Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (678)

Search Parameters:
Keywords = localized orbital

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 736 KiB  
Article
Hybrid Framework of Fermi–Dirac Spin Hydrodynamics
by Zbigniew Drogosz
Physics 2025, 7(3), 31; https://doi.org/10.3390/physics7030031 (registering DOI) - 1 Aug 2025
Abstract
The paper outlines the hybrid framework of spin hydrodynamics, combining classical kinetic theory with the Israel–Stewart method of introducing dissipation. The local equilibrium expressions for the baryon current, the energy–momentum tensor, and the spin tensor of particles with spin 1/2 following the Fermi–Dirac [...] Read more.
The paper outlines the hybrid framework of spin hydrodynamics, combining classical kinetic theory with the Israel–Stewart method of introducing dissipation. The local equilibrium expressions for the baryon current, the energy–momentum tensor, and the spin tensor of particles with spin 1/2 following the Fermi–Dirac statistics are obtained and compared with the earlier derived versions where the Boltzmann approximation was used. The expressions in the two cases are found to have the same form, but the coefficients are shown to be governed by different functions. The relative differences between the tensor coefficients in the Fermi–Dirac and Boltzmann cases are found to grow exponentially with the baryon chemical potential. In the proposed formalism, nonequilibrium processes are studied including mathematically possible dissipative corrections. Standard conservation laws are applied, and the condition of positive entropy production is shown to allow for the transfer between the spin and orbital parts of angular momentum. Full article
(This article belongs to the Special Issue High Energy Heavy Ion Physics—Zimányi School 2024)
Show Figures

Figure 1

13 pages, 1132 KiB  
Review
M-Edge Spectroscopy of Transition Metals: Principles, Advances, and Applications
by Rishu Khurana and Cong Liu
Catalysts 2025, 15(8), 722; https://doi.org/10.3390/catal15080722 - 30 Jul 2025
Viewed by 45
Abstract
M-edge X-ray absorption spectroscopy (XAS), which probes 3p→3d transitions in first-row transition metals, provides detailed insights into oxidation states, spin-states, and local electronic structure with high element and orbital specificity. Operating in the extreme ultraviolet (XUV) region, this technique provides [...] Read more.
M-edge X-ray absorption spectroscopy (XAS), which probes 3p→3d transitions in first-row transition metals, provides detailed insights into oxidation states, spin-states, and local electronic structure with high element and orbital specificity. Operating in the extreme ultraviolet (XUV) region, this technique provides sharp multiplet-resolved features with high sensitivity to ligand field and covalency effects. Compared to K- and L-edge XAS, M-edge spectra exhibit significantly narrower full widths at half maximum (typically 0.3–0.5 eV versus >1 eV at the L-edge and >1.5–2 eV at the K-edge), owing to longer 3p core-hole lifetimes. M-edge measurements are also more surface-sensitive due to the lower photon energy range, making them particularly well-suited for probing thin films, interfaces, and surface-bound species. The advent of tabletop high-harmonic generation (HHG) sources has enabled femtosecond time-resolved M-edge measurements, allowing direct observation of ultrafast photoinduced processes such as charge transfer and spin crossover dynamics. This review presents an overview of the fundamental principles, experimental advances, and current theoretical approaches for interpreting M-edge spectra. We further discuss a range of applications in catalysis, materials science, and coordination chemistry, highlighting the technique’s growing impact and potential for future studies. Full article
(This article belongs to the Special Issue Spectroscopy in Modern Materials Science and Catalysis)
Show Figures

Graphical abstract

11 pages, 1176 KiB  
Article
Nonreciprocal Transport Driven by Noncoplanar Magnetic Ordering with Meron–Antimeron Spin Textures
by Satoru Hayami
Solids 2025, 6(3), 40; https://doi.org/10.3390/solids6030040 - 29 Jul 2025
Viewed by 162
Abstract
Noncoplanar spin textures give rise not only to unusual magnetic structures but also to emergent electromagnetic responses stemming from scalar spin chirality, such as the topological Hall effect. In this study, we theoretically investigate nonreciprocal transport phenomena induced by noncoplanar magnetic orderings through [...] Read more.
Noncoplanar spin textures give rise not only to unusual magnetic structures but also to emergent electromagnetic responses stemming from scalar spin chirality, such as the topological Hall effect. In this study, we theoretically investigate nonreciprocal transport phenomena induced by noncoplanar magnetic orderings through microscopic model analyses. By focusing on meron–antimeron spin textures that exhibit local scalar spin chirality while maintaining vanishing global chirality, we demonstrate that the electronic band structure becomes asymmetrically modulated, which leads to the emergence of nonreciprocal transport. The present mechanism arises purely from the noncoplanar magnetic texture itself and requires neither net magnetization nor relativistic spin–orbit coupling. We further discuss the potential relevance of our findings to the compound Gd2PdSi3, which has been suggested to host a meron–antimeron crystal phase at low temperatures. Full article
Show Figures

Figure 1

26 pages, 6806 KiB  
Article
Fine Recognition of MEO SAR Ship Targets Based on a Multi-Level Focusing-Classification Strategy
by Zhaohong Li, Wei Yang, Can Su, Hongcheng Zeng, Yamin Wang, Jiayi Guo and Huaping Xu
Remote Sens. 2025, 17(15), 2599; https://doi.org/10.3390/rs17152599 - 26 Jul 2025
Viewed by 258
Abstract
The Medium Earth Orbit (MEO) spaceborne Synthetic Aperture Radar (SAR) has great coverage ability, which can improve maritime ship target surveillance performance significantly. However, due to the huge computational load required for imaging processing and the severe defocusing caused by ship motions, traditional [...] Read more.
The Medium Earth Orbit (MEO) spaceborne Synthetic Aperture Radar (SAR) has great coverage ability, which can improve maritime ship target surveillance performance significantly. However, due to the huge computational load required for imaging processing and the severe defocusing caused by ship motions, traditional ship recognition conducted in focused image domains cannot process MEO SAR data efficiently. To address this issue, a multi-level focusing-classification strategy for MEO SAR ship recognition is proposed, which is applied to the range-compressed ship data domain. Firstly, global fast coarse-focusing is conducted to compensate for sailing motion errors. Then, a coarse-classification network is designed to realize major target category classification, based on which local region image slices are extracted. Next, fine-focusing is performed to correct high-order motion errors, followed by applying fine-classification applied to the image slices to realize final ship classification. Equivalent MEO SAR ship images generated by real LEO SAR data are utilized to construct training and testing datasets. Simulated MEO SAR ship data are also used to evaluate the generalization of the whole method. The experimental results demonstrate that the proposed method can achieve high classification precision. Since only local region slices are used during the second-level processing step, the complex computations induced by fine-focusing for the full image can be avoided, thereby significantly improving overall efficiency. Full article
(This article belongs to the Special Issue Advances in Remote Sensing Image Target Detection and Recognition)
Show Figures

Figure 1

13 pages, 2924 KiB  
Case Report
Stereotactic Ablative Radiotherapy for Delayed Retrobulbar Metastasis of Renal Cell Carcinoma: Therapeutic Outcomes and Practical Insights
by Sang Jun Byun, Byung Hoon Kim, Seung Gyu Park and Euncheol Choi
Life 2025, 15(8), 1176; https://doi.org/10.3390/life15081176 - 24 Jul 2025
Viewed by 271
Abstract
We present a rare case of delayed retrobulbar and adrenal metastases from renal cell carcinoma (RCC), diagnosed 5.5 years after radical nephrectomy. The patient exhibited symptomatic orbital involvement, with imaging revealing a hypervascular retrobulbar mass and an incidental right adrenal lesion, indicative of [...] Read more.
We present a rare case of delayed retrobulbar and adrenal metastases from renal cell carcinoma (RCC), diagnosed 5.5 years after radical nephrectomy. The patient exhibited symptomatic orbital involvement, with imaging revealing a hypervascular retrobulbar mass and an incidental right adrenal lesion, indicative of an oligometastatic state. Owing to the patient’s refusal of surgical resection, stereotactic ablative radiotherapy (SABR) was delivered to the retrobulbar lesion at a total dose of 40 Gy in five fractions, concurrently with immune checkpoint inhibitor therapy. Treatment planning prioritized sparing adjacent critical structures, including the optic chiasm and brainstem. Follow-up over 4 years demonstrated sustained radiologic stability and volume reduction in both metastatic lesions without evidence of progression. This case underscores the potential efficacy of SABR in achieving durable local control of RCC metastases, particularly in anatomically constrained regions where surgery is unfeasible. Moreover, it highlights the value of a multidisciplinary, multimodal treatment approach incorporating advanced radiotherapy techniques and systemic immunotherapy. Lastly, it reinforces the importance of prolonged surveillance in RCC survivors due to the potential for late metastatic recurrence at uncommon sites. Full article
(This article belongs to the Special Issue Research Progress in Kidney Diseases)
Show Figures

Figure 1

13 pages, 3937 KiB  
Article
Vanillin Quantum–Classical Photodynamics and Photostatic Optical Spectra
by Vladimir Pomogaev and Olga Tchaikovskaya
ChemEngineering 2025, 9(4), 76; https://doi.org/10.3390/chemengineering9040076 - 23 Jul 2025
Viewed by 181
Abstract
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) [...] Read more.
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) spectra were statistically averaged over the excited instantaneous molecular conformers fluctuating on quantum–classical molecular dynamic trajectories. Photostatic optical spectra were generated using the hybrid quantum–classical molecular dynamics for explicit solvent models. Conical intersection searching and nonadiabatic molecular dynamics simulations defined potential energy surface propagations, intersections, dissipations, and dissociations. The procedure included mixed-reference spin–flip excitations for both procedures and trajectory surface hopping for photodynamics. Insignificant structural deformations vs. hydroxyl bond cleavage followed by deprotonation were demonstrated starting from different initial structural conditions, which included optimized, transition state, and several other important fluctuating configurations in various environments. Vanillin electronic structure changes were illustrated and analyzed at the key points on conical intersection and nonadiabatic molecular dynamics trajectories by investigating molecular orbital symmetry and electron density difference. The hydroxyl group decomposed on transition to a σ-molecular orbital localized on the elongated O–H bond. Full article
Show Figures

Figure 1

16 pages, 3610 KiB  
Article
Multiple-Q States in Bilayer Triangular-Lattice Systems with Bond-Dependent Anisotropic Interaction
by Satoru Hayami
Crystals 2025, 15(7), 663; https://doi.org/10.3390/cryst15070663 - 20 Jul 2025
Viewed by 233
Abstract
We investigate magnetic instabilities toward multiple-Q states in centrosymmetric bilayer triangular-lattice systems. By focusing on the interplay between the layer-dependent Dzyaloshinskii–Moriya interaction and layer-independent bond-dependent anisotropic interaction, both of which originate from the relativistic spin-orbit coupling, we construct a low-temperature phase diagram [...] Read more.
We investigate magnetic instabilities toward multiple-Q states in centrosymmetric bilayer triangular-lattice systems. By focusing on the interplay between the layer-dependent Dzyaloshinskii–Moriya interaction and layer-independent bond-dependent anisotropic interaction, both of which originate from the relativistic spin-orbit coupling, we construct a low-temperature phase diagram based on an effective spin model that also includes frustrated isotropic exchange interactions. Employing simulated annealing, we reveal the stabilization of three distinct double-Q phases in the absence of an external magnetic field, each characterized by noncoplanar spin textures with spatially modulated local scalar spin chirality. Under applied magnetic fields, we identify field-induced phase transitions among single-Q, double-Q, and triple-Q states, some of which exhibit a finite net scalar spin chirality indicative of topologically nontrivial order. These findings highlight centrosymmetric systems with sublattice-dependent Dzyaloshinskii–Moriya interactions as promising platforms for realizing a variety of multiple-Q spin textures. Full article
Show Figures

Figure 1

21 pages, 29238 KiB  
Article
Distributed Impulsive Multi-Spacecraft Approach Trajectory Optimization Based on Cooperative Game Negotiation
by Shuhui Fan, Xiang Zhang and Wenhe Liao
Aerospace 2025, 12(7), 628; https://doi.org/10.3390/aerospace12070628 - 12 Jul 2025
Viewed by 219
Abstract
A cooperative game negotiation strategy considering multiple constraints is proposed for distributed impulsive multi-spacecraft approach missions in the presence of defending spacecraft. It is a dual-stage decision-making method that includes offline trajectory planning and online distributed negotiation. In the trajectory planning stage, a [...] Read more.
A cooperative game negotiation strategy considering multiple constraints is proposed for distributed impulsive multi-spacecraft approach missions in the presence of defending spacecraft. It is a dual-stage decision-making method that includes offline trajectory planning and online distributed negotiation. In the trajectory planning stage, a relative orbital dynamics model is first established based on the Clohessy–Wiltshire (CW) equations, and the state transition equations for impulsive maneuvers are derived. Subsequently, a multi-objective optimization model is formulated based on the NSGA-II algorithm, utilizing a constraint dominance principle (CDP) to address various constraints and generate Pareto front solutions for each spacecraft. In the distributed negotiation stage, the negotiation strategy among spacecraft is modeled as a cooperative game. A potential function is constructed to further analyze the existence and global convergence of Nash equilibrium. Additionally, a simulated annealing negotiation strategy is developed to iteratively select the optimal comprehensive approach strategy from the Pareto fronts. Simulation results demonstrate that the proposed method effectively optimizes approach trajectories for multi-spacecraft under complex constraints. By leveraging inter-satellite iterative negotiation, the method converges to a Nash equilibrium. Additionally, the simulated annealing negotiation strategy enhances global search performance, avoiding entrapment in local optima. Finally, the effectiveness and robustness of the dual-stage decision-making method were further demonstrated through Monte Carlo simulations. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 7849 KiB  
Article
Applicability of Multi-Sensor and Multi-Geometry SAR Data for Landslide Detection in Southwestern China: A Case Study of Qijiang, Chongqing
by Haiyan Wang, Xiaoting Liu, Guangcai Feng, Pengfei Liu, Wei Li, Shangwei Liu and Weiming Liao
Sensors 2025, 25(14), 4324; https://doi.org/10.3390/s25144324 - 10 Jul 2025
Viewed by 326
Abstract
The southwestern mountainous region of China (SMRC), characterized by complex geological environments, experiences frequent landslide disasters that pose significant threats to local residents. This study focuses on the Qijiang District of Chongqing, where we conduct a systematic evaluation of wavelength and observation geometry [...] Read more.
The southwestern mountainous region of China (SMRC), characterized by complex geological environments, experiences frequent landslide disasters that pose significant threats to local residents. This study focuses on the Qijiang District of Chongqing, where we conduct a systematic evaluation of wavelength and observation geometry effects on InSAR-based landslide monitoring. Utilizing multi-sensor SAR imagery (Sentinel-1 C-band, ALOS-2 L-band, and LUTAN-1 L-band) acquired between 2018 and 2025, we integrate time-series InSAR analysis with geological records, high-resolution topographic data, and field investigation findings to assess representative landslide-susceptible zones in the Qijiang District. The results indicate the following: (1) L-band SAR data demonstrates superior monitoring precision compared to C-band SAR data in the SMRC; (2) the combined use of LUTAN-1 ascending/descending orbits significantly improved spatial accuracy and detection completeness in complex landscapes; (3) multi-source data fusion effectively mitigated limitations of single SAR systems, enhancing identification of small- to medium-scale landslides. This study provides critical technical support for multi-source landslide monitoring and early warning systems in Southwest China while demonstrating the applicability of China’s SAR satellites for geohazard applications. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

25 pages, 3712 KiB  
Review
IgG4-Related Disease in Childhood: Clinical Presentation, Management, and Diagnostic Challenges
by Silvia Taranto, Luca Bernardo, Angela Mauro, Anna Perrone, Agnese Tamborino and Teresa Giani
Children 2025, 12(7), 888; https://doi.org/10.3390/children12070888 - 5 Jul 2025
Viewed by 304
Abstract
Immunoglobulin G4-related disease (IgG4-RD) is an immune-mediated fibroinflammatory disorder primarily affecting adults. The disease in pediatric age is unusual and preferentially affects adolescents. In contrast to adults, who commonly exhibit the involvement of multiple organs simultaneously or sequentially over time, young patients tend [...] Read more.
Immunoglobulin G4-related disease (IgG4-RD) is an immune-mediated fibroinflammatory disorder primarily affecting adults. The disease in pediatric age is unusual and preferentially affects adolescents. In contrast to adults, who commonly exhibit the involvement of multiple organs simultaneously or sequentially over time, young patients tend to present with a localized disease, typically affecting the orbits. Proptosis, ptosis, diplopia, and restricted eye movement may be observed in these patients. Symptoms are proteiform, and the disease is chronic and indolent with a relapsing–remitting course. Diagnostic criteria have been developed for adults, which may not fully capture the pediatric disease phenotype. If untreated or poorly managed, IgG4-RD can lead to progressive fibrosis and scarring of affected organs, potentially causing irreversible damage. We conducted a narrative review using the IMRAD approach, presenting a nonsystematic analysis of the literature on pediatric IgG4-RD. Original papers, case reports/series, and relevant reviews in English were selected from PubMed, EMBASE, and Web of Science up to January 2024. Keywords included “IgG4-Related Disease” and “pediatric” and, additionally, we presented two original pediatric cases. Our purpose is to offer an overview of IgG4-RD manifestations, and challenges in diagnosing and managing this rare condition in children. Full article
(This article belongs to the Section Pediatric Allergy and Immunology)
Show Figures

Graphical abstract

24 pages, 3003 KiB  
Article
Fault Geometry and Slip Distribution of the 2023 Jishishan Earthquake Based on Sentinel-1A and ALOS-2 Data
by Kaifeng Ma, Yang Liu, Qingfeng Hu, Jiuyuan Yang and Limei Wang
Remote Sens. 2025, 17(13), 2310; https://doi.org/10.3390/rs17132310 - 5 Jul 2025
Viewed by 390
Abstract
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical [...] Read more.
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical evidence for investigating the crustal compression mechanisms associated with the northeastward expansion of the Qinghai–Tibet Plateau. In this study, we successfully acquired a high-resolution coseismic deformation field of the earthquake by employing interferometric synthetic aperture radar (InSAR) technology. This was accomplished through the analysis of image data obtained from both the ascending and descending orbits of the Sentinel-1A satellite, as well as from the ascending orbit of the ALOS-2 satellite. Our findings indicate that the coseismic deformation is predominantly localized around the Lajishan fault zone, without leading to the development of a surface rupture zone. The maximum deformations recorded from the Sentinel-1A ascending and descending datasets are 7.5 cm and 7.7 cm, respectively, while the maximum deformation observed from the ALOS-2 ascending data reaches 10 cm. Geodetic inversion confirms that the seismogenic structure is a northeast-dipping thrust fault. The geometric parameters indicate a strike of 313° and a dip angle of 50°. The slip distribution model reveals that the rupture depth predominantly ranges between 5.7 and 15 km, with a maximum displacement of 0.47 m occurring at a depth of 9.6 km. By integrating the coseismic slip distribution and aftershock relocation, this study comprehensively elucidates the stress coupling mechanism between the mainshock and its subsequent aftershock sequence. Quantitative analysis indicates that aftershocks are primarily located within the stress enhancement zone, with an increase in stress ranging from 0.12 to 0.30 bar. It is crucial to highlight that the structural units, including the western segment of the northern margin fault of West Qinling, the eastern segment of the Daotanghe fault, the eastern segment of the Linxia fault, and both the northern and southern segment of Lajishan fault, exhibit characteristics indicative of continuous stress loading. This observation suggests a potential risk for fractures in these areas. Full article
Show Figures

Figure 1

12 pages, 1493 KiB  
Article
Automatic Segmentation of the Infraorbital Canal in CBCT Images: Anatomical Structure Recognition Using Artificial Intelligence
by Ismail Gumussoy, Emre Haylaz, Suayip Burak Duman, Fahrettin Kalabalık, Muhammet Can Eren, Seyda Say, Ozer Celik and Ibrahim Sevki Bayrakdar
Diagnostics 2025, 15(13), 1713; https://doi.org/10.3390/diagnostics15131713 - 4 Jul 2025
Viewed by 364
Abstract
Background/Objectives: The infraorbital canal (IOC) is a critical anatomical structure that passes through the anterior surface of the maxilla and opens at the infraorbital foramen, containing the infraorbital nerve, artery, and vein. Accurate localization of this canal in maxillofacial, dental implant, and orbital [...] Read more.
Background/Objectives: The infraorbital canal (IOC) is a critical anatomical structure that passes through the anterior surface of the maxilla and opens at the infraorbital foramen, containing the infraorbital nerve, artery, and vein. Accurate localization of this canal in maxillofacial, dental implant, and orbital surgeries is of great importance to preventing nerve damage, reducing complications, and enabling successful surgical planning. The aim of this study is to perform automatic segmentation of the infraorbital canal in cone-beam computed tomography (CBCT) images using an artificial intelligence (AI)-based model. Methods: A total of 220 CBCT images of the IOC from 110 patients were labeled using the 3D Slicer software (version 4.10.2; MIT, Cambridge, MA, USA). The dataset was split into training, validation, and test sets at a ratio of 8:1:1. The nnU-Net v2 architecture was applied to the training and test datasets to predict and generate appropriate algorithm weight factors. The confusion matrix was used to check the accuracy and performance of the model. As a result of the test, the Dice Coefficient (DC), Intersection over the Union (IoU), F1-score, and 95% Hausdorff distance (95% HD) metrics were calculated. Results: By testing the model, the DC, IoU, F1-score, and 95% HD metric values were found to be 0.7792, 0.6402, 0.787, and 0.7661, respectively. According to the data obtained, the receiver operating characteristic (ROC) curve was drawn, and the AUC value under the curve was determined to be 0.91. Conclusions: Accurate identification and preservation of the IOC during surgical procedures are of critical importance to maintaining a patient’s functional and sensory integrity. The findings of this study demonstrated that the IOC can be detected with high precision and accuracy using an AI-based automatic segmentation method in CBCT images. This approach has significant potential to reduce surgical risks and to enhance the safety of critical anatomical structures. Full article
Show Figures

Figure 1

26 pages, 9399 KiB  
Article
An Investigation of Pre-Seismic Ionospheric TEC and Acoustic–Gravity Wave Coupling Phenomena Using BDS GEO Measurements: A Case Study of the 2023 Jishishan Ms6.2 Earthquake
by Xiao Gao, Lina Shu, Zongfang Ma, Penggang Tian, Lin Pan, Hailong Zhang and Shuai Yang
Remote Sens. 2025, 17(13), 2296; https://doi.org/10.3390/rs17132296 - 4 Jul 2025
Viewed by 406
Abstract
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency [...] Read more.
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency perturbations (0.56–3.33 mHz) showed localized disturbances (amplitude ≤ 4 TECU, range < 300 km), potentially associated with near-field acoustic waves from crustal stress adjustments; (2) mid-frequency signals (0.28–0.56 mHz) exhibited anisotropic propagation (>1200 km) with azimuth-dependent N-shaped waveforms, consistent with the characteristics of acoustic–gravity waves (AGWs); and (3) low-frequency components (0.18–0.28 mHz) demonstrated phase reversal and power-law amplitude attenuation, suggesting possible lithosphere–atmosphere–ionosphere (LAI) coupling oscillations. The stark contrast between near-field residuals and far-field weak fluctuations highlighted the dominance of large-scale atmospheric gravity waves over localized acoustic disturbances. Geometry-based velocity inversion revealed incoherent high-frequency dynamics (5–30 min) versus anisotropic mid/low-frequency traveling ionospheric disturbance (TID) propagation (30–90 min) at 175–270 m/s, aligning with theoretical AGW behavior. During concurrent G1-class geomagnetic storm activity, spatial attenuation gradients and velocity anisotropy appear primarily consistent with seismogenic sources, providing insights for precursor discrimination and contributing to understanding multi-scale coupling in seismo-ionospheric systems. Full article
Show Figures

Figure 1

15 pages, 7120 KiB  
Article
A Dynamic Analysis of Toron Formation in Chiral Nematic Liquid Crystals Using a Polarization Holographic Microscope
by Tikhon V. Reztsov, Aleksey V. Chernykh, Tetiana Orlova and Nikolay V. Petrov
Polymers 2025, 17(13), 1849; https://doi.org/10.3390/polym17131849 - 2 Jul 2025
Viewed by 382
Abstract
Topological orientation structures in chiral nematic liquid crystals, such as torons, exhibit promising optical properties and are of increasing interest for applications in photonic devices. However, despite this attention, their polarization and phase dynamics during formation remain insufficiently explored. In this work, we [...] Read more.
Topological orientation structures in chiral nematic liquid crystals, such as torons, exhibit promising optical properties and are of increasing interest for applications in photonic devices. However, despite this attention, their polarization and phase dynamics during formation remain insufficiently explored. In this work, we investigate the dynamic optical response of a toron generated by focused femtosecond infrared laser pulses. A custom-designed polarization holographic microscope is employed to simultaneously record four polarization-resolved interferograms in a single exposure. This enables the real-time reconstruction of the Jones matrix, providing a complete description of the local polarization transformation introduced by the formation of the topological structure. The study demonstrates that torons can facilitate spin–orbit coupling of light in a manner analogous to q-plates, highlighting their potential for advanced vector beam shaping and topological photonics applications. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

11 pages, 4829 KiB  
Brief Report
Differences in Imaging and Histology Between Sinonasal Inverted Papilloma with and Without Squamous Cell Carcinoma
by Niina Kuusisto, Jaana Hagström, Goran Kurdo, Aaro Haapaniemi, Antti Markkola, Antti Mäkitie and Markus Lilja
Diagnostics 2025, 15(13), 1645; https://doi.org/10.3390/diagnostics15131645 - 27 Jun 2025
Viewed by 359
Abstract
Objectives: Sinonasal inverted papilloma (SNIP) is a rare benign tumor that has potential for malignant transformation, usually into squamous cell carcinoma (SCC). The pre-operative differentiation between SNIP and SNIP-SCC is essential in determining the therapeutic strategy, but it is a challenge, as biopsies [...] Read more.
Objectives: Sinonasal inverted papilloma (SNIP) is a rare benign tumor that has potential for malignant transformation, usually into squamous cell carcinoma (SCC). The pre-operative differentiation between SNIP and SNIP-SCC is essential in determining the therapeutic strategy, but it is a challenge, as biopsies may fail to recognize the malignant part of the tumor. Further, a SNIP can also be locally aggressive and thus mimic a malignant tumor. This retrospective study compares the pre-operative differences in computed tomography (CT) and histologic findings between patients with a benign SNIP and those with a SNIP-SCC. Methods: Eight patients with SNIP-SCC were selected from the hospital registries of the Department of Otorhinolaryngology, Helsinki University Hospital (Helsinki, Finland). For each case a comparable SNIP case without malignancy was selected. Five histopathologic samples of both the SNIP and SNIP-SCC tumors were retrieved. CT images and the histopathologic samples were re-evaluated by two observers. Results: The nasal cavity and ethmoid and maxillary sinuses were the most common sites for both tumor types. The SNIP tumors were mostly unilateral, and the SNIP-SCC tumors were both unilateral and bilateral. Only SNIP-SCC tumors demonstrated bone defects and orbital or intracranial invasion. Dysplastic findings such as dyskeratosis, nuclear atypia, and maturation disturbances were seen only in the SNIP-SCC tumors. Conclusions: Bony destruction and invasion of adjacent structures in pre-operative CT images seem to be pathognomonic signs of SNIP-SCC based on this series. To differentiate between SNIP and SNIP-SCC tumors all available pre-operative investigations are warranted. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

Back to TopTop