Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,020)

Search Parameters:
Keywords = location attention network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 647 KiB  
Article
Geographic Scale Matters in Analyzing the Effects of the Built Environment on Choice of Travel Modes: A Case Study of Grocery Shopping Trips in Salt Lake County, USA
by Ensheng Dong, Felix Haifeng Liao and Hejun Kang
Urban Sci. 2025, 9(8), 307; https://doi.org/10.3390/urbansci9080307 - 5 Aug 2025
Abstract
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt [...] Read more.
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt Lake County, UT, this research investigated a variety of influential factors affecting mode choices associated with grocery shopping. We analyze how built environment (BE) characteristics, measured at seven spatial scales or different ways of aggregating spatial data—including straight-line buffers, network buffers, and census units—affect travel mode decisions. Key predictors of choosing walking, biking, or transit over driving include age, household size, vehicle ownership, income, land use mix, street density, and distance to the central business district (CBD). Notably, the influence of BE factors on mode choice is sensitive to different spatial aggregation methods and locations of origins and destinations. The straight-line buffer was a good indicator for the influence of store sales amount on mode choices; the network buffer was more suitable for the household built environment factors, whereas the measurement at the census block and block group levels was more effective for store-area characteristics. These findings underscore the importance of considering both the spatial analysis method and the location (home vs. store) when modeling non-work travel. A multi-scalar approach can enhance the accuracy of travel demand models and inform more effective land use and transportation planning strategies. Full article
19 pages, 7531 KiB  
Article
Evaluating the Impact of 2D MRI Slice Orientation and Location on Alzheimer’s Disease Diagnosis Using a Lightweight Convolutional Neural Network
by Nadia A. Mohsin and Mohammed H. Abdulameer
J. Imaging 2025, 11(8), 260; https://doi.org/10.3390/jimaging11080260 - 5 Aug 2025
Abstract
Accurate detection of Alzheimer’s disease (AD) is critical yet challenging for early medical intervention. Deep learning methods, especially convolutional neural networks (CNNs), have shown promising potential for improving diagnostic accuracy using magnetic resonance imaging (MRI). This study aims to identify the most informative [...] Read more.
Accurate detection of Alzheimer’s disease (AD) is critical yet challenging for early medical intervention. Deep learning methods, especially convolutional neural networks (CNNs), have shown promising potential for improving diagnostic accuracy using magnetic resonance imaging (MRI). This study aims to identify the most informative combination of MRI slice orientation and anatomical location for AD classification. We propose an automated framework that first selects the most relevant slices using a feature entropy-based method applied to activation maps from a pretrained CNN model. For classification, we employ a lightweight CNN architecture based on depthwise separable convolutions to efficiently analyze the selected 2D MRI slices extracted from preprocessed 3D brain scans. To further interpret model behavior, an attention mechanism is integrated to analyze which feature level contributes the most to the classification process. The model is evaluated on three binary tasks: AD vs. mild cognitive impairment (MCI), AD vs. cognitively normal (CN), and MCI vs. CN. The experimental results show the highest accuracy (97.4%) in distinguishing AD from CN when utilizing the selected slices from the ninth axial segment, followed by the tenth segment of coronal and sagittal orientations. These findings demonstrate the significance of slice location and orientation in MRI-based AD diagnosis and highlight the potential of lightweight CNNs for clinical use. Full article
(This article belongs to the Section AI in Imaging)
Show Figures

Figure 1

25 pages, 21958 KiB  
Article
ESL-YOLO: Edge-Aware Side-Scan Sonar Object Detection with Adaptive Quality Assessment
by Zhanshuo Zhang, Changgeng Shuai, Chengren Yuan, Buyun Li, Jianguo Ma and Xiaodong Shang
J. Mar. Sci. Eng. 2025, 13(8), 1477; https://doi.org/10.3390/jmse13081477 - 31 Jul 2025
Viewed by 93
Abstract
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge [...] Read more.
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge Fusion Module (EFM) is designed, which integrates the Sobel operator into depthwise separable convolution. Through a dual-branch structure, it realizes effective fusion of edge features and spatial features, significantly enhancing the ability to recognize targets with blurred boundaries. Secondly, a Self-Calibrated Dual Attention (SCDA) Module is constructed. By means of feature cross-calibration and multi-scale channel attention fusion mechanisms, it achieves adaptive fusion of shallow details and deep-rooted semantic content, improving the detection accuracy for small-sized targets and targets with elaborate shapes. Finally, a Location Quality Estimator (LQE) is introduced, which quantifies localization quality using the statistical characteristics of bounding box distribution, effectively reducing false detections and missed detections. Experiments on the SIMD dataset show that the mAP@0.5 of ESL-YOLO reaches 84.65%. The precision and recall rate reach 87.67% and 75.63%, respectively. Generalization experiments on additional sonar datasets further validate the effectiveness of the proposed method across different data distributions and target types, providing an effective technical solution for side-scan sonar image target detection. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 2649 KiB  
Article
Short-Circuit Current Calculation of Single-Phase to Ground Fault in Petal-Shaped Distribution Network
by Yilong Kang, Huanruo Qi, Rui Liu, Xiangyang Yan, Chen Chen, Fei Guo, Fang Guo and Xiaoxiao Dong
Processes 2025, 13(8), 2393; https://doi.org/10.3390/pr13082393 - 28 Jul 2025
Viewed by 236
Abstract
Petal-shaped distribution networks are receiving increasing attention due to their enhanced reliability. However, the integration of distributed generators (DGs) significantly alters the fault characteristics during single-phase to ground faults. Traditional short-circuit calculation methods become inadequate due to the unmodeled effects of negative sequence [...] Read more.
Petal-shaped distribution networks are receiving increasing attention due to their enhanced reliability. However, the integration of distributed generators (DGs) significantly alters the fault characteristics during single-phase to ground faults. Traditional short-circuit calculation methods become inadequate due to the unmodeled effects of negative sequence current control in DGs. To address this challenge, this study establishes, for the first time, a mathematical model for single-phase to ground faults in a petal-shaped network with DG integration under both positive and negative sequence control. It explicitly derives the DGs’ output current under three control goals: maintaining constant active power, maintaining constant reactive power, and injecting a symmetric three-phase current. Utilizing the symmetrical component method, a composite sequence network incorporating the DGs’ negative sequence current output is developed. Based on the node–voltage relationships, an analytical short-circuit current calculation method suitable for multiple control goals is proposed. Validation via MATLAB R2022a simulations demonstrates high-fidelity accuracy: in Case 1 with different fault locations, the maximum relative error is 0.31%, while in Case 2, it is 2.04%. These results quantify the critical impact of the negative sequence current—reaching up to 14.78% of the DG output during severe voltage sags—providing theoretical support for the protection design of a petal-shaped distribution network with high DG integration. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 5001 KiB  
Article
Spatio-Temporal Variation in Solar Irradiance in the Mediterranean Region: A Deep Learning Approach
by Buket İşler, Uğur Şener, Ahmet Tokgözlü, Zafer Aslan and Rene Heise
Sustainability 2025, 17(15), 6696; https://doi.org/10.3390/su17156696 - 23 Jul 2025
Viewed by 328
Abstract
In response to the global imperative of reducing greenhouse gas emissions, the optimisation of renewable energy systems under regionally favourable conditions has become increasingly essential. Solar irradiance forecasting plays a pivotal role in enhancing energy planning, grid reliability, and long-term sustainability. However, in [...] Read more.
In response to the global imperative of reducing greenhouse gas emissions, the optimisation of renewable energy systems under regionally favourable conditions has become increasingly essential. Solar irradiance forecasting plays a pivotal role in enhancing energy planning, grid reliability, and long-term sustainability. However, in the context of Turkey, existing studies on solar radiation forecasting often rely on traditional statistical approaches and are limited to single-site analyses, with insufficient attention to regional diversity and deep learning-based modelling. To address this gap, the present study focuses on Turkey’s Mediterranean region, characterised by high solar potential and diverse climatic conditions and strategically relevant to national clean energy targets. Historical data from 2020 to 2023 were used to forecast solar irradiance patterns up to 2026. Five representative locations—Adana, Isparta, Fethiye, Ulukışla, and Yüreğir—were selected to capture spatial and temporal variability across inland, coastal, and high-altitude zones. Advanced deep learning models, including artificial neural networks (ANN), long short-term memory (LSTM), and bidirectional LSTM (BiLSTM), were developed and evaluated using standard performance metrics. Among these, BiLSTM achieved the highest accuracy, with a correlation coefficient of R = 0.95, RMSE = 0.22, and MAPE = 5.4% in Fethiye, followed by strong performance in Yüreğir (R = 0.90, RMSE = 0.12, MAPE = 7.2%). These results demonstrate BiLSTM’s superior capacity to model temporal dependencies and regional variability in solar radiation. The findings contribute to the development of location-specific forecasting frameworks and offer valuable insights for renewable energy planning and grid integration in solar-rich environments. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

29 pages, 14024 KiB  
Article
The Performance of an ML-Based Weigh-in-Motion System in the Context of a Network Arch Bridge Structural Specificity
by Dawid Piotrowski, Marcin Jasiński, Artur Nowoświat, Piotr Łaziński and Stefan Pradelok
Sensors 2025, 25(15), 4547; https://doi.org/10.3390/s25154547 - 22 Jul 2025
Viewed by 258
Abstract
Machine learning (ML)-based techniques have received significant attention in various fields of industry and science. In civil and bridge engineering, they can facilitate the identification of specific patterns through the analysis of data acquired from structural health monitoring (SHM) systems. To evaluate the [...] Read more.
Machine learning (ML)-based techniques have received significant attention in various fields of industry and science. In civil and bridge engineering, they can facilitate the identification of specific patterns through the analysis of data acquired from structural health monitoring (SHM) systems. To evaluate the prediction capabilities of ML, this study examines the performance of several ML algorithms in estimating the total weight and location of vehicles on a bridge using strain sensing. A novel framework based on a combined model and data-driven approach is described, consisting of the establishment of the finite element (FE) model, its updating according to load testing results, and data augmentation to facilitate the training of selected physics-informed regression models. The article discusses the design of the Fiber Bragg Grating (FBG) sensor-based Bridge Weigh-in-Motion (BWIM) system, specifically focusing on several supervised regression models of different architectures. The current work proposes the use of the updated FE model to generate training data and evaluate the accuracy of regression models with the possible exclusion of selected input features enabled by the structural specificity of a bridge. The data were sourced from the SHM system installed on a network arch bridge in Wolin, Poland. It confirmed the possibility of establishing the BWIM system based on strain measurements, characterized by a reduced number of sensors and a satisfactory level of accuracy in the estimation of loads, achieved by exploiting the network arch bridge structural specificity. Full article
(This article belongs to the Special Issue Novel Sensor Technologies for Civil Infrastructure Monitoring)
Show Figures

Figure 1

26 pages, 4203 KiB  
Article
Research on Industrial Process Fault Diagnosis Method Based on DMCA-BiGRUN
by Feng Yu, Changzhou Zhang and Jihan Li
Mathematics 2025, 13(15), 2331; https://doi.org/10.3390/math13152331 - 22 Jul 2025
Viewed by 207
Abstract
With the rising automation and complexity level of industrial systems, the efficiency and accuracy of fault diagnosis have become a critical challenge. The convolutional neural network (CNN) has shown some success in the fault diagnosis field. However, typical convolutional kernels are commonly fixed-sized, [...] Read more.
With the rising automation and complexity level of industrial systems, the efficiency and accuracy of fault diagnosis have become a critical challenge. The convolutional neural network (CNN) has shown some success in the fault diagnosis field. However, typical convolutional kernels are commonly fixed-sized, which makes it difficult to capture multi-scale features simultaneously. Additionally, the use of numerous fixed-size convolutional filters often results in redundant parameters. During the feature extraction process, the CNN often struggles to take inter-channel dependencies and spatial location information into consideration. There are also limitations in extracting various time-scale features. To address these issues, a fault diagnosis method on the basis of a dual-path mixed convolutional attention-BiGRU network (DMCA-BiGRUN) is proposed for industrial processes. Firstly, a dual-path mixed CNN (DMCNN) is designed to capture features at multiple scales while effectively reducing the parameter count. Secondly, a coordinate attention mechanism (CAM) is designed to help the network to concentrate on main features more effectively during feature extraction by combining the channel relationship and position information. Finally, a bidirectional gated recurrent unit (BiGRU) is introduced to process sequences in both directions, which can effectively learn the long-range temporal dependencies of sequence data. To verify the fault diagnosis performance of the proposed method, simulation experiments are implemented on the Tennessee Eastman (TE) and Continuous Stirred Tank Reactor (CSTR) datasets. Some deep learning methods are compared in the experiments, and the results confirm the feasibility and superiority of DMCA-BiGRUN. Full article
Show Figures

Figure 1

13 pages, 1726 KiB  
Article
Assessment of Mammalian Scavenger and Wild White-Tailed Deer Activity at White-Tailed Deer Farms
by Alex R. Jack, Whitney C. Sansom, Tiffany M. Wolf, Lin Zhang, Michelle L. Schultze, Scott J. Wells and James D. Forester
Viruses 2025, 17(8), 1024; https://doi.org/10.3390/v17081024 - 22 Jul 2025
Viewed by 308
Abstract
White-tailed deer (Odocoileus virginianus) in the wild and on cervid farms have drawn the attention of state wildlife agencies and animal health agencies as Chronic Wasting Disease (CWD) has spread across North America. Deer farm regulations have been implemented to reduce [...] Read more.
White-tailed deer (Odocoileus virginianus) in the wild and on cervid farms have drawn the attention of state wildlife agencies and animal health agencies as Chronic Wasting Disease (CWD) has spread across North America. Deer farm regulations have been implemented to reduce direct contact between wild and farmed cervids; however, evidence suggests that indirect contact to infectious prions passed through the alimentary tracts of scavengers may be an important transmission pathway. The objective of this study was to characterize mammalian scavenger and wild deer activities associated with deer farms and link these activities with site-specific spatial covariates utilizing a network of camera traps, mounted to farm perimeter fences. We monitored each of 14 farms in Minnesota, Wisconsin, and Pennsylvania for two weeks during the summer, with a subset of farms also monitored in the winter and fall. Across all sites and seasons, we captured 749 observations of wildlife. In total, nine species were captured, with wild white-tailed deer accounting for over three quarters of observations. Despite the large number of wild deer observed, we found that interactions between wild and farmed deer at the fence line were infrequent (six direct contacts observed). In contrast, mammalian scavengers were frequently observed inside and outside of the fence. Supplementary cameras placed on deer feeders revealed higher observation rates of scavengers than those placed along fence lines, highlighting the potential for transmission of CWD through indirect contact via scavenger excreta. To evaluate associations between the number of observations of focal species with land-cover characteristics, two mixed-effects regression models were fitted, one model for scavengers and one for wild deer. Contrary to our hypothesis, landscape context did not have a strong impact on wildlife visitation. This suggests that farm location is less important than management practices, highlighting the need for future research into how farming practices impact rates of wildlife visitation onto cervid farms. Full article
(This article belongs to the Special Issue Chronic Wasting Disease: From Pathogenesis to Prevention)
Show Figures

Figure 1

35 pages, 2297 KiB  
Article
Secure Cooperative Dual-RIS-Aided V2V Communication: An Evolutionary Transformer–GRU Framework for Secrecy Rate Maximization in Vehicular Networks
by Elnaz Bashir, Francisco Hernando-Gallego, Diego Martín and Farzaneh Shoushtari
World Electr. Veh. J. 2025, 16(7), 396; https://doi.org/10.3390/wevj16070396 - 14 Jul 2025
Viewed by 239
Abstract
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the [...] Read more.
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the problem of secrecy rate maximization in a cooperative dual-RIS-aided V2V communication network, where two cascaded RISs are deployed to collaboratively assist with secure data transmission between mobile vehicular nodes in the presence of eavesdroppers. To address the inherent complexity of time-varying wireless channels, we propose a novel evolutionary transformer-gated recurrent unit (Evo-Transformer-GRU) framework that jointly learns temporal channel patterns and optimizes the RIS reflection coefficients, beam-forming vectors, and cooperative communication strategies. Our model integrates the sequence modeling strength of GRUs with the global attention mechanism of transformer encoders, enabling the efficient representation of time-series channel behavior and long-range dependencies. To further enhance convergence and secrecy performance, we incorporate an improved gray wolf optimizer (IGWO) to adaptively regulate the model’s hyper-parameters and fine-tune the RIS phase shifts, resulting in a more stable and optimized learning process. Extensive simulations demonstrate the superiority of the proposed framework compared to existing baselines, such as transformer, bidirectional encoder representations from transformers (BERT), deep reinforcement learning (DRL), long short-term memory (LSTM), and GRU models. Specifically, our method achieves an up to 32.6% improvement in average secrecy rate and a 28.4% lower convergence time under varying channel conditions and eavesdropper locations. In addition to secrecy rate improvements, the proposed model achieved a root mean square error (RMSE) of 0.05, coefficient of determination (R2) score of 0.96, and mean absolute percentage error (MAPE) of just 0.73%, outperforming all baseline methods in prediction accuracy and robustness. Furthermore, Evo-Transformer-GRU demonstrated rapid convergence within 100 epochs, the lowest variance across multiple runs. Full article
Show Figures

Figure 1

18 pages, 6924 KiB  
Article
A Method Based on CNN–BiLSTM–Attention for Wind Farm Line Fault Distance Prediction
by Ming Zhang, Qingzhong Gao, Baoliang Liu, Chen Zhang and Guangkai Zhou
Energies 2025, 18(14), 3703; https://doi.org/10.3390/en18143703 - 14 Jul 2025
Viewed by 294
Abstract
In view of the complex operating environments of wind farms and the characteristics of multi-branch mixed collector lines, in order to improve the accuracy of single-phase grounding fault location, the convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism [...] Read more.
In view of the complex operating environments of wind farms and the characteristics of multi-branch mixed collector lines, in order to improve the accuracy of single-phase grounding fault location, the convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism (attention) were combined to construct a single-phase grounding fault location strategy for the CNN–BiLSTM–attention hybrid model. Using a zero-sequence current as the fault information identification method, through the deep fusion of the CNN–BiLSTM–attention hybrid model, the single-phase grounding faults in the collector lines of the wind farm can be located. The simulation modeling was carried out using the MATLAB R2022b software, and the effectiveness of the hybrid model in the single-phase grounding fault location of multi-branch mixed collector lines was studied and verified. The research results show that, compared with the random forest algorithm, decision tree algorithm, CNN, and LSTM neural network, the proposed method significantly improved the location accuracy and is more suitable for the fault distance measurement requirements of collector lines in the complex environments of wind farms. The research conclusions provide technical support and a reference for the actual operation and maintenance of wind farms. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

22 pages, 3279 KiB  
Article
HA-CP-Net: A Cross-Domain Few-Shot SAR Oil Spill Detection Network Based on Hybrid Attention and Category Perception
by Dongmei Song, Shuzhen Wang, Bin Wang, Weimin Chen and Lei Chen
J. Mar. Sci. Eng. 2025, 13(7), 1340; https://doi.org/10.3390/jmse13071340 - 13 Jul 2025
Viewed by 307
Abstract
Deep learning models have obvious advantages in detecting oil spills, but the training of deep learning models heavily depends on a large number of samples of high quality. However, due to the accidental nature, unpredictability, and urgency of oil spill incidents, it is [...] Read more.
Deep learning models have obvious advantages in detecting oil spills, but the training of deep learning models heavily depends on a large number of samples of high quality. However, due to the accidental nature, unpredictability, and urgency of oil spill incidents, it is difficult to obtain a large number of labeled samples in real oil spill monitoring scenarios. Surprisingly, few-shot learning can achieve excellent classification performance with only a small number of labeled samples. In this context, a new cross-domain few-shot SAR oil spill detection network is proposed in this paper. Significantly, the network is embedded with a hybrid attention feature extraction block, which consists of a coordinate attention module to perceive the channel information and spatial location information, as well as a global self-attention transformer module capturing the global dependencies and a multi-scale self-attention module depicting the local detailed features, thereby achieving deep mining and accurate characterization of image features. In addition, to address the problem that it is difficult to distinguish between the suspected oil film in seawater and real oil film using few-shot due to the small difference in features, this paper proposes a double loss function category determination block, which consists of two parts: a well-designed category-perception loss function and a traditional cross-entropy loss function. The category-perception loss function optimizes the spatial distribution of sample features by shortening the distance between similar samples while expanding the distance between different samples. By combining the category-perception loss function with the cross-entropy loss function, the network’s performance in discriminating between real and suspected oil films is thus maximized. The experimental results effectively demonstrate that this study provides an effective solution for high-precision oil spill detection under few-shot conditions, which is conducive to the rapid identification of oil spill accidents. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

28 pages, 14588 KiB  
Article
CAU2DNet: A Dual-Branch Deep Learning Network and a Dataset for Slum Recognition with Multi-Source Remote Sensing Data
by Xi Lyu, Chenyu Zhang, Lizhi Miao, Xiying Sun, Xinxin Zhou, Xinyi Yue, Zhongchang Sun and Yueyong Pang
Remote Sens. 2025, 17(14), 2359; https://doi.org/10.3390/rs17142359 - 9 Jul 2025
Viewed by 262
Abstract
The efficient and precise identification of urban slums is a significant challenge for urban planning and sustainable development, as their morphological diversity and complex spatial distribution make it difficult to use traditional remote sensing inversion methods. Current deep learning (DL) methods mainly face [...] Read more.
The efficient and precise identification of urban slums is a significant challenge for urban planning and sustainable development, as their morphological diversity and complex spatial distribution make it difficult to use traditional remote sensing inversion methods. Current deep learning (DL) methods mainly face challenges such as limited receptive fields and insufficient sensitivity to spatial locations when integrating multi-source remote sensing data, and high-quality datasets that integrate multi-spectral and geoscientific indicators to support them are scarce. In response to these issues, this study proposes a DL model (coordinate-attentive U2-DeepLab network [CAU2DNet]) that integrates multi-source remote sensing data. The model integrates the multi-scale feature extraction capability of U2-Net with the global receptive field advantage of DeepLabV3+ through a dual-branch architecture. Thereafter, the spatial semantic perception capability is enhanced by introducing the CoordAttention mechanism, and ConvNextV2 is adopted to optimize the backbone network of the DeepLabV3+ branch, thereby improving the modeling capability of low-resolution geoscientific features. The two branches adopt a decision-level fusion mechanism for feature fusion, which means that the results of each are weighted and summed using learnable weights to obtain the final output feature map. Furthermore, this study constructs the São Paulo slums dataset for model training due to the lack of a multi-spectral slum dataset. This dataset covers 7978 samples of 512 × 512 pixels, integrating high-resolution RGB images, Normalized Difference Vegetation Index (NDVI)/Modified Normalized Difference Water Index (MNDWI) geoscientific indicators, and POI infrastructure data, which can significantly enrich multi-source slum remote sensing data. Experiments have shown that CAU2DNet achieves an intersection over union (IoU) of 0.6372 and an F1 score of 77.97% on the São Paulo slums dataset, indicating a significant improvement in accuracy over the baseline model. The ablation experiments verify that the improvements made in this study have resulted in a 16.12% increase in precision. Moreover, CAU2DNet also achieved the best results in all metrics during the cross-domain testing on the WHU building dataset, further confirming the model’s generalizability. Full article
Show Figures

Figure 1

20 pages, 3953 KiB  
Article
Real-Time Collision Warning System for Over-Height Ships at Bridges Based on Spatial Transformation
by Siyang Gu and Jian Zhang
Buildings 2025, 15(13), 2367; https://doi.org/10.3390/buildings15132367 - 5 Jul 2025
Viewed by 249
Abstract
Rapid identification of vessel height within the navigable space beneath bridges is crucial for ensuring bridge safety. To prevent bridge collisions caused by vessels exceeding their height limits, this article introduces a real-time warning framework for excessive vessel height based on video spatial [...] Read more.
Rapid identification of vessel height within the navigable space beneath bridges is crucial for ensuring bridge safety. To prevent bridge collisions caused by vessels exceeding their height limits, this article introduces a real-time warning framework for excessive vessel height based on video spatial transformation. The specific contributions include the following: (1) A spatial transformation-based method for locating vessel coordinates in the channel using buoys as control points, employing laser scanning to obtain their world coordinates from a broad channel range, and mapping the pixel coordinates of the buoys from side channel images to the world coordinates of the channel space, thus achieving pixel-level positioning of the vessel’s waterline intersection in the channel. (2) For video images, a key point recognition network for vessels based on attention mechanisms is developed to obtain pixel coordinates of the vessel’s waterline and top, and to capture the posture and position of multiple vessels in real time. (3) Analyzing the posture of vessels traveling in various directions within the channel, the method accounts for the pixel distance of spatial transformation control points and vessel height to determine vessel positioning coordinates, solve for the vessel’s height above water, and combine with real-time waterline height to enable over-height vessel collision warnings for downstream channel bridges. The method has been deployed in actual navigational scenarios beneath bridges, with the average error in vessel height estimation controlled within 10 cm and an error rate below 0.8%. The proposed approach enables real-time automatic estimation of vessel height in terms of computational speed, making it more suitable for practical engineering applications that demand both real-time performance and system stability. The system exhibits outstanding performance in terms of accuracy, stability, and engineering applicability, providing essential technical support for intelligent bridge safety management. Full article
Show Figures

Figure 1

40 pages, 7119 KiB  
Article
Optimizing Intermodal Port–Inland Hub Systems in Spain: A Capacitated Multiple-Allocation Model for Strategic and Sustainable Freight Planning
by José Moyano Retamero and Alberto Camarero Orive
J. Mar. Sci. Eng. 2025, 13(7), 1301; https://doi.org/10.3390/jmse13071301 - 2 Jul 2025
Viewed by 419
Abstract
This paper presents an enhanced hub location model tailored to port–hinterland logistics planning, grounded in the Capacitated Multiple-Allocation Hub Location Problem (CMAHLP). The formulation incorporates nonlinear cost structures, hub-specific operating costs, adaptive capacity constraints, and a feasibility condition based on the Social Net [...] Read more.
This paper presents an enhanced hub location model tailored to port–hinterland logistics planning, grounded in the Capacitated Multiple-Allocation Hub Location Problem (CMAHLP). The formulation incorporates nonlinear cost structures, hub-specific operating costs, adaptive capacity constraints, and a feasibility condition based on the Social Net Present Value (NPVsocial) to support the design of intermodal freight networks under asymmetric spatial and socio-environmental conditions. The empirical case focuses on Spain, leveraging its strategic position between Asia, North Africa, and Europe. The model includes four major ports—Barcelona, Valencia, Málaga, and Algeciras—as intermodal gateways connected to the 47 provinces of peninsular Spain through calibrated cost matrices based on real distances and mode-specific road and rail costs. A Genetic Algorithm is applied to evaluate 120 scenarios, varying the number of active hubs (4, 6, 8, 10, 12), transshipment discounts (α = 0.2 and 1.0), and internal parameters. The most efficient configuration involved 300 generations, 150 individuals, a crossover rate of 0.85, and a mutation rate of 0.40. The algorithm integrates guided mutation, elitist reinsertion, and local search on the top 15% of individuals. Results confirm the central role of Madrid, Valencia, and Barcelona, frequently accompanied by high-performance inland hubs such as Málaga, Córdoba, Jaén, Palencia, León, and Zaragoza. Cities with active ports such as Cartagena, Seville, and Alicante appear in several of the most efficient network configurations. Their recurring presence underscores the strategic role of inland hubs located near seaports in supporting logistical cohesion and operational resilience across the system. The COVID-19 crisis, the Suez Canal incident, and the persistent tensions in the Red Sea have made clear the fragility of traditional freight corridors linking Asia and Europe. These shocks have brought renewed strategic attention to southern Spain—particularly the Mediterranean and Andalusian axes—as viable alternatives that offer both geographic and intermodal advantages. In this evolving context, the contribution of southern hubs gains further support through strong system-wide performance indicators such as entropy, cluster diversity, and Pareto efficiency, which allow for the assessment of spatial balance, structural robustness, and optimal trade-offs in intermodal freight planning. Southern hubs, particularly in coordination with North African partners, are poised to gain prominence in an emerging Euro–Maghreb logistics interface that demands a territorial balance and resilient port–hinterland integration. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 5808 KiB  
Article
Hyperbolic Spatial Covariance Modeling with Adaptive Signal Filtering for Robust Wi-Fi Indoor Positioning
by Wenxu Wang and Mingxiang Liu
Sensors 2025, 25(13), 4125; https://doi.org/10.3390/s25134125 - 2 Jul 2025
Viewed by 316
Abstract
Robust indoor positioning, crucial to modern location-based services, increasingly leverages Channel State Information (CSI) for its superior multipath resolution over the traditional RSSI. However, current CSI-based methods are hampered by three key limitations: susceptibility to skewed, non-Gaussian noise; informational redundancy from multi-AP configurations; [...] Read more.
Robust indoor positioning, crucial to modern location-based services, increasingly leverages Channel State Information (CSI) for its superior multipath resolution over the traditional RSSI. However, current CSI-based methods are hampered by three key limitations: susceptibility to skewed, non-Gaussian noise; informational redundancy from multi-AP configurations; and spatial discontinuities arising from Euclidean-based modeling. To address these challenges, we propose a unified framework that synergistically combines three innovations: (1) an adaptive filtering pipeline that uses wavelet decomposition and dynamic Kalman updates to suppress skewed noise; (2) a graph attention network that optimizes AP selection by modeling spatiotemporal correlations; and (3) a hyperbolic covariance model that captures the intrinsic non-Euclidean geometry of signal propagation. Evaluations on experimental data demonstrate that our framework achieves superior positioning accuracy and environmental robustness over state-of-the-art methods. Crucially, the hyperbolic representation enhances resilience to obstructions by preserving the signal manifold’s true structure, thereby advancing the practical deployment of fingerprinting systems. Full article
Show Figures

Figure 1

Back to TopTop