced Composites; Joseph, K., Oksman, K., George, G., Wilson, R., Appukuttan, S., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Cambridge, UK, 2021; pp. 753–783. [Google Scholar] [CrossRef]
- Scribante, A.; Vallittu, P.K.; Özcan, M.; Lassila, L.V.J.; Gandini, P.; Sfondrini, M.F. Travel beyond Clinical Uses of Fiber Reinforced Composites (FRCs) in Dentistry: A Review of Past Employments, Present Applications, and Future Perspectives. Biomed Res. Int. 2018, 2018, 1498901. [Google Scholar] [CrossRef] [PubMed]
- Alajmi, A.; Abousnina, R.; Shalwan, A.; Alajmi, S.; Alipour, G.; Tafsirojjaman, T.; Will, G. An Experimental and Numerical Investigation into the Durability of Fibre/Polymer Composites with Synthetic and Natural Fibres. Polymers 2022, 14, 2024. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Goh, K.L. Natural fiber-reinforced polymer composites: Application in marine environments; Elsevier Ltd.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Osa-uwagboe, N.; Silberschmidt, V.V.; Demirci, E. Dynamic Bending Behaviour of Sandwich Structures for Marine Applications. Appl. Sci. 2024, 14, 11110. [Google Scholar] [CrossRef]
- Islam, T.; Chaion, M.; Jalil, M.; Rafi, A.; Mushtari, F.; Dhar, A.; Hossain, S. Advancements and challenges in natural fiber-reinforced hybrid composites: A comprehensive review. SPE Polym. 2024, 5, 481–506. [Google Scholar] [CrossRef]
- Creux, S.; Lecomte, E.; Renaud, N. Glass fibre for the reinforcement of organic and/or inorganic materials, method for production of said glass fibres and corresponding composition. US20060287185A1, 21 December 2006. [Google Scholar]
- Lecomte, E.; Creux, S.; Examiner, P.; Group, K.E.; Application, F.; Data, P. Glass Yarn for Reinforcing Organic and/or Inorganic Materials. US7811954B2, 24 August 2010. [Google Scholar]
- Baker, I. Fifty Materials That Make the World; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Rath, B.; Deo, S.; Ramtekkar, G. Durable glass fiber reinforced concrete with supplimentary cementitious materials. Int. J. Eng. Trans. A Basics 2017, 30, 964–971. [Google Scholar] [CrossRef]
- Sathishkumar, T.P.; Satheeshkumar, S.; Naveen, J. Glass fiber-reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014, 33, 1258–1275. [Google Scholar] [CrossRef]
- Bunsell, A.R. High Modulus Fibers. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Cevahir, A. Glass Fibers; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Vasiliev, V.V.; Morozov, E.V. Introduction. In Advanced Mechanics of Composite Materials and Structures, 4th ed.; Vasiliev, V.V., Morozov, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Thomason, J.L. Glass fibre sizing: A review. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105619. [Google Scholar] [CrossRef]
- Bergeret, A.; Ferry, L.; Ienny, P. Influence of the fibre/matrix interface on ageing mechanisms of glass fibre reinforced thermoplastic composites (PA-6,6, PET, PBT) in a hygrothermal environment. Polym. Degrad. Stab. 2009, 94, 1315–1324. [Google Scholar] [CrossRef]
- Mouritz, A.P.; Kootsookos, A.; Mathys, G. Stability of polyester- And vinyl ester-based composites in seawater. J. Mater. Sci. 2004, 39, 6073–6077. [Google Scholar] [CrossRef]
- Wolf, C.J. Composite Materials, Thermoplastic Polymer-Matrix. Kirk-Othmer Encycl. Chem. Technol. 2000. [Google Scholar] [CrossRef]
- Mamalis, D.; Obande, W.; Koutsos, V.; Blackford, J.R.; Brádaigh, C.M.Ó.; Ray, D. Novel thermoplastic fibre-metal laminates manufactured by vacuum resin infusion: The effect of surface treatments on interfacial bonding. Mater. Des. 2019, 162, 331–344. [Google Scholar] [CrossRef]
- Davies, J.M.; Currie, P. GRP offshore: Applications and design for fire. Proc. Inst. Civ. Eng. Constr. Mater. 2006, 159, 93–101. [Google Scholar] [CrossRef]
- Chung, D.D.L. Introduction to Carbon Composites. In Carbon Composites; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 88–160. [Google Scholar] [CrossRef]
- Dovey, G. Carbon fibres and their applications. J. Phys. D Appl. Phys. 1987, 20, 245. [Google Scholar]
- Chatterjee, S.; Saito, T.; Bhattacharya, P. Lignin-Derived Carbon Fibers. In Lignin in Polymer Composites; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 207–216. [Google Scholar] [CrossRef]
- Minus, M.L.; Kumar, S. The processing, properties, and structure of carbon fibers. JOM 2005, 57, 52–58. [Google Scholar] [CrossRef]
- Crupi, V.; Epasto, G.; Napolitano, F.; Palomba, G.; Papa, I.; Russo, P. Green Composites for Maritime Engineering: A Review. J. Mar. Sci. Eng. 2023, 11, 599. [Google Scholar] [CrossRef]
- Deeraj, B.D.S.; Mathew, M.S.; Parameswaranpillai, J.; Joseph, K. EMI shielding materials based on thermosetting polymers. In Materials for Potential EMI Shielding Applications: Processing, Properties and Current Trends; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 101–110. [Google Scholar] [CrossRef]
- Qi, X.; Tian, J.; Xian, G. Hydrothermal ageing of carbon fiber reinforced polymer composites applied for construction: A review. J. Mater. Res. Technol. 2023, 27, 1017–1045. [Google Scholar] [CrossRef]
- Yin, X.; Liu, Y.; Miao, Y.; Xian, G. Water absorption, hydrothermal expansion, and thermomechanical properties of a vinylester resin for fiber-reinforced polymer composites subjected to water or alkaline solution immersion. Polymers 2019, 11, 505. [Google Scholar] [CrossRef]
- Kandelbauer, A.; Tondi, G.; Zaske, O.C.; Goodman, S.H. Unsaturated Polyesters and Vinyl Esters. In Handbook of Thermoset Plastics; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 111–172. [Google Scholar] [CrossRef]
- Borges, C.; Chícharo, A.; Araújo, A.; Silva, J.; Santos, R.M. Designing of carbon fiber-reinforced polymer (CFRP) composites for a second-life in the aeronautic industry: Strategies towards a more sustainable future. Front. Mater. 2023, 10, 1179270. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, S.; Wang, B.; Liu, A.; Ma, L.; Wu, L.; Zhou, Z. Fabrication and compression properties of continuous carbon fiber reinforced polyether ether ketone thermoplastic composite sandwich structures with lattice cores. J. Sandw. Struct. Mater. 2021, 23, 2422–2442. [Google Scholar] [CrossRef]
- Vacogne, C.; Wise, R. Joining of high performance carbon fibre/PEEK composites. Sci. Technol. Weld. Join. 2011, 16, 369–376. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Zhang, H.; Ding, S.; Yang, T.; Pang, J.; Zhang, H.; Zhang, J.; Zhang, Y.; Jiang, Z. Study on the Preparation and Process Parameter-Mechanical Property Relationships of Carbon Fiber Fabric Reinforced Poly(Ether Ether Ketone) Thermoplastic Composites. Polymers 2024, 16, 897. [Google Scholar] [CrossRef]
- You, J.; Jee, S.M.; Lee, Y.M.; Lee, S.S.; Park, M.; Kim, T.A.; Park, J.H. Carbon fiber-reinforced polyamide composites with efficient stress transfer via plasma-assisted mechanochemistry. Compos. Part C Open Access 2021, 6, 100209. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, J.; Wu, K.; Yang, M.; Wu, J.; Zhang, X.; Zhang, X.; Li, Q. Making a strong adhesion between polyetherketoneketone and carbon nanotube fiber through an electro strategy. Compos. Sci. Technol. 2019, 177, 81–87. [Google Scholar] [CrossRef]
- Tamás-Bényei, P.; Sántha, P. Potential applications of basalt fibre composites in thermal shielding. J. Therm. Anal. Calorim. 2023, 148, 271–279. [Google Scholar] [CrossRef]
- Davies, P.; Verbouwe, W. Evaluation of Basalt Fibre Composites for Marine Applications. Appl. Compos. Mater. 2018, 25, 299–308. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Liu, J.; Chen, X. Mineral fibres: Basalt. In Handbook of Natural Fibres: Second Edition; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 1, pp. 433–502. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, S.; Nele, L.; Graziosi, L.; Acierno, D. Sustainable Basalt Fibers vs. Traditional Glass Fibers: Comparative Study on Thermal Properties and Flow Behavior of Polyamide 66-Based Composites. ChemEngineering 2022, 6, 86. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Y.; Liu, Y.; Zhang, M.; Li, L.; Ma, L.; Sun, Y.; Wang, W. A Review on Basalt Fiber Composites and Their Applications in Clean Energy Sector and Power Grids. Polymers 2022, 14, 2376. [Google Scholar] [CrossRef]
- Islam, A.; Rahman, M.Z. 12.48—A review on eco-friendly basalt fibers, their composites and applications. In Comprehensive Materials Processing, 2nd ed.; Hashmi, S., Ed.; Elsevier: Oxford, UK, 2024; pp. 710–726. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Liu, H.; Tian, L.; Liu, J.; Fu, C.; Fu, X. Properties of Basalt Fiber Core Rods and Their Application in Composite Cross Arms of a Power Distribution Network. Polymers 2022, 14, 2443. [Google Scholar] [CrossRef]
- Fořt, J.; Kočí, J.; Černý, R. Environmental efficiency aspects of basalt fibers reinforcement in concrete mixtures. Energies 2021, 14, 7736. [Google Scholar] [CrossRef]
- Yun, J.H.; Jeon, Y.J.; Kang, M.S. Effective Properties for the Design of Basalt Particulate–Polymer Composites. Polymers 2023, 15, 4125. [Google Scholar] [CrossRef]
- Deng, X.; Hoo, M.S.; Cheah, Y.W.; Tran, L.Q.N. Processing and Mechanical Properties of Basalt Fibre-Reinforced Thermoplastic Composites. Polymers 2022, 14, 1220. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Xin, Y. Mechanical Properties of basalt-fiber-reinforced Polyamide-6/Polypropylene composites. Mech. Compos. Mater. 2014, 50, 509–514. [Google Scholar] [CrossRef]
- Chowdhury, I.R.; Pemberton, R.; Summerscales, J. Developments and Industrial Applications of Basalt Fibre Reinforced Composite Materials. J. Compos. Sci. 2022, 6, 367. [Google Scholar] [CrossRef]
- Shoji, Y.; Mizoguchi, K.; Ueda, M. Synthesis of aramids by polycondensation of aromatic dicarboxylic acids with aromatic diamines containing ether linkages. Polym. J. 2008, 40, 680–681. [Google Scholar] [CrossRef]
- Chiao, C.C.; Chiao, T.T. Aramid Fibers and Composites. In Handbook of Composites; Springer: Cham, Switzerland, 1982; pp. 272–317. [Google Scholar]
- Yang, H.M. Aramid fibers. In Comprehensive Composite Materials II; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, pp. 187–217. [Google Scholar] [CrossRef]
- Derombise, G.; Chailleux, E.; Forest, B.; Riou, L.; Lacotte, N.; Vouyovitch Van Schoors, L.; Davies, P. Long-Term Mechanical Behavior of Aramid Fibers in Seawater. Polym. Eng. Sci. 2011, 51, 1366–1375. [Google Scholar] [CrossRef]
- Dharmavarapu, P.; Sreekara, S.R. Aramid fibre as potential reinforcement for polymer matrix composites: A review. Emergent Mater. 2022, 5, 1561–1578. [Google Scholar] [CrossRef]
- Tanner, D.; Dhingra, A.K.; Pigliacampi, J.J. Aramid Fiber Composites for General Engineering. JOM 1986, 38, 21–25. [Google Scholar] [CrossRef]
- Priyanka, P.; Dixit, A.; Mali, H.S. High strength Kevlar fiber reinforced advanced textile composites. Iran. Polym. J. 2019, 28, 621–638. [Google Scholar] [CrossRef]
- Derombise, G.; Vouyovitch Van Schoors, L.; Davies, P. Degradation of Aramid Fibers Under Alkaline and Neutral Conditions: Relations Between the Chemical Characteristics and Mechanical Properties. J. Appl. Polym. Sci. 2010, 116, 2504–2514. [Google Scholar] [CrossRef]
- Korbakov, N.; Harel, H.; Feldman, Y.; Marom, G. Dielectric response of aramid fiber-reinforced PEEK. Macromol. Chem. Phys. 2002, 203, 2267–2272. [Google Scholar] [CrossRef]
- Chen, J.; Tan, P.; Liu, X.; Tey, W.S.; Ong, A.; Zhao, L.; Zhou, K. High-strength light-weight aramid fibre/polyamide 12 composites printed by Multi Jet Fusion. Virtual Phys. Prototyp. 2022, 17, 295–307. [Google Scholar] [CrossRef]
- Guven, C.; Kisa, M.; Demircan, G.; Ozen, M.; Kirar, E. Effect of seawater aging on mechanical, buckling, structural, and thermal properties of nano Al2O3 and TiO2-doped glass-epoxy nanocomposites. Polym. Compos. 2024, 45, 7376–7390. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Horváth, P.G.; Alpár, T. Potential natural fiber polymeric nanobiocomposites: A review. Polymers 2020, 12, 1072. [Google Scholar] [CrossRef]
- Ali, A.; Andriyana, A. Properties of multifunctional composite materials based on nanomaterials: A review. RSC Adv. 2020, 10, 16390–16403. [Google Scholar] [CrossRef]
- Kausar, A.; Ahmad, I.; Eisa, M.H.; Maaza, M. Graphene Nanocomposites in Space Sector—Fundamentals and Advancements. C 2023, 9, 29. [Google Scholar] [CrossRef]
- Atif, R.; Shyha, I.; Inam, F. Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites-A review. Polymers 2016, 8, 281. [Google Scholar] [CrossRef]
- Zhang, S.; Nguyen, N.; Leonhardt, B.; Jolowsky, C.; Hao, A.; Park, J.G.; Liang, R. Carbon-Nanotube-Based Electrical Conductors: Fabrication, Optimization, and Applications. Adv. Electron. Mater. 2019, 5, 1800811. [Google Scholar] [CrossRef]
- Kar, K.K. Carbon Nanotube-/Graphene-Reinforced Ceramic Composites. In Composite Materials: Processing, Applications, Characterizations; Springer: Cham, Switzerland, 2016; pp. 1–686. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Bui, T.T.T. Effects of Hybrid Graphene Oxide with Multiwalled Carbon Nanotubes and Nanoclay on the Mechanical Properties and Fire Resistance of Epoxy Nanocomposite. J. Nanomater. 2021, 2021, 2862426. [Google Scholar] [CrossRef]
- Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G.H.; Vahid, S. Improving the fracture toughness and the strength of epoxy using nanomaterials-a review of the current status. Nanoscale 2015, 7, 10294–10329. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Shi, Z.; Qiao, S.; Tong, A.; Liao, X.; Zhang, T.; Bai, J.; Xu, C.; Xiong, X.; Chen, F.; et al. Advances in nanomaterials as exceptional fillers to reinforce carbon fiber-reinforced polymers composites and their emerging applications. Polym. Compos. 2024, 46, 54–80. [Google Scholar] [CrossRef]
- Sang, B.; Li, Z.W.; Li, X.H.; Yu, L.G.; Zhang, Z.J. Graphene-based flame retardants: A review. J. Mater. Sci. 2016, 51, 8271–8295. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W.; Kammakakam, I. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Yao, S.S.; Ma, C.L.; Jin, F.L.; Park, S.J. Fracture toughness enhancement of epoxy resin reinforced with graphene nanoplatelets and carbon nanotubes. Korean J. Chem. Eng. 2020, 37, 2075–2083. [Google Scholar] [CrossRef]
- Bisht, A.; Dasgupta, K.; Lahiri, D. Effect of graphene and CNT reinforcement on mechanical and thermomechanical behavior of epoxy—A comparative study. J. Appl. Polym. Sci. 2018, 135, 46101. [Google Scholar] [CrossRef]
- Luo, H.; Ding, J.; Huang, Z.; Yang, T. Investigation of properties of nano-silica modified epoxy resin films and composites using RFI technology. Compos. Part B Eng. 2018, 155, 288–298. [Google Scholar] [CrossRef]
- Zheng, Y.; Chonung, K.; Wang, G.; Wei, P.; Jiang, P. Epoxy/Nano-Silica Composites: Curing Kinetics, Glass Transition Temperatures, Dielectric, and Thermal-Mechanical Performances. J. Appl. Polym. Sci. 2008, 111, 917–927. [Google Scholar] [CrossRef]
- Opelt, C.V.; Becker, D.; Lepienski, C.M.; Coelho, L.A.F. Reinforcement and toughening mechanisms in polymer nanocomposites—Carbon nanotubes and aluminum oxide. Compos. Part B Eng. 2015, 75, 119–126. [Google Scholar] [CrossRef]
- Yang, Y.; Díaz Palencia, J.L.; Wang, N.; Jiang, Y.; Wang, D.Y. Nanocarbon-based flame retardant polymer nanocomposites. Molecules 2021, 26, 4670. [Google Scholar] [CrossRef]
- Mehmood, A.; Mubarak, N.M.; Khalid, M.; Walvekar, R.; Abdullah, E.C.; Siddiqui, M.T.H.; Baloch, H.A.; Nizamuddin, S.; Mazari, S. Graphene based nanomaterials for strain sensor application—A review. J. Environ. Chem. Eng. 2020, 8, 103743. [Google Scholar] [CrossRef]
- Vevers, R.; Kulkarni, A.; Seifert, A.; Pöschel, K.; Schlenstedt, K.; Meier-Haack, J.; Mezule, L. Photocatalytic Zinc Oxide Nanoparticles in Antibacterial Ultrafiltration Membranes for Biofouling Control. Molecules 2024, 29, 1274. [Google Scholar] [CrossRef] [PubMed]
- Bo, L.; Hua, G.; Xian, J.; Zeinali Heris, S.; Erfani Farsi Eidgah, E.; Ghafurian, M.M.; Orooji, Y. Recent remediation strategies for flame retardancy via nanoparticles. Chemosphere 2024, 354, 141323. [Google Scholar] [CrossRef] [PubMed]
- Afendi, M.; Banks, W.M.; Kirkwood, D. Bubble free resin for infusion process. Compos. Part A Appl. Sci. Manuf. 2005, 36, 739–746. [Google Scholar] [CrossRef]
- El Hawary, O.; Boccarusso, L.; Ansell, M.P.; Durante, M.; Pinto, F. An Overview of Natural Fiber Composites for Marine Applications. J. Mar. Sci. Eng. 2023, 11, 1076. [Google Scholar] [CrossRef]
- Summerscales, J. Composites manufacturing for marine structures. In Marine Applications of Advanced Fibre-Reinforced Composites; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 19–55. [Google Scholar] [CrossRef]
- Shen, R.; Liu, T.; Liu, H.; Zou, X.; Gong, Y.; Guo, H. An Enhanced Vacuum-Assisted Resin Transfer Molding Process and Its Pressure Effect on Resin Infusion Behavior and Composite Material Performance. Polymers 2024, 16, 1386. [Google Scholar] [CrossRef]
- Agwa, M.A.; Youssef, S.M.; Ali-Eldin, S.S.; Megahed, M. Integrated vacuum assisted resin infusion and resin transfer molding technique for manufacturing of nano-filled glass fiber reinforced epoxy composite. J. Ind. Text. 2022, 51, 5113S–5144S. [Google Scholar] [CrossRef]
- Johnson, R.J.; Pitchumani, R. Active control of reactive resin flow in a Vacuum Assisted Resin Transfer Molding (VARTM) process. J. Compos. Mater. 2008, 42, 1205–1229. [Google Scholar] [CrossRef]
- Sayre, J.R.; Loos, A.C. Resin Infusion of Triaxially Braided Preforms With Through-the-Thickness Reinforcement. Polym. Compos. 2003, 24, 229–236. [Google Scholar] [CrossRef]
- Dingding, C.; Arakawa, K.; Xu, C. Reduction of void content of vacuum-assisted resin transfer molded composites by infusion pressure control. Polym. Compos. 2014, 36, 1629–1637. [Google Scholar] [CrossRef]
- Van Velthem, P.; Ballout, W.; Dumont, D.; Daoust, D.; Sclavons, M.; Cordenier, F.; Pardoen, T.; Devaux, J.; Bailly, C. Phenoxy nanocomposite carriers for delivery of nanofillers in epoxy matrix for resin transfer molding (RTM)-manufactured composites. Compos. Part A Appl. Sci. Manuf. 2015, 76, 82–91. [Google Scholar] [CrossRef]
- Hsiao, K.-T.; Heider, D. Vacuum Assisted Resin Transfer Molding (VARTM) in Polymer Matrix Composites; Woodhead Publishing Limited: Cambridge, UK, 2012. [Google Scholar]
- Hsiao, K.T.; Mathur, R.; Advani, S.G.; Gillespie, J.W.; Fink, B.K. A closed form solution for flow during the vacuum assisted resin transfer molding process. J. Manuf. Sci. Eng. Trans. ASME 2000, 122, 463–475. [Google Scholar] [CrossRef]
- Kumar, D.; Ko, M.G.; Roy, R.; Kweon, J.H.; Choi, J.H.; Jeong, S.K.; Jeon, J.W.; Han, J.S. AFP mandrel development for composite aircraft fuselage skin. Int. J. Aeronaut. Sp. Sci. 2014, 15, 32–43. [Google Scholar] [CrossRef]
- Le Reun, A.; Le Louët, V.; Le Corre, S.; Sobotka, V. Numerical simulation at the micro-scale for the heat transfer modelling in the thermoplastic composites laser-assisted AFP process. Compos. Part A Appl. Sci. Manuf. 2024, 179, 108010. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Shadmehri, F. Steering of carbon fiber/PEEK tapes using Hot Gas Torch-assisted automated fiber placement. J. Thermoplast. Compos. Mater. 2023, 36, 1651–1679. [Google Scholar] [CrossRef]
- Van Hoa, S.; Duc Hoang, M.; Simpson, J. Manufacturing procedure to make flat thermoplastic composite laminates by automated fibre placement and their mechanical properties. J. Thermoplast. Compos. Mater. 2017, 30, 1693–1712. [Google Scholar] [CrossRef]
- Rakhshbahar, M.; Sinapius, M. A novel approach: Combination of automated fiber placement (afp) and additive layer manufacturing (alm). J. Compos. Sci. 2018, 2, 42. [Google Scholar] [CrossRef]
- Joshi, S.C. The pultrusion process for polymer matrix composites. In Manufacturing Techniques for Polymer Matrix Composites (PMCs); Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 381–413. [Google Scholar]
- Minchenkov, K.; Vedernikov, A.; Safonov, A.; Akhatov, I. Thermoplastic pultrusion: A review. Polymers 2021, 13, 180. [Google Scholar] [CrossRef]
- Carlone, P.; Baran, I.; Hattel, J.H.; Palazzo, G.S. Computational approaches for modeling the multiphysics in pultrusion process. Adv. Mech. Eng. 2013, 5, 301875. [Google Scholar] [CrossRef]
- Tutum, C.C.; Baran, I.; Deb, K. Optimum design of pultrusion process via evolutionary multi-objective optimization. Int. J. Adv. Manuf. Technol. 2014, 72, 1205–1217. [Google Scholar] [CrossRef]
- Dun, M.; Fu, H.; Hao, J.; Wang, W. Development of Short Jute Fiber-Reinforced Thermoplastic Pre-Preg Tapes. Polymers 2025, 17, 388. [Google Scholar] [CrossRef]
- Srebrenkoska, S.; Kochoski, F.; Srebrenkoska, V.; Risteska, S.; Kotynia, R. Effect of Process Parameters on Thermal and Mechanical Properties of Filament Wound Polymer-Based Composite Pipes. Polymers 2023, 15, 2829. [Google Scholar] [CrossRef] [PubMed]
- Volk, M.; Wong, J.; Arreguin, S.; Ermanni, P. Pultrusion of large thermoplastic composite profiles up to Ø 40 mm from glass-fibre/PET commingled yarns. Compos. Part B Eng. 2021, 227, 109339. [Google Scholar] [CrossRef]
- Novo, P.J.; Silva, J.F.; Nunes, J.P.; Marques, A.T. Pultrusion of fibre reinforced thermoplastic pre-impregnated materials. Compos. Part B Eng. 2016, 89, 328–339. [Google Scholar] [CrossRef]
- Krajangsawasdi, N.; Blok, L.G.; Hamerton, I.; Longana, M.L.; Woods, B.K.S.; Ivanov, D.S. Fused deposition modelling of fibre reinforced polymer composites: A parametric review. J. Compos. Sci. 2021, 5, 29. [Google Scholar] [CrossRef]
- Pervaiz, S.; Qureshi, T.A.; Kashwani, G.; Kannan, S. 3D printing of fiber-reinforced plastic composites using fused deposition modeling: A status review. Materials 2021, 14, 4520. [Google Scholar] [CrossRef]
- Murdy, P.; Dolson, J.; Miller, D.; Hughes, S.; Beach, R. Leveraging the advantages of additive manufacturing to produce advanced hybrid composite structures for marine energy systems. Appl. Sci. 2021, 11, 1336. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Tawfik, H.; Goldsmith, P. A multi-layer approach for additive manufacturing of continuous fiber composites. Polym. Compos. 2024, 46, 3623–3635. [Google Scholar] [CrossRef]
- Page, Z.A.; Nelson, A. Additive manufacturing in polymer science. J. Polym. Sci. 2024, 62, 2583–2584. [Google Scholar] [CrossRef]
- Jamal, M.A.; Shah, O.R.; Ghafoor, U.; Qureshi, Y.; Bhutta, M.R. Additive Manufacturing of Continuous Fiber-Reinforced Polymer Composites via Fused Deposition Modelling: A Comprehensive Review. Polymers 2024, 16, 1622. [Google Scholar] [CrossRef]
- Jiménez, M.; Romero, L.; Domínguez, I.A.; Espinosa, M.D.M.; Domínguez, M. Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects. Complexity 2019, 2019, 9656938. [Google Scholar] [CrossRef]
- Zhou, L.; Miller, J.; Vezza, J.; Mayster, M.; Raffay, M.; Justice, Q.; Al Tamimi, Z.; Hansotte, G.; Sunkara, L.D.; Bernat, J. Additive Manufacturing: A Comprehensive Review. Sensors 2024, 24, 2668. [Google Scholar] [CrossRef] [PubMed]
- Rithika, K.; Sudha, J. Additive Manufacturing of Fiber-Reinforced Composites—A Comprehensive Overview. Polym. Adv. Technol. 2024, 35, e70002. [Google Scholar] [CrossRef]
- Almeida, H.A.; Vasco, J.C. Progress in Digital and Physical Manufacturing; Politécnico de Leiria: Leiria, Portugal, 2019. [Google Scholar]
- Bianchi, I.; Forcellese, A.; Mancia, T.; Mignanelli, C.; Simoncini, M.; Verdini, T. Effect of Heat-Shrinkable Tape Application on the Mechanical Performance of CFRP Components Obtained by a Filament Winding Process. J. Compos. Sci. 2024, 8, 535. [Google Scholar] [CrossRef]
- Vidinha, H.; Branco, R.; Neto, M.A.; Amaro, A.M.; Reis, P. Numerical Modeling of Damage Caused by Seawater Exposure on Mechanical Strength in Fiber-Reinforced Polymer Composites. Polymers 2022, 14, 3955. [Google Scholar] [CrossRef]
- Chen, X.; Gokdag, E.; Wang, S.S. Effect of Coupled Long-Term Seawater Exposure and Bi-Axial Creep Loading (2:1) on Durability of Fiber-Reinforced Polymer-Matrix Composites; Woodhead Publishing Limited: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Vizentin, G.; Glujić, D.; Špada, V. Effect of time-real marine environment exposure on the mechanical behavior of FRP composites. Sustainability 2021, 13, 9934. [Google Scholar] [CrossRef]
- Hassan, A.; Khan, R.; Khan, N.; Aamir, M.; Pimenov, D.Y.; Giasin, K. Effect of seawater ageing on fracture toughness of stitched glass fiber/epoxy laminates for marine applications. J. Mar. Sci. Eng. 2021, 9, 196. [Google Scholar] [CrossRef]
- Hussnain, S.M.; Shah, S.Z.H.; Megat-Yusoff, P.S.M.; Choudhry, R.S.; Hussain, M.Z. Hygrothermal effects on the durability of resin-infused thermoplastic E-glass fiber-reinforced composites in marine environment. Polym. Compos. 2024, 45, 13901–13923. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Tensile Properties of Plastics; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM International. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Raj, S.S.; Michailovich, K.A.; Subramanian, K.; Sathiamoorthyi, S.; Kandasamy, K.T. Philosophy of selecting ASTM standards for mechanical characterization of polymers and polymer composites. Mater. Plast. 2021, 58, 247–256. [Google Scholar] [CrossRef]
- Shetty, K.; Bojja, R.; Srihari, S. Effect of hygrothermal aging on the mechanical properties of IMA/M21E aircraft-grade CFRP composite. Adv. Compos. Lett. 2020, 29, 2633366X20926520. [Google Scholar] [CrossRef]
- Padarthi, Y.; Mohanta, S.; Gupta, J.; Neogi, S. Quantification of Swelling Stress Induced Mechanical Property Reduction of Glass Fiber/Epoxy Composites Immersed in Aqueous 10% Sulphuric Acid by Instrumenting with Distributed Optical Fiber Sensors. Fibers Polym. 2022, 23, 212–221. [Google Scholar] [CrossRef]
- Morales, C.N.; Claure, G.; Emparanza, A.R.; Nanni, A. Durability of GFRP reinforcing bars in seawater concrete. Constr. Build. Mater. 2021, 270, 121492. [Google Scholar] [CrossRef]
- Nunemaker, J.D.; Voth, M.M.; Miller, D.A.; Samborsky, D.D.; Murdy, P.; Cairns, D.S. Effects of moisture absorption on damage progression and strength of unidirectional and cross-ply fiberglass-epoxy composites. Wind Energy Sci. 2018, 3, 427–438. [Google Scholar] [CrossRef]
- Le Guen-Geffroy, A.; Davies, P.; Le Gac, P.Y.; Habert, B. Influence of Seawater Ageing on Fracture of Carbon Fiber Reinforced Epoxy Composites for Ocean Engineering. Oceans 2020, 1, 198–214. [Google Scholar] [CrossRef]
- Idrisi, A.H.; Mourad, A.H.I.; Sherif, M.M. Impact of prolonged exposure of eleven years to hot seawater on the degradation of a thermoset composite. Polymers 2021, 13, 2154. [Google Scholar] [CrossRef]
- Bonsu, A.O.; Mensah, C.; Liang, W.; Yang, B.; Ma, Y. Mechanical Degradation and Failure Analysis of Different Glass/Basalt Hybrid Composite Configuration in Simulated Marine Condition. Polymers 2022, 14, 3480. [Google Scholar] [CrossRef]
- Nan, J.; Zhi, C.; Meng, J.; Miao, M.; Yu, L. Seawater aging effect on fiber-reinforced polymer composites: Mechanical properties, aging mechanism, and life prediction. Text. Res. J. 2023, 93, 3393–3413. [Google Scholar] [CrossRef]
- Narasimha Murthy, H.N.; Sreejith, M.; Krishna, M.; Sharma, S.C.; Sheshadri, T.S. Seawater durability of epoxy/vinyl ester reinforced with glass/carbon composites. J. Reinf. Plast. Compos. 2010, 29, 1491–1499. [Google Scholar] [CrossRef]
- Kootsookos, A.; Mouritz, A.P. Seawater durability of glass- and carbon-polymer composites. Compos. Sci. Technol. 2004, 64, 1503–1511. [Google Scholar] [CrossRef]
- Zhang, L.; Piggott, M.R. Water Absorption and Fiber-Matrix Interface Durability in Carbon-PEEK. J. Thermoplast. Compos. Mater. 2000, 13, 162–172. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM International. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ISO 14125:1998(en); Fibre-Reinforced Plastic Composites—Determination of Flexural Properties. International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- Zhang, Y.; Meng, L.; Wan, Y.; Xiao, B.; Takahashi, J. Measurement of the Flexural Modulus of Chopped Carbon Fiber Tape Reinforced Thermoplastic with Short Beams. Appl. Compos. Mater. 2021, 28, 1511–1530. [Google Scholar] [CrossRef]
- Burgani, T.d.S.; Alaie, S.; Tehrani, M. Modeling Flexural Failure in Carbon-Fiber-Reinforced Polymer Composites. J. Compos. Sci. 2022, 6, 33. [Google Scholar] [CrossRef]
- Santhosh, K.; Muniraju, M.; Shivakumar, N.D.; Raguraman, M. Hygrothermal durability and failure modes of FRP for marine applications. J. Compos. Mater. 2012, 46, 1889–1896. [Google Scholar] [CrossRef]
- Yang, S.; Liu, W.; Fang, Y.; Huo, R. Influence of hygrothermal aging on the durability and interfacial performance of pultruded glass fiber-reinforced polymer composites. J. Mater. Sci. 2019, 54, 2102–2121. [Google Scholar] [CrossRef]
- Botelho, E.C.; Pardini, L.C.; Rezende, M.C. Hygrothermal effects on the shear properties of carbon fiber/epoxy composites. J. Mater. Sci. 2006, 41, 7111–7118. [Google Scholar] [CrossRef]
- Aithal, S.; Hossagadde, P.N.; Kini, M.V.; Pai, D. Durability study of quasi-isotropic carbon/epoxy composites under various environmental conditions. Iran. Polym. J. (English Ed.) 2023, 32, 873–885. [Google Scholar] [CrossRef]
- Hong, B.; Xian, G.; Li, H. Comparative study of the durability behaviors of epoxy- and polyurethane-based CFRP plates subjected to the combined effects of sustained bending and water/seawater immersion. Polymers 2017, 9, 603. [Google Scholar] [CrossRef]
- Lu, J.; Zheng, C.; Wang, L.; Dai, Y.; Wang, Z.; Song, Z. T700 Carbon Fiber/Epoxy Resin Composite Material Hygrothermal Aging Model. Materials 2025, 18, 369. [Google Scholar] [CrossRef]
- Jiang, M.; Pan, Y.; Yang, M. Durability of basalt fibers, glass fibers, and their reinforced polymer composites in artificial seawater. Polym. Compos. 2022, 43, 1961–1973. [Google Scholar] [CrossRef]
- Mehndiratta, A.; Bandyopadhyaya, S.; Kumar, V.; Kumar, D. Experimental investigation of span length for flexural test of fiber reinforced polymer composite laminates. J. Mater. Res. Technol. 2018, 7, 89–95. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- ZwickRoell. ZwickRoell Charpy/Izod Impact Testing Machine Instruction; ZwickRoell: Ulm, Germany, 2015. [Google Scholar]
- CEAST. CEAST 9350 Pendulum Impact Tester User Manual; CEAST: Torino, Italy, 2012. [Google Scholar]
- Deniz, M.E.; Karakuzu, R. Seawater effect on impact behavior of glass-epoxy composite pipes. Compos. Part B Eng. 2012, 43, 1130–1138. [Google Scholar] [CrossRef]
- Gore, P.M.; Kandasubramanian, B. Functionalized Aramid Fibers and Composites for Protective Applications: A Review. Ind. Eng. Chem. Res. 2018, 57, 16537–16563. [Google Scholar] [CrossRef]
- Bisht, A.; Dasgupta, K.; Lahiri, D. Investigating the role of 3D network of carbon nanofillers in improving the mechanical properties of carbon fiber epoxy laminated composite. Compos. Part A Appl. Sci. Manuf. 2019, 126, 105601. [Google Scholar] [CrossRef]
- Khan, S.U.; Kim, J.K. Impact and delamination failure of multiscale carbon nanotube-fiber reinforced polymer composites: A review. Int. J. Aeronaut. Sp. Sci. 2011, 12, 115–133. [Google Scholar] [CrossRef]
- Yang, F.; Li, J.; Han, S.; Ma, N.; Li, Q.; Liu, D.; Sui, G. Wear resistant PEEK composites with great mechanical properties and high thermal conductivity synergized with carbon fibers and h-BN nanosheets. Polym. Adv. Technol. 2023, 34, 2224–2234. [Google Scholar] [CrossRef]
- Xie, J.; Lu, Z.; Guo, Y.; Huang, Y. Durability of CFRP sheets and epoxy resin exposed to natural hygrothermal or cyclic wet-dry environment. Polym. Compos. 2019, 40, 553–567. [Google Scholar] [CrossRef]
- Yadav, S.; Pathak, V.K.; Gangwar, S. A novel hybrid TOPSIS-PSI approach for material selection in marine applications. Sādhanā 2019, 44, 58. [Google Scholar] [CrossRef]
- Putra, N.R.; Ismail, A.; Sari, D.P.; Suwahyu, S.; Utina, M.R.; Rizal, N.; Machfudin, A.; Sandjaja, I.E.; Pratikno, H. Innovations and trends in composite materials for maritime applications: A 2000–2024 bibliometric study and comprehensive review. Ships Offshore Struct. 2025, 1–18. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- ISO 13003:2003; Fibre-Reinforced Plastic Composites—Determination of Fatigue Properties under Cyclic Loading. International Organization for Standardization (ISO): Geneva, Switzerland, 2003.
- Jimit, R.H.; Zakaria, K.A.; Bapokutty, O.; Ali, M.B.; Rivai, A. Fatigue Life Behaviour of Fiberglass-Reinforced Composites Subjected To Underloading. J. Adv. Manuf. Technol. 2020, 14, 101–112. [Google Scholar]
- Vidinha, H.; Durães, L.; Neto, M.A.; Amaro, A.M.; Branco, R. Understanding seawater-induced fatigue changes in glass/epoxy laminates: A SEM, EDS, and FTIR study. Polym. Degrad. Stab. 2024, 224, 110752. [Google Scholar] [CrossRef]
- Koshima, S.; Yoneda, S.; Kajii, N.; Hosoi, A.; Kawada, H. Evaluation of strength degradation behavior and fatigue life prediction of plain-woven carbon-fiber-reinforced plastic laminates immersed in seawater. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105645. [Google Scholar] [CrossRef]
- Alzamora Guzman, V.; Brøndsted, P. Effects of moisture on glass fiber-reinforced polymer composites. J. Compos. Mater. 2015, 49, 911–920. [Google Scholar] [CrossRef]
- Gamstedt, E.K.; Talreja, R. Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics. J. Mater. Sci. 1999, 34, 2535–2546. [Google Scholar] [CrossRef]
- Tai, N.H.; Ma, C.C.M.; Wu, S.H. Fatigue behaviour of carbon fibre/PEEK laminate composites. Composites 1995, 26, 551–559. [Google Scholar] [CrossRef]
- Li, S.; Zhu, D.; Guo, S.; Xi, H.; Rahman, D.; Yi, Y.; Fu, B.; Shi, C. Static and dynamic tensile behaviors of BFRP bars embedded in seawater sea sand concrete under marine environment. Compos. Part B Eng. 2022, 242, 110051. [Google Scholar] [CrossRef]
- Loos, M.R.; Yang, J.; Feke, D.L.; Manas-Zloczower, I.; Unal, S.; Younes, U. Enhancement of fatigue life of polyurethane composites containing carbon nanotubes. Compos. Part B Eng. 2013, 44, 740–744. [Google Scholar] [CrossRef]
- Sui, X.; Shi, J.; Yao, H.; Xu, Z.; Chen, L.; Li, X.; Ma, M.; Kuang, L.; Fu, H.; Deng, H. Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer. Compos. Part A Appl. Sci. Manuf. 2017, 92, 134–144. [Google Scholar] [CrossRef]
- Loos, M.; Yang, J.; Feke, D.; Manas, I. Enhanced Fatigue Life of Carbon Nanotube-Reinforced Epoxy Composites. Polym. Eng. Sci. 2012, 52, 1882–1887. [Google Scholar] [CrossRef]
- Wu, L.; Murphy, K.; Karbhari, V.M.; Zhang, J.S. Short-term effects of sea water on E-glass/vinylester composites. J. Appl. Polym. Sci. 2002, 84, 2760–2767. [Google Scholar] [CrossRef]
- Maxwell, A.; Broughton, W.R. Survey of Long-Term Durability Testing of Composites, Adhesives and Polymers; NPL: Teddington, UK, 2017. [Google Scholar]
- ASTM International. Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Idrisi, A.H.; Mourad, A.H.I.; Abdel-Magid, B.M.; Shivamurty, B. Investigation on the durability of e-glass/epoxy composite exposed to seawater at elevated temperature. Polymers 2021, 13, 2182. [Google Scholar] [CrossRef]
- Krishnasamy, S.; Muthukumar, C.; Thiagamani, S.M.K.; Rangappa, S.M.; Siengchin, S. Sandwich Composites: Fabrication and Characterization; Taylor&Francis Group: Abingdon, UK, 2021. [Google Scholar] [CrossRef]
- Karbhari, V.M.; Acharya, R.; Hong, S.K. Seawater Effects on Thermally Aged Ambient Cured Carbon/Epoxy Composites: Moisture Kinetics and Uptake Characteristics. Polymers 2023, 15, 2138. [Google Scholar] [CrossRef]
- Ma, C.-C.M.; Yur, S.-W. Environmental Effect on the Water Absorption and Mechanical Properties of Carbon Fiber Reinforced PPS and PEEK Composites. J. Thermoplast. Compos. Mater. 1989, 2, 281–292. [Google Scholar] [CrossRef]
- Guloglu, G.E.; Hamidi, Y.K.; Altan, M.C. Moisture absorption of composites with interfacial storage. Compos. Part A Appl. Sci. Manuf. 2020, 134, 105908. [Google Scholar] [CrossRef]
- Al Imran, K.; Hossain, M.K.; Hosur, M.; Jeelani, S. Assessment of moisture barrier, mechanical, and thermal property of base/nanophased carbon-epoxy composites in seawater. J. Compos. Mater. 2021, 55, 703–715. [Google Scholar] [CrossRef]
- Kurtz, S.M. Chapter 6—Chemical and Radiation Stability of PEEK. In PEEK Biomaterials Handbook; Kurtz, S.M., Ed.; Plastics Design Library; William Andrew Publishing: Oxford, UK, 2012; pp. 75–79. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Jiang, P.; Yan, F. Accelerated degradation of polyetheretherketone and its composites in the deep sea. R. Soc. Open Sci. 2018, 5, 171775. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.L.; De Almeida, S.F.M.; Rezende, M.C. Hygrothermal effects on dynamic mechanical analysis and fracture behavior of polymeric composites. Mater. Res. 2005, 8, 335–340. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, W.; Li, Z.; Hou, L.; Li, G.; Fuh, J.; Wu, W. Influence of Thermal Processing Conditions on Mechanical and Material Properties of 3D Printed Thin-Structures Using PEEK Material. Int. J. Precis. Eng. Manuf. 2022, 23, 689–699. [Google Scholar] [CrossRef]
- Da Silva, A.N.; Mori, G.S.; Moraes D’Almeida, J.R. Evaluation of the effects of fluids upon the flexural and parallel-plate loading behavior of glass fiber reinforced-vinyl ester resin matrix composite pipes. Mater. Res. 2015, 18, 121–126. [Google Scholar] [CrossRef]
- Guo, M.; Li, W.; Han, N.; Wang, J.; Su, J.; Li, J.; Zhang, X. Novel dual-component microencapsulated hydrophobic amine and microencapsulated isocyanate used for self-healing anti-corrosion coating. Polymers 2018, 10, 319. [Google Scholar] [CrossRef] [PubMed]
- Vizentin, G.; Vukelic, G. Prediction of the Deterioration of FRP Composite Properties Induced by Marine Environments. J. Mar. Sci. Eng. 2022, 10, 510. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Wu, Z.; Dong, Z.; Zhang, G. Durability of basalt fibers and composites in corrosive environments. J. Compos. Mater. 2015, 49, 873–887. [Google Scholar] [CrossRef]
- Woo, E.M.; Chen, J.S.; Carter, C.S. Mechanisms of degradation of polymer composites by galvanic reactions between metals and carbon fiber. Polym. Compos. 1993, 14, 395–401. [Google Scholar] [CrossRef]
- Ofoegbu, S.U.; Ferreira, M.G.S.; Zheludkevich, M.L. Galvanically stimulated degradation of carbon-fiber reinforced polymer composites: A critical review. Materials 2019, 12, 651. [Google Scholar] [CrossRef]
- Gomez-Banderas, J. Marine Natural Products: A Promising Source of Environmentally Friendly Antifouling Agents for the Maritime Industries. Front. Mar. Sci. 2022, 9, 1–7. [Google Scholar] [CrossRef]
- Rao, T.S. Biofouling in Industrial Water Systems; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Sathe, P.; Richter, J.; Myint, M.T.Z.; Dobretsov, S.; Dutta, J. Self-decontaminating photocatalytic zinc oxide nanorod coatings for prevention of marine microfouling: A mesocosm study. Biofouling 2016, 32, 383–395. [Google Scholar] [CrossRef]
- Liang, H.; Shi, X.; Li, Y. Technologies in Marine Antifouling and Anti-Corrosion Coatings: A Comprehensive Review. Coatings 2024, 14, 1487. [Google Scholar] [CrossRef]
- Li, J.; Zhao, H.; Sha, L.; Zhang, H.; Ding, M.; Liao, C. Ternary flame retardant system based on the in-situ polymerization of ammonium polyphosphate-diatomite-aluminium trihydroxide. BioResources 2019, 14, 8950–8962. [Google Scholar] [CrossRef]
- Lin, J.S.; Liu, Y.; Wang, D.Y.; Qin, Q.; Wang, Y.Z. Poly(vinyl alcohol)/ammonium polyphosphate systems improved simultaneously both fire retardancy and mechanical properties by montmorillonite. Ind. Eng. Chem. Res. 2011, 50, 9998–10005. [Google Scholar] [CrossRef]
- Zheng, P.; Zhao, H.; Li, J.; Liu, Q.; Ai, H.; Yang, R.; Xing, W. Recent advances in constructing new type of epoxy resin flame retardant system using ammonium polyphosphate. J. Saf. Sci. Resil. 2024, 5, 179–193. [Google Scholar] [CrossRef]
- Piperopoulos, E.; Scionti, G.; Atria, M.; Calabrese, L.; Valenza, A.; Proverbio, E. Optimizing Ammonium Polyphosphate–Acrylic Intumescent Coatings with Sustainable Fillers for Naval Fire Safety. Materials 2024, 17, 5222. [Google Scholar] [CrossRef]
- Ramgobin, A.; Fontaine, G.; Bourbigot, S. A case study of polyether ether ketone (I): Investigating the thermal and fire behavior of a high-performance material. Polymers 2020, 12, 1789. [Google Scholar] [CrossRef]
- Zhang, J.; Delichatsios, M.A.; Fateh, T.; Suzanne, M.; Ukleja, S. Characterization of flammability and fire resistance of carbon fibre reinforced thermoset and thermoplastic composite materials. J. Loss Prev. Process Ind. 2017, 50, 275–282. [Google Scholar] [CrossRef]
- Kausar, A.; Rafique, I.; Muhammad, B. Significance of Carbon Nanotube in Flame Retardant Polymer/CNT Composite: A Review. Polym. Plast. Technol. Eng. 2016, 56, 470–487. [Google Scholar] [CrossRef]
- Dewaghe, C.; Lew, C.Y.; Claes, M.; Belgium, S.A.; Dubois, P. Fire-Retardant Applications of Polymer-Carbon Nanotubes Composites: Improved Barrier Effect and Synergism; Woodhead Publishing Limited: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Tawiah, B.; Ofori, E.A.; Bin, F. Scientometric Review of Sustainable Fire-Resistant Polysaccharide-Based Composite Aerogels. Sustainability 2023, 15, 12185. [Google Scholar] [CrossRef]
- de Oliveira Queiroz, L.P.; Aroucha, E.M.M.; da Silva, W.A.O.; de Almeida, J.G.L.; Soares, L.P.; de Lima Leite, R.H. A novel edible biocomposite coating based on alginate from the brown seaweed Dictyota mertensii loaded with beeswax nanoparticles extends the shelf life of yellow passion fruit. Int. J. Biol. Macromol. 2025, 284, 138051. [Google Scholar] [CrossRef]
- Lee, T.; Kim, D.; Cho, S.; Kim, M.O. Advancements in Surface Coatings and Inspection Technologies for Extending the Service Life of Concrete Structures in Marine Environments: A Critical Review. Buildings 2025, 15, 304. [Google Scholar] [CrossRef]
- Qiu, H.; Feng, K.; Gapeeva, A.; Meurisch, K.; Kaps, S.; Li, X.; Yu, L.; Mishra, Y.K.; Adelung, R.; Baum, M. Functional polymer materials for modern marine biofouling control. Prog. Polym. Sci. 2022, 127, 101516. [Google Scholar] [CrossRef]
- Sorathia, U. Flame retardant materials for maritime and naval applications. In Advances in Fire Retardant Materials; Woodhead Publishing Ltd.: Cambridge, UK, 2008; pp. 527–572. [Google Scholar] [CrossRef]
- Renjith R Literature review on marine applications of composite materials (Review of Literature). Res. Gate 2018, 24, 35. [CrossRef]
- Zhang, Z.; Huang, Y.; Xie, Q.; Liu, G.; Ma, C.; Zhang, G. Functional Polymer–Ceramic Hybrid Coatings: Status, Progress, and Trend. Prog. Polym. Sci. 2024, 154, 101840. [Google Scholar] [CrossRef]
- Andrew, J.; Sain, M.; Ramakrishna, S.; Jawaid, M.; Dhakal, H. Environmentally friendly fire retardant natural fibre composites: A review. Int. Mater. Rev. 2024, 69, 267–308. [Google Scholar] [CrossRef]
- KRC, S.R.; R, S.; K, S.R. Ceramic–polymer hybrid coatings for diverse applications. Front. Coat. Dye. Interface Eng. 2024, 2, 1386920. [Google Scholar] [CrossRef]
- Caramatescu, A.; Mocanu, C. Review of composite materials applications in marine industry. Ann. “Dunarea De Jos” Univ. Galati 2019, 42, 169–174. [Google Scholar] [CrossRef]
- Önal, M.; Neşer, G. End-of-life alternatives of glass reinforced polyester boat hulls compared by LCA. Adv. Compos. Lett. 2018, 27, 134–141. [Google Scholar] [CrossRef]
- Martinez, X.; Sá, D.; Silva, J.; Jurado, A.; Martinez, X.; Sá, D.; Silva, J. Composite materials, technologies and manufacturing: Current scenario of European Union shipyards Composite materials, technologies and manufacturing: Current scenario of European; Taylor&Francis: Abingdon, UK, 2024; Volume 5302. [Google Scholar] [CrossRef]
- Sahaya Elsi, S.; Michael Raj, F.; Prince Mary, S.; Amala Mithin Minther Singh, A.; Jayaram, R.S. Manufacturing and characterization of glass fiber-fishnet-woven roving and polyester composites for marine applications. J. Mar. Sci. Technol. 2020, 28, 10–17. [Google Scholar] [CrossRef]
- Compston, P.; Jar, P.Y.B. Comparison of Interlaminar Fracture Toughness in Unidirectional and Woven Roving Marine Composites. Appl. Compos. Mater. 1998, 5, 189–206. [Google Scholar] [CrossRef]
- Kartal, İ.; Demirer, H. Wear Properties of Hybrid Epoxy Composites Reinforced with Carbon/Kevlar/Glass Fabrics. Acta Phys. Pol. A 2017, 131, 559–562. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Khanna, S. Tensile properties of glass fiber-reinforced polyester composites at extreme cold temperatures. Polym. Compos. 2020, 41, 3698–3706. [Google Scholar] [CrossRef]
- Ertuğ, B. Advanced Fiber-Reinforced Composite Materials for Marine Applications. Adv. Mater. Res. 2013, 772, 173–177. [Google Scholar] [CrossRef]
- Boston Whaler’s Biggest Boat Ever Incorporates Composites. Available online: https://compositeslab.com/boston-whalers-biggest-boat-ever-incorporates-composites/index.html (accessed on 2 August 2025).
- Visby Class Corvette. Saab Group. 2014. Available online: http://www.saabgroup.com/en/Naval/Kockums-Naval-Solutions/Naval-Surface-Ships/Visby-Class-Corvette/ (accessed on 2 August 2025).
- File: USS Nimitz in Victoria Canada 036.jpg—Wikipedia. Available online: https://en.wikipedia.org/wiki/File:USS_Nimitz_in_Victoria_Canada_036.jpg (accessed on 2 August 2025).
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers 2021, 13, 3721. [Google Scholar] [CrossRef]
- Osa-uwagboe, N.; Silberschmidt, V.V.; Demirci, E. Review on Mechanical Performance of Fibre-Reinforced Plastics in Marine Environments. Appl. Compos. Mater. 2024, 31, 1991–2018. [Google Scholar] [CrossRef]
- Beemkumar, N.; Subbiah, G.; Upadhye, V.J.; Arora, A.; Jena, S.P.; Priya, K.K.; Alemayehu, H. Thermal stability and flame-retardant properties of a basalt/kevlar fiber-reinforced hybrid polymer composite with bran filler particulates. Results Eng. 2025, 25, 104207. [Google Scholar] [CrossRef]
- Lee, Y.B.; Suslick, B.A.; de Jong, D.; Wilson, G.O.; Moore, J.S.; Sottos, N.R.; Braun, P.V. A Self-Healing System for Polydicyclopentadiene Thermosets. Adv. Mater. 2024, 36, e2309662. [Google Scholar] [CrossRef] [PubMed]
- Shenoi, R.A.; Wellicome, J.F. (Eds.) Composite Materials in Maritime Structures; Cambridge Ocean Technology Series; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- FRP/GRP Platform & Walkways—Well Anti-corrosive and Strong Durable. Available online: https://www.cofiberial.com/applications/frp-platform-walkways.html (accessed on 2 August 2025).
- Vukelic, G.; Vizentin, G.; Brnic, J.; Brcic, M.; Sedmak, F. Long-term marine environment exposure effect on butt-welded shipbuilding steel. J. Mar. Sci. Eng. 2021, 9, 491. [Google Scholar] [CrossRef]
- Amaechi, C.V.; Gillet, N.; Ahmed Ja’E, I.; Wang, C. Tailoring the Local Design of Deep Water Composite Risers to Minimise Structural Weight. J. Compos. Sci. 2022, 6, 103. [Google Scholar] [CrossRef]
- GRP Construction in the North Sea Offshore Oil and Gas Industry—Engineered Composites. Available online: https://engineered-composites.co.uk/grp-construction-in-the-north-sea-offshore-oil-and-gas-industry/ (accessed on 2 August 2025).
- The Dawn of the Disruptive, Deepwater TCP Riser. Available online: https://jpt.spe.org/dawn-disruptive-deepwater-tcp-riser (accessed on 2 August 2025).
- Matos, H.; Ngwa, A.N.; Chaudhary, B.; Shukla, A. Review of Implosion Design Considerations for Underwater Composite Pressure Vessels. J. Mar. Sci. Eng. 2024, 12, 1468. [Google Scholar] [CrossRef]
- Wong, S.I. On Lightweight Design of Submarine Pressure Hulls. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar]
- Wang, P.; Zhong, S.; Yan, K.; Liao, B.; Guo, Y.; Zhang, J. Effect of hollow glass microspheres surface modification on the compressive strength of syntactic foams. J. Mater. Res. Technol. 2024, 30, 2264–2271. [Google Scholar] [CrossRef]
- Wu, X.; Tang, B.; Yu, J.; Cao, X.; Zhang, C.; Lv, Y. Preparation and Investigation of Epoxy Syntactic Foam (Epoxy/Graphite Reinforced Hollow Epoxy Macrosphere/Hollow Glass Microsphere Composite). Fibers Polym. 2018, 19, 170–187. [Google Scholar] [CrossRef]
- Davies, P. Evaluation of New Composite Materials for Marine Applications. Appl. Compos. Mater. 2024, 31, 1933–1954. [Google Scholar] [CrossRef]
- Willcox, S.; Goldberg, D.; Vaganay, J.; Curcio, J. Multi-Vehicle Cooperative Navigation and Autonomy with the Bluefin Cadre System. Mar. Sci. Eng. 2022, 10, 955. [Google Scholar]
- Ren, R.; Zhang, L.; Liu, L.; Wu, D.; Pan, G.; Huang, Q.; Zhu, Y.; Liu, Y.; Zhu, Z. Multi-AUV Cooperative Navigation Algorithm Based on Temporal Difference Method. J. Mar. Sci. Eng. 2022, 10, 955. [Google Scholar] [CrossRef]
- Weitzenböck, J.; McGeorge, D.; Hersvik, G.; Hayman, B.; Noury, P.; Hill, D.; Echtermeyer, A. Application of Composites in Ships and Offshore—A Review and outlook. In Proceedings of the Marine & Offshore Composites, London, UK, February 2010; pp. 1–10. [Google Scholar]
- Blazejewski, W.; Filipiak-Kaczmarek, A.; Barcikowski, M.; Łagoda, K.; Stabla, P.; Lubecki, M.; Stosiak, M.; Śliwiński, C.; Kamyk, Z. Design and Implementing Possibilities of Composite Pontoon Bridge. Sci. Lett. Rzesz. Univ. Technol. Mech. 2018, 35, 411–420. [Google Scholar] [CrossRef]
- George, J.M.; Kimiaei, M.; Elchalakani, D.M.; Fawzia, S. Experimental and numerical investigation of underwater composite repair with fibre reinforced polymers in corroded tubular offshore structural members under concentric and eccentric axial loads. Eng. Struct. 2020, 227, 111402. [Google Scholar] [CrossRef]
- Fiberglass Pontoon. Available online: https://smartlinerboat.com/fiberglass pontoon.htm (accessed on 2 August 2025).
- Kontiza, A.; Kartsonakis, I. Smart Composite Materials with Self-Healing Properties: A Review on Design and Applications. Preprints 2024. [Google Scholar] [CrossRef]
- Baley, C.; Davies, P.; Troalen, W.; Chamley, A.; Dinham-Price, I.; Marchandise, A.; Keryvin, V. Sustainable polymer composite marine structures: Developments and challenges. Prog. Mater. Sci. 2024, 145, 101307. [Google Scholar] [CrossRef]
- Vizentin, G.; Vukelic, G. Marine environment induced failure of FRP composites used in maritime transport. Eng. Fail. Anal. 2022, 137, 101307. [Google Scholar] [CrossRef]
- Vizentin, G.; Vukelic, G. Failure analysis of FRP composites exposed to real marine environment. Procedia Struct. Integr. 2021, 37, 233–240. [Google Scholar] [CrossRef]
- Shenoi, R.; Dulieu-Barton, J.; Quinn, S.; Blake, J.; Boyd, S. Composite Materials for Marine Applications: Key Challenges for the Future. In Composite Materials; Springer: London, UK, 2011; pp. 69–89. [Google Scholar] [CrossRef]
- Figueroa, E.; Shafiq, B.; de la Paz, I. Creep to failure and cyclic creep of foam core sandwich composites in seawater. J. Sandw. Struct. Mater. 2013, 15, 657–670. [Google Scholar] [CrossRef]
- Wang, X.; Travis, C.; Sorna, M.T.; Arola, D. Durability of Ultem 9085 in Marine Environments: A Consideration in Fused Filament Fabrication of Structural Components. Polymers 2024, 16, 350. [Google Scholar] [CrossRef]
- Kappenthuler, S.; Seeger, S. Assessing the long-term potential of fiber reinforced polymer composites for sustainable marine construction. J. Ocean Eng. Mar. Energy 2021, 7, 129–144. [Google Scholar] [CrossRef]
- Ali, Z.; Asmatulu, E. Effects of Acid Treatment on The Recovery of Outdated Pre-preg Composite Fibers; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Wang, Y.; Edgell, J.; Graham, N.; Jackson, N.; Liang, H.; Pham, D. Self-healing of structural carbon fibres in polymer composites. Cogent Eng. 2020, 7, 1799909. [Google Scholar] [CrossRef]
- Lee, M.W. Prospects and future directions of self-healing fiber-reinforced composite materials. Polymers 2020, 12, 379. [Google Scholar] [CrossRef]
- Huijer, A.; Kassapoglou, C.; Pahlavan, P. Acoustic emission monitoring of composite marine propellers in submerged conditions using embedded piezoelectric sensors. Smart Mater. Struct. 2024, 33, 095018. [Google Scholar] [CrossRef]
- Javaid, S.; Fahim, H.; Zeadally, S.; He, B. Self-Powered Sensors: Applications, Challenges, and Solutions. IEEE Sens. J. 2023, 23, 20483–20509. [Google Scholar] [CrossRef]
- Hamzat, A.K.; Murad, M.S.; Adediran, I.A.; Asmatulu, E.; Asmatulu, R. Fiber-Reinforced Composites for Aerospace, Energy, and Marine Applications: An Insight Into Failure Mechanisms under Chemical, Thermal, Oxidative, and Mechanical Load Conditions; Springer: Cham, Switzerland, 2025; Volume 8. [Google Scholar] [CrossRef]
- Shi, X.; Liang, H.; Li, Y. Review of Progress in Marine Anti-Fouling Coatings: Manufacturing Techniques and Copper- and Silver-Doped Antifouling Coatings. Coatings 2024, 14, 1454. [Google Scholar] [CrossRef]
- Huang, Y.; Sultan, M.T.H.; Shahar, F.S.; Grzejda, R.; Łukaszewicz, A. Hybrid Fiber-Reinforced Biocomposites for Marine Applications: A Review. J. Compos. Sci. 2024, 8, 430. [Google Scholar] [CrossRef]
- Chen, C.; Ding, Y.; Wang, X.; Bao, L. Recent advances to engineer tough basalt fiber reinforced composites: A review. Polym. Compos. 2024, 45, 12559–12574. [Google Scholar] [CrossRef]
- Fan, T.H.; Zeng, J.J.; Su, T.H.; Hu, X.; Yan, X.K.; Sun, H.Q. Innovative FRP reinforced UHPC floating wind turbine foundation: A comparative study. Ocean Eng. 2025, 326, 120799. [Google Scholar] [CrossRef]
- Nolan, S.; Rossini, M.; Knight, C.; Nanni, A. New directions for reinforced concrete coastal structures. J. Infrastruct. Preserv. Resil. 2021, 2, 1. [Google Scholar] [CrossRef]
- Tatar, J.; Brenkus, N.R. Performance of FRP-Strengthened Reinforced Concrete Bridge Girders after 12 Years of Service in Coastal Florida. J. Compos. Constr. 2021, 25, 04021028. [Google Scholar] [CrossRef]
- Yuan, F.; Chen, L.; Chen, M.; Xu, K. Behaviour of hybrid steel and FRP-reinforced concrete—ECC composite columns under reversed cyclic loading. Sensors 2018, 18, 4231. [Google Scholar] [CrossRef] [PubMed]
Material | Flexural | Tensile Strength (MPa) | Compression Strength (MPa) | Chemical | Corrosion | Cost | Applications | References | |
---|---|---|---|---|---|---|---|---|---|
Strength (MPa) | Modulus (GPa) | Resistance | |||||||
Epoxy | 85–120 | 3.0–4.5 | 60–90 | 100–140 | Excellent (RILEM PC 12, RILEM PCM8) 1 | Very good (Real Land Composite) 2 | More expensive than polyester and vinyl ester | Hulls, structural components, high-stress areas, fuel tanks, and bilges | [4,5,49,50,51,52,53] |
Polyester | 50–90 | 2.0–3.5 | 40–75 | 80–110 | Good (Varies) (RILEM PC 12, RILEM PCM8) 1 | Moderate (Canadian Composite Structures, INC) 3 | Less Expensive than steel | Non-critical parts | [49,50,54,55,56,57] |
Vinyl ester | 80–110 | 2.8–4.0 | 70–95 | 90–130 | Very Good (Real Land Composite) 2 | Very Good (Canadian Composite Structures, INC) 3 | More expensive than polyester | Hulls, tanks, and components exposed to saltwater | [4,5,49,57,58,59,60] |
Material | Flexural | Tensile Strength (MPa) | Compression Strength (MPa) | Chemical | Corrosion | Cost-Effectiveness | Best Uses in Marine Applications | References | |
---|---|---|---|---|---|---|---|---|---|
Strength (MPa) | Modulus (GPa) | Resistance | |||||||
* This Comparison is Based Solely on the Materials Listed in the Table | |||||||||
PE | 10–30 | 0.8–1.5 | 10–40 | 15–50 | Excellent | Excellent | Low | Buoyancy aids, liners, and pipes. | [69,75,76] |
PP | 20–40 | 1.0–2.0 | 30–50 | 20–60 | Excellent | Excellent | Low | Ropes, nets, liners, and lightweight components. | [69,74,75,76] |
PEEK | 150–170 | 3.5–4.5 | 90–120 | 150–180 | Excellent | Excellent | Very High | High-performance components: Bearings, seals, propellers, and underwater connectors. | [70,74,75] |
PEKK | 140–160 | 3.0–4.0 | 85–110 | 140–170 | Excellent | Excellent | Very High | High-temperature and chemical-resistant parts: Engine components, pump housings, and structural parts. | [11,70,75] |
Elium™ | 80–100 | 2.5–3.5 | 60–80 | 70–100 | Good | Good | High | Lightweight composite structures: Hulls, panels, and repair materials. | [38,42,63] |
PA | 50–120 | 2.0–3.0 | 60–100 | 80–130 | Good to Excellent | Good | Moderate | Gears, bushings, and structural parts. | [68,75,76] |
PLA | 50–70 | 3.0–4.0 | 40–65 | 50–80 | Moderate | Moderate | Low | Biodegradable marine products: Temporary fixtures. | [12,64,69] |
PHA | 20–40 | 1.0–2.0 | 20–45 | 30–60 | Moderate | Moderate | Moderate | Biodegradable marine products: Fishing nets, packaging. | [67,77,78] |
Aspect | Thermoset Composites | Thermoplastic Composites | References |
---|---|---|---|
Manufacturing Complexity | Lower viscosity; easier processing at moderate temps | High viscosity; requires high temps and specialized equipment | [5,11,12,29,42,79,80,81,82] |
Recyclability | Non-recyclable due to cross-linked matrix | Recyclable and reparable due to the thermoplastic nature | |
Interfacial Bonding | Covalent/secondary interactions | Challenging in marine conditions | |
Mechanical Performance | Well-established strong adhesion and rigidity | Good impact resistance; bonding and durability under marine conditions need improvement | |
Cost | Generally lower material and processing costs | Higher material cost and processing complexity | |
Environmental Impact | Less sustainable; typically petroleum-based | More sustainable; potential for bio-based and recycled materials | |
Shelf Life | Limited shelf life due to curing requirements | Infinite shelf life; can be remelted and reshaped |
Fiber Type | Common Resin Systems | Bonding/Compatibility Notes | Recommended Marine Use/Environment | References |
---|---|---|---|---|
Glass Fiber | Polyester, vinyl ester, and epoxy; also used with thermoplastics like PP, PA, and PEEK | E-glass provides good mechanical properties, electrical insulation, and moisture resistance; S-glass has higher tensile strength and stiffness—excellent compatibility with thermosets, especially epoxy. Thermoplastics offer recyclability and high impact resistance. | General marine structures such as small boats’ hulls, decks, and bulkheads; corrosion-prone environments. S-glass for high-performance components. | [1,61,74,93,94,95,96,98] |
Carbon Fiber | Epoxy (preferred), vinyl ester, and polyester; also with PEEK, PA, and thermoplastics | Epoxy provides strong adhesion and low moisture absorption; vinyl ester offers good water resistance; polyester is lower cost but less durable. Thermoplastics (PEEK, PA) provide high toughness, fast processing, and recyclability. | High-performance marine structures such as naval vessels, hydrofoils, and submersibles are ideal where a high strength-to-weight ratio and low moisture uptake are critical. | [1,8,16,107,112,113] |
Basalt Fiber | Epoxy, vinyl ester, and polyester; thermoplastics like PA, PP, and PEEK | Similarly to the processing of glass fiber, epoxy offers the best performance. Vinyl ester provides good water resistance, and polyester is suitable for cost-sensitive applications. Thermoplastics enhance recyclability and processing speed. | Hulls, offshore rigs, and pipelines in corrosive or high-heat marine environments; increasing interest in sustainable applications. | [121,122,123,124,125,127,132] |
Aramid Fiber | Epoxy, polyester, and vinyl ester (less common); PEEK, PA (thermoplastics) | Surface treatments and coatings are needed for achieving strong bonding. Para-aramids provide structural strength, while meta-aramids are known for thermal resistance. Thermoplastics offer recyclability and toughness. UV protection is required for exposed areas. | Impact- and abrasion-resistant marine zones; reinforcement of hulls, safety nets, and protective barriers. Used in demanding safety or performance applications. | [133,134,135,137,138,139,140] |
Fiber Type | Fiber Diameter (µm) | Density (g/cm3) | Tensile Strength (MPa) | Modulus of Elasticity (GPa) | Elongation at Break (%) | Price (USD/kg) |
---|---|---|---|---|---|---|
Basalt | 9–23 | 2.8–3.0 | 3000–4840 | 79.3–93.1 | 3.1 | 2.5–3.5 |
E-glass | 9–13 | 2.5–2.6 | 3100–3800 | 72.5–75.5 | 4.7 | 0.75–1.2 |
S-glass | 9–13 | 2.46–2.5 | 4590–4830 | 88–91 | 5.6 | 5–7 |
Carbon | 4–7.5 | 1.75–1.9 | 3500–6000 | 230–600 | 1.5–2.0 | 30 |
Aramid | 5–18 | 1.44 | 2900–3400 | 70–112 | 2.8–3.6 | 25 |
Fiber Type | Tensile Strength (MPa) | Moisture Absorption | Corrosion Resistance | Fatigue Performance | Cost (USD/kg) | Sustainability | Best Marine Uses | References |
---|---|---|---|---|---|---|---|---|
E-glass | Moderate 3100–3800 | High (0.5–1.0%) | Excellent | Moderate (30–50% reduction after seawater exposure) | 0.75–1.20 | Low (energy-intensive production) | Hulls, decks, and non-structural parts | [1,61,74,93,94,95,96,98] |
S-glass | High 4590–4830 | Moderate (0.3–0.6%) | Excellent | Good (25–40% reduction) | 5–7 | Low | High-performance naval components | |
Carbon | High 3500–6000 | Very Low (<0.1%) | Excellent (but galvanic risk) | Excellent (<20% reduction) | 15+ | Moderate (recyclable but high embodied energy) | Pressure hulls, risers, and hydrofoils | [1,16,112,113] [107] |
Basalt | Moderate to High 3000–4840 | Moderate (0.2–0.5%) | Excellent | Good (20–35% reduction) | 2.5–3.5 | High (natural material, low processing energy) | Offshore platforms, fireproof structures | [121,122] [123] [125] [132] |
Aramid | Moderate 2900–3400 | Low (0.2–0.4%) | Excellent | Exceptional (15–25% reduction) | 25 | Moderate (difficult to recycle) | Bulletproof panels, impact zones | [133,134] [135] [138] |
Nanomaterial | Key Properties | Typical Loading | Processing Challenges | Marine Applications | References |
---|---|---|---|---|---|
Graphene | High strength (130 GPa), conductivity | 0.1–1.0 wt% | Dispersion difficulty, high cost | Hulls, sensors | [111,112,115] |
[114,120,121] | |||||
CNTs | High aspect ratio (>1000), conductive | 0.3–0.8 wt% | Increased resin viscosity | Structural health monitoring | [113,115,120] |
[114,121,124,129] | |||||
Nano-clay | Layered structure, flame retardant | 2–5 wt% | Exfoliation required | Fireproof bulkheads | [115,116,117] |
Nano-silica | High surface area (300 m2/g) | 1–3 wt% | Agglomeration risk | Deck coatings | [116,118,119] |
[117,123] |
Manufacturing Method | Compatible Resin Types | Common Resins Used | Nanomaterial Integration | Marine Suitability | Sustainability and Recyclability | References |
---|---|---|---|---|---|---|
VARTM | Thermosets | Epoxy (DGEBA), Vinyl Ester, and Polyester | Limited by increased resin viscosity | Hulls, decks, and bulkheads | Moderate (closed mold reduces VOCs; thermosets are not recyclable) | [18,91,167,168,169,172] |
RTM | Thermosets | Epoxy, Vinyl Ester | High (nano-silica, CNTs, nano-clay enhancements possible) | High-performance parts (rudders, keels) | Moderate (efficient but limited recyclability due to thermosets) | [18,143,168,170,172] |
AFP | Thermosets and Thermoplastics | Epoxy Prepregs, PEEK, and PEKK | Nano-prepregs and tailored nanofiber integration are available | Naval vessels, racing yachts | High (thermoplastics are recyclable; process is energy-intensive) | [19,176,177,178] |
ATL | Thermosets and Thermoplastics | Epoxy, PEEK, and Elium™ | Nano-enhanced tapes under development | Large panels, hull sections | High (especially with recyclable thermoplastics) | [15,19,177,178] |
Pultrusion | Mostly Thermosets; Some Thermoplastics | Polyester, Vinyl Ester, and PP | Surface nano-coatings or filled resins improve bonding | Masts, beams, rails, and pipes | High (with thermoplastics; thermosets still common) | [32,181,182,188,189,190] |
Filament Winding | Thermosets and Thermoplastics | Epoxy, PEEK, and Vinyl Ester | Nano-resins enhance burst strength and fatigue resistance | Pressure vessels, tanks, and submersible hulls | High (particularly with thermoplastics) | [166,181,184,185,199] |
AM | Primarily Thermoplastics | PLA, PEEK, PEI, PA, and PP | CNTs, graphene, and smart fillers used in research | Prototypes, small or non-structural parts | Moderate (material waste is low, but anisotropy and limited reuse of fiber-reinforced filament) | [188,189,191,193,194] |
Material System | Galvanic Corrosion Risk | Biofouling Rate | Effective Protection Methods | References |
---|---|---|---|---|
CFRP | High (with metals) | Moderate | Glass fiber veils, zinc anodes | [6,271,272,273] |
GFRP | None | High | Silicone foul-release coatings | |
BFRP | None | Low-Moderate | Nano-ZnO/polyurethane |
Material | Application | Key Advantages | Example | References |
---|---|---|---|---|
GFRP/Polyester | Small boat hulls | Low cost, corrosion resistance | Fishing vessels e.g., Outrage 420 [Figure 11a] | [297,302] |
CFRP/Vinyl Ester | Naval ship hulls | High stiffness, weight reduction | Military Ships e.g., Visby-class corvette [Figure 11b] | [1,295,297] |
Aramid Hybrid (Kevlar) | Bulkheads | Blast/impact resistance | Aircraft carriers e.g., Nimitz-class aircraft carrier [Figure 11c] | [1,295] |
Material System | Key Degradation Mechanisms | Property Reduction | References |
---|---|---|---|
GFRP (Epoxy) | Matrix swelling, interface degradation | 20–30% flexural strength | [200,202] |
CFRP (Epoxy) | Galvanic corrosion, interface weakening | 10–15% tensile strength | [112,272] |
CFRP (PEEK) | Minimal water absorption | <5% property change | [25,27] |
Basalt/Epoxy | Alkali attack on fibers | 15–25% tensile strength | [21,271] |
Method | Advantages | Limitations | References |
---|---|---|---|
VARTM | Large parts, low tooling cost | Parameter sensitivity | [18,164] |
Resin Infusion | Good wetting | Simple geometries | [167,168] |
AFP | Precision, automation | High cost | [19,25] |
Fiber Type | Matrix | Compressive Strength (MPa) | kg/FU | Price (USD /FU) | Human Health (Pt/FU) | Ecosystems (Pt/FU) | Resources (Pt/FU) | Total EI (Pt/FU) |
---|---|---|---|---|---|---|---|---|
Glass Fiber | Epoxy | 600 | 15.96 | 485.7 | 4.29 | 1.72 | 3.3 | 9.32 |
Polyester | 420 | 22.59 | 572.5 | 5.51 | 2.69 | 4.18 | 12.38 | |
Vinyl Ester | 600 | 15.08 | 573.2 | 3.7 | 1.55 | 2.97 | 8.22 | |
Thermoplastic | 420 | 22.47 | 671.3 | 5.77 | 2.52 | 4.13 | 12.43 | |
Carbon Fiber | Epoxy | 1700 | 4.52 | 165.1 | 2.81 | 1.21 | 3.37 | 7.39 |
Polyester | 1200 | 6.33 | 223.7 | 2.94 | 1.51 | 4.06 | 8.51 | |
Vinyl Ester | 1700 | 4.21 | 168.1 | 2.01 | 0.98 | 2.86 | 5.85 | |
Thermoplastic | 1200 | 6.29 | 229.6 | 3.07 | 1.47 | 4.12 | 8.66 | |
Natural Fiber | Epoxy | 150 | 44.25 | 942.8 | 10.35 | 5.49 | 8.63 | 24.47 |
Polyester | 105 | 62.38 | 1106.7 | 12.35 | 8.73 | 10.23 | 31.32 | |
Vinyl Ester | 150 | 40.75 | 1084 | 8.07 | 4.81 | 7.34 | 20.21 | |
Thermoplastic | 105 | 61.9 | 1294.6 | 13.37 | 8.11 | 10.15 | 31.63 | |
Basalt Fiber | Epoxy | 600 | 16.46 | 501 | 3.83 | 1.68 | 3.18 | 8.69 |
Polyester | 420 | 23.3 | 590.6 | 4.87 | 2.63 | 4.01 | 11.51 | |
Vinyl Ester | 600 | 15.58 | 592.2 | 3.27 | 1.52 | 2.85 | 7.64 | |
Thermoplastic | 420 | 23.18 | 692.6 | 5.12 | 2.46 | 3.96 | 11.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijewickrama, L.; Jeewantha, J.; Perera, G.I.P.; Alajarmeh, O.; Epaarachchi, J. Fiber-Reinforced Composites Used in the Manufacture of Marine Decks: A Review. Polymers 2025, 17, 2345. https://doi.org/10.3390/polym17172345
Wijewickrama L, Jeewantha J, Perera GIP, Alajarmeh O, Epaarachchi J. Fiber-Reinforced Composites Used in the Manufacture of Marine Decks: A Review. Polymers. 2025; 17(17):2345. https://doi.org/10.3390/polym17172345
Chicago/Turabian StyleWijewickrama, Lahiru, Janitha Jeewantha, G. Indika P. Perera, Omar Alajarmeh, and Jayantha Epaarachchi. 2025. "Fiber-Reinforced Composites Used in the Manufacture of Marine Decks: A Review" Polymers 17, no. 17: 2345. https://doi.org/10.3390/polym17172345
APA StyleWijewickrama, L., Jeewantha, J., Perera, G. I. P., Alajarmeh, O., & Epaarachchi, J. (2025). Fiber-Reinforced Composites Used in the Manufacture of Marine Decks: A Review. Polymers, 17(17), 2345. https://doi.org/10.3390/polym17172345