Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,228)

Search Parameters:
Keywords = localized drug delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 922 KiB  
Article
Evaluation of Ultrasonic Spray Method for Application of Sirolimus-Eluting Coating on Bioresorbable Vascular Scaffolds
by Katarzyna Jelonek, Joanna Jaworska, Monika Musiał-Kulik, Mateusz Stojko, Jakub Włodarczyk, Michał Sobota, Małgorzata Pastusiak, Anna Smola-Dmochowska, Janusz Szewczenko, Karolina Goldsztajn, Piotr Dobrzyński and Janusz Kasperczyk
Int. J. Mol. Sci. 2025, 26(15), 7649; https://doi.org/10.3390/ijms26157649 - 7 Aug 2025
Abstract
Restenosis is the main cause of failure after stent implantation during angioplasty. The localized, sustained delivery of an antirestenotic drug may reduce smooth muscle cell (SMCs) proliferation and thereby limit neointimal hyperplasia. The aim of this study was to develop degradable sirolimus-eluting polymer [...] Read more.
Restenosis is the main cause of failure after stent implantation during angioplasty. The localized, sustained delivery of an antirestenotic drug may reduce smooth muscle cell (SMCs) proliferation and thereby limit neointimal hyperplasia. The aim of this study was to develop degradable sirolimus-eluting polymer coatings that can be applied on bioresorbable polymer-based scaffolds via an ultrasonic coating system. This is a novel approach because the detailed analysis of the coating procedure on bioresorbable polymeric scaffolds with the use of an ultrasonic system has not been reported thus far. It has been observed that the ultrasonic technique facilitates formation of a smooth coating, well-integrated with the scaffold. However, the drug dose is affected by the concentration of the coating solution and the number of layers. Therefore, these parameters can be used for tailoring the drug dose and release process. Although all types of the developed coatings provided sirolimus elution for at least 3 months, a more uniform, diffusion-controlled release profile was observed from coatings obtained from the 1.0% polymeric solution. The released drug showed antiproliferative activity against vascular SMCs, without any hemolytic or thrombogenic effects. The results of the study may be advantageous for further progress in the development and medical translation of polymeric vascular scaffolds with antirestenotic activity. Full article
29 pages, 3563 KiB  
Article
Assessment of Hydrogels for Intra-Articulate Application, Based on Sodium Hyaluronate Doped with Synthetic Polymers and Incorporated with Diclofenac Sodium
by Dorota Wójcik-Pastuszka, Maja Grabara and Witold Musiał
Int. J. Mol. Sci. 2025, 26(15), 7631; https://doi.org/10.3390/ijms26157631 - 6 Aug 2025
Abstract
The intra-articular application of drugs has gained considerable interest with regard to formulations for advanced drug delivery systems. It has been identified as a potential route for local drug delivery. A drug agent is usually incorporated into the hydrogel to prolong and control [...] Read more.
The intra-articular application of drugs has gained considerable interest with regard to formulations for advanced drug delivery systems. It has been identified as a potential route for local drug delivery. A drug agent is usually incorporated into the hydrogel to prolong and control the drug release. This study aimed to design and evaluate an intra-articular hydrogel based sodium hyaluronate, which was modified with an additional polymer to enable the sustained release of the incorporated anti-inflammatory agent, diclofenac sodium (NaDic). Viscosity studies, drug release tests and FTIR−ATR measurements, as well as DSC analysis, were carried out to evaluate the obtained formulations. The viscosity measurements were performed using a rotational viscometer. The drug release was carried out by employing the apparatus paddle over the disk. The concentration of the released drug was obtained spectrophotometrically. The results revealed that the addition of the second polymer to the matrix influenced the dynamic viscosity of the hydrogels. The highest viscosity of (25.33 ± 0.55) × 103 cP was observed when polyacrylic acid (PA) was doped in the formulation. This was due to the hydrogen bond formation between both polymers. The FTIR−ATR investigations and DSC study revealed the hydrogen bond formation between the drug and both polymers. The drug was released the slowest from hydrogel doped with PA and 17.2 ± 3.7% of NaDic was transported to the acceptor fluid within 8 h. The hydrogel based on hyaluronan sodium doped with PA and containing NaDic is a promising formulation for the prolonged and controlled intra-articulate drug delivery of anti-inflammatory agents. Full article
(This article belongs to the Special Issue New Insights into Hyaluronan in Human Medicine)
Show Figures

Figure 1

26 pages, 3940 KiB  
Article
In Vitro Proof-of-Concept Study: Lidocaine and Epinephrine Co-Loaded in a Mucoadhesive Liquid Crystal Precursor System for Topical Oral Anesthesia
by Giovana Maria Fioramonti Calixto, Aylla Mesquita Pestana, Arthur Antunes Costa Bezerra, Marcela Tavares Luiz, Jonatas Lobato Duarte, Marlus Chorilli and Michelle Franz-Montan
Pharmaceuticals 2025, 18(8), 1166; https://doi.org/10.3390/ph18081166 - 6 Aug 2025
Abstract
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and [...] Read more.
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and characterized a novel lidocaine and epinephrine co-loaded liquid crystalline precursor system (LCPS) for topical anesthesia. The formulation was structurally characterized using polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). Rheological behavior was assessed through continuous and oscillatory rheological analyses. Texture profile analysis, in vitro mucoadhesive force evaluation, in vitro drug release and permeation studies, and an in vivo toxicity assay using the chicken chorioallantoic membrane (CAM) model were also conducted. Results: PLM and SAXS confirmed the transition of the LCPS from a microemulsion to a lamellar liquid crystalline structure upon contact with artificial saliva. This transition enhanced formulation consistency by over 100 times and tripled mucoadhesion strength. The LCPS also provided controlled drug release, reducing permeation flow by 93% compared to the commercial formulation. Importantly, the CAM assay indicated that the LCPS exhibited similar toxicity to the commercial product. Conclusions: The developed LCPS demonstrated promising physicochemical and biological properties for topical anesthesia, including enhanced mucoadhesion, controlled drug delivery, and acceptable biocompatibility. These findings support its potential for in vivo application and future clinical use to reduce pain during dental anesthesia procedures. Full article
(This article belongs to the Special Issue Advances in Topical and Mucosal Drug Delivery Systems)
Show Figures

Figure 1

17 pages, 432 KiB  
Article
Anomalous Drug Transport in Biological Tissues: A Caputo Fractional Approach with Non-Classical Boundary Modeling
by Ahmed Ghezal, Ahmed A. Al Ghafli and Hassan J. Al Salman
Fractal Fract. 2025, 9(8), 508; https://doi.org/10.3390/fractalfract9080508 - 4 Aug 2025
Viewed by 133
Abstract
This paper focuses on the numerical modeling of drug diffusion in biological tissues using fractional time-dependent parabolic equations with non-local boundary conditions. The model includes a Caputo fractional derivative to capture the non-local effects and memory inherent in biological processes, such as drug [...] Read more.
This paper focuses on the numerical modeling of drug diffusion in biological tissues using fractional time-dependent parabolic equations with non-local boundary conditions. The model includes a Caputo fractional derivative to capture the non-local effects and memory inherent in biological processes, such as drug absorption and transport. The theoretical framework of the problem is based on the work of Alhazzani, et al.,which demonstrates the solution’s goodness, existence, and uniqueness. Building on this foundation, we present a robust numerical method designed to deal with the complexity of fractional derivatives and non-local interactions at the boundaries of biological tissues. Numerical simulations reveal how fractal order and non-local boundary conditions affect the drug concentration distribution over time, providing valuable insights into drug delivery dynamics in biological systems. The results underscore the potential of fractal models to accurately represent diffusion processes in heterogeneous and complex biological environments. Full article
Show Figures

Figure 1

20 pages, 11379 KiB  
Article
Silk Fibroin–Alginate Aerogel Beads Produced by Supercritical CO2 Drying: A Dual-Function Conformable and Haemostatic Dressing
by Maria Rosaria Sellitto, Domenico Larobina, Chiara De Soricellis, Chiara Amante, Giovanni Falcone, Paola Russo, Beatriz G. Bernardes, Ana Leite Oliveira and Pasquale Del Gaudio
Gels 2025, 11(8), 603; https://doi.org/10.3390/gels11080603 - 2 Aug 2025
Viewed by 276
Abstract
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity [...] Read more.
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity in the form of conformable aerogel beads. This dual-functional formulation is designed to absorb exudate, promote clotting, and provide localized antimicrobial action, all essential for accelerating wound repair in high-risk scenarios within a single biocompatible system. Aerogel beads were obtained by supercritical drying of a silk fibroin–sodium alginate blend, resulting in highly porous, spherical structures measuring 3–4 mm in diameter. The formulations demonstrated efficient ciprofloxacin encapsulation (42.75–49.05%) and sustained drug release for up to 12 h. Fluid absorption reached up to four times their weight in simulated wound fluid and was accompanied by significantly enhanced blood clotting, outperforming a commercial haemostatic dressing. These findings highlight the potential of silk-based aerogel beads as a multifunctional wound healing platform that combines localized antimicrobial delivery, efficient fluid and exudate management, biodegradability, and superior haemostatic performance in a single formulation. This work also shows for the first time how the prilling encapsulation technique with supercritical drying is able to successfully produce silk fibroin and sodium alginate composite aerogel beads. Full article
(This article belongs to the Special Issue Aerogels and Composites Aerogels)
Show Figures

Figure 1

35 pages, 1395 KiB  
Review
Local Chemotherapy of Skin Pre-Neoplastic Lesions and Malignancies from the Perspective of Current Pharmaceutics
by Nadezhda Ivanova
Pharmaceutics 2025, 17(8), 1009; https://doi.org/10.3390/pharmaceutics17081009 - 1 Aug 2025
Viewed by 470
Abstract
In the preceding and early stages of cancer progression, local drug delivery to pre-cancerous and cancerous skin lesions may be applied as an alternative or supplementary therapy. At present, 5-Fluorouracil, imiquimod, and tirbanibulin creams and ointments have established their place in practice, while [...] Read more.
In the preceding and early stages of cancer progression, local drug delivery to pre-cancerous and cancerous skin lesions may be applied as an alternative or supplementary therapy. At present, 5-Fluorouracil, imiquimod, and tirbanibulin creams and ointments have established their place in practice, while several other active pharmaceutical ingredients (APIs) (e.g., calcipotriol, tretinoin, diclofenac) have been repurposed, used off-label, or are currently being investigated in mono- or combined chemotherapies of skin cancers. Apart from them, dozens to hundreds of therapeutics of natural and synthetic origin are proven to possess anti-tumor activity against melanoma, squamous cell carcinoma (SCC), and other skin cancer types in in vitro studies. Their clinical introduction is most often limited by low skin permeability, challenged targeted drug delivery, insufficient chemical stability, non-selective cytotoxicity, or insufficient safety data. A variety of prodrug and nanotechnological approaches, including vesicular systems, micro- and nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, and others, offer versatile solutions for overcoming the biophysical barrier function of the skin and the undesirable physicochemical nature of some drug molecules. This review aims to present the most significant aspects and latest achievements on the subject. Full article
Show Figures

Figure 1

16 pages, 1855 KiB  
Article
Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis
by Gyu-Yeon Shim, Seong-Hee Moon, Seong-Jin Shin, Hyun-Jin Kim, Seunghan Oh and Ji-Myung Bae
Polymers 2025, 17(15), 2108; https://doi.org/10.3390/polym17152108 - 31 Jul 2025
Viewed by 208
Abstract
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis [...] Read more.
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis, with minimal inhibitory and minimal bactericidal concentrations of 50 μM. It also suppressed mRNA expression of proinflammatory cytokines [tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6] in lipopolysaccharide-stimulated RAW 264.7 cells. The hydrogel, formulated with poloxamers and carboxymethylcellulose, remained in a liquid state at room temperature and formed a gel at 34 °C, providing sustained drug release for 96 h and demonstrating biocompatibility with human periodontal ligament stem cells while exhibiting antibacterial activity against P. gingivalis. In a rat model of periodontitis, the hydrogel significantly reduced alveolar bone loss and inflammatory responses, as confirmed by micro-computed tomography and reverse transcription quantitative polymerase chain reaction of gingival tissue. The dual antimicrobial and anti-inflammatory properties of emodin, combined with its thermoresponsive delivery system, provide advantages over conventional treatments by maintaining therapeutic concentrations in the periodontal pocket while minimizing systemic exposure. This shows the potential of emodin-loaded thermoresponsive hydrogels as effective local delivery systems for periodontitis treatment. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

23 pages, 3128 KiB  
Review
Advances in Transdermal Delivery Systems for Treating Androgenetic Alopecia
by Shilong Xu, Lian Zhou, Haodong Zhao and Siwen Li
Pharmaceutics 2025, 17(8), 984; https://doi.org/10.3390/pharmaceutics17080984 - 30 Jul 2025
Viewed by 522
Abstract
Androgenetic alopecia (AGA) is the most prevalent form of alopecia areata. Traditional treatment options, including minoxidil, finasteride, and hair transplantation, have their limitations, such as skin irritation, systemic side effects, invasiveness, and high costs. The transdermal drug delivery system (TDDS) offers an innovative [...] Read more.
Androgenetic alopecia (AGA) is the most prevalent form of alopecia areata. Traditional treatment options, including minoxidil, finasteride, and hair transplantation, have their limitations, such as skin irritation, systemic side effects, invasiveness, and high costs. The transdermal drug delivery system (TDDS) offers an innovative approach for treating AGA by administering medications through the skin to achieve localized and efficient delivery while overcoming the skin barrier. This review systematically explores the application of TDDS in AGA treatment, highlighting emerging technologies such as microneedles (MNs), liposomes, ionic liquids (ILs), nanostructured lipid carriers (NLCs), and transporters (TFs). It analyzes the underlying mechanisms that enhance drug penetration through hair follicles. Finally, this review presents a forward-looking perspective on the future use of TDDS in the management of AGA, aiming to provide insights and references for designing effective transdermal drug delivery systems for this condition. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

28 pages, 4633 KiB  
Review
Innovative Strategies in Hernia Mesh Design: Materials, Mechanics, and Modeling
by Evangelia Antoniadi, Nuno Miguel Ferreira, Maria Francisca Vaz, Marco Parente, Maria Pia Ferraz and Elisabete Silva
Materials 2025, 18(15), 3509; https://doi.org/10.3390/ma18153509 - 26 Jul 2025
Viewed by 443
Abstract
Hernia is a physiological condition that significantly impacts patients’ quality of life. Surgical treatment for hernias often involves the use of specialized meshes to support the abdominal wall. While this method is highly effective, it frequently leads to complications such as pain, infections, [...] Read more.
Hernia is a physiological condition that significantly impacts patients’ quality of life. Surgical treatment for hernias often involves the use of specialized meshes to support the abdominal wall. While this method is highly effective, it frequently leads to complications such as pain, infections, inflammation, adhesions, and even the need for revision surgeries. According to the Food and Drug Administration (FDA), hernia recurrence rates can reach up to 11%, surgical site infections occur in up to 21% of cases, and chronic pain incidence ranges from 0.3% to 68%. These statistics highlight the urgent need to improve mesh technologies to minimize such complications. The design and material composition of meshes are critical in reducing postoperative complications. Moreover, integrating drug-eluting properties into the meshes could address issues like infections and inflammation by enabling localized delivery of antibiotics and anti-inflammatory agents. Mesh design is equally important, with innovative structures like auxetic designs offering enhanced mechanical properties, flexibility, and tissue integration. These advanced designs can distribute stress more evenly, reduce fatigue, and improve performance in areas subjected to high pressures, such as during intense coughing, sneezing, or heavy lifting. Technological advancements, such as 3D printing, enable the precise fabrication of meshes with tailored designs and properties, providing new opportunities for innovation. By addressing these challenges, the development of next-generation mesh implants has the potential to reduce complications, improve patient outcomes, and significantly enhance quality of life for individuals undergoing hernia repair. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

23 pages, 2594 KiB  
Article
Formation and Characterization of Xylitol-Modified Glycidyl Methacrylate-co-Ethyl Methacrylate Matrices for Controlled Release of Antimicrobial Compounds
by Adam Chyzy, Przemysław Gnatowski, Edyta Piłat, Maciej Sienkiewicz, Katarzyna Wozniak, Marta Wojnicka, Krzysztof Brzezinski and Marta E. Plonska-Brzezinska
Molecules 2025, 30(15), 3083; https://doi.org/10.3390/molecules30153083 - 23 Jul 2025
Viewed by 198
Abstract
Wounds are undeniably important gateways for pathogens to enter the body. In addition to their detrimental local effects, they can also cause adverse systemic effects. For this reason, developing methods for eradicating pathogens from wounds is a challenging medical issue. Polymers, particularly hydrogels, [...] Read more.
Wounds are undeniably important gateways for pathogens to enter the body. In addition to their detrimental local effects, they can also cause adverse systemic effects. For this reason, developing methods for eradicating pathogens from wounds is a challenging medical issue. Polymers, particularly hydrogels, are one of the more essential materials for designing novel drug-delivery systems, thanks to the ease of tuning their structures. This work exploits this property by utilizing copolymerization, microwave modification, and drug-loading processes to obtain antibacterial gels. Synthesized xylitol-modified glycidyl methacrylate-co-ethyl methacrylate ([P(EMA)-co-(GMA)]-Xyl]) matrices were loaded with bacitracin, gentian violet, furazidine, and brilliant green, used as active pharmaceutical ingredients (APIs). The hydrophilic properties, API release mechanism, and antibacterial properties of the obtained hydrogels against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis containing [P(EMA)-co-(GMA)]-Xyl] were studied. The hydrogels with the APIs efficiently inhibit bacteria growth with low doses of drugs, and our findings are statistically significant, confirmed with ANOVA analysis at p = 0.05. The results confirmed that the proposed system is hydrophilic and has extended the drug-release capabilities of APIs with a controlled burst effect based on [P(EMA)-co-(GMA)]-Xyl] content in the hydrogel. Hydrogels are characterized by the prolonged release of APIs in a very short time (a few minutes). Although the amount of released APIs is about 10%, it still exceeds the minimum inhibitory concentrations of drugs. Several kinetic models (first-order, second-order, Baker–Lonsdale, and Korsmeyer–Peppas) were applied to fit the API release data from the [P(EMA)-co-(GMA)]-Xyl-based hydrogel. The best fit of the Korsmeyer–Peppas kinetic model to the experimental data was determined, and it was confirmed that a diffusion-controlled release mechanism of the APIs from the studied hydrogels is dominant, which is desirable for applications requiring a consistent, controlled release of therapeutic agents. A statistical analysis of API release using Linear Mixed Model was performed, examining the relationship between % mass of API, sample (hydrogels and control), time, sample–time interaction, and variability between individuals. The model fits the data well, as evidenced by the determination coefficients close to 1. The analyzed interactions in the data are reliable and statistically significant (p < 0.001). The outcome of this study suggests that the presented acrylate-based gel is a promising candidate for developing wound dressings. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Their Applications)
Show Figures

Figure 1

41 pages, 3816 KiB  
Review
Updates on the Advantages and Disadvantages of Microscopic and Spectroscopic Characterization of Magnetotactic Bacteria for Biosensor Applications
by Natalia Lorela Paul, Catalin Ovidiu Popa and Rodica Elena Ionescu
Biosensors 2025, 15(8), 472; https://doi.org/10.3390/bios15080472 - 22 Jul 2025
Viewed by 408
Abstract
Magnetotactic bacteria (MTB), a unique group of Gram-negative prokaryotes, have the remarkable ability to biomineralize magnetic nanoparticles (MNPs) intracellularly, making them promising candidates for various biomedical applications such as biosensors, drug delivery, imaging contrast agents, and cancer-targeted therapies. To fully exploit the potential [...] Read more.
Magnetotactic bacteria (MTB), a unique group of Gram-negative prokaryotes, have the remarkable ability to biomineralize magnetic nanoparticles (MNPs) intracellularly, making them promising candidates for various biomedical applications such as biosensors, drug delivery, imaging contrast agents, and cancer-targeted therapies. To fully exploit the potential of MTB, a precise understanding of the structural, surface, and functional properties of these biologically produced nanoparticles is required. Given these concerns, this review provides a focused synthesis of the most widely used microscopic and spectroscopic methods applied in the characterization of MTB and their associated MNPs, covering the latest research from January 2022 to May 2025. Specifically, various optical microscopy techniques (e.g., transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM)) and spectroscopic approaches (e.g., localized surface plasmon resonance (LSPR), surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS)) relevant to ultrasensitive MTB biosensor development are herein discussed and compared in term of their advantages and disadvantages. Overall, the novelty of this work lies in its clarity and structure, aiming to consolidate and simplify access to the most current and effective characterization techniques. Furthermore, several gaps in the characterization methods of MTB were identified, and new directions of methods that can be integrated into the study, analysis, and characterization of these bacteria are suggested in exhaustive manner. Finally, to the authors’ knowledge, this is the first comprehensive overview of characterization techniques that could serve as a practical resource for both younger and more experienced researchers seeking to optimize the use of MTB in the development of advanced biosensing systems and other biomedical tools. Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
Show Figures

Figure 1

35 pages, 1038 KiB  
Review
Hydrogels in Cardiac Surgery: Versatile Platforms for Tissue Repair, Adhesion Prevention, and Localized Therapeutics
by Seok Beom Hong, Jin-Oh Jeong and Hoon Choi
Gels 2025, 11(7), 564; https://doi.org/10.3390/gels11070564 - 21 Jul 2025
Viewed by 539
Abstract
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular [...] Read more.
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular viability and integration under dynamic physiological conditions. In myocardial repair, injectable and patch-forming hydrogels have been shown to be effective in reducing infarct size, promoting angiogenesis, and preserving contractile function. Hydrogel coatings and films have been designed as adhesion barriers to minimize pericardial adhesions after cardiotomy and improve reoperative safety. In heart valve and patch engineering, hydrogels contribute to scaffold design by providing bio-instructive, mechanically resilient, and printable matrices that are compatible with 3D fabrication. Furthermore, hydrogels serve as localized delivery platforms for small molecules, proteins, and nucleic acids, enabling sustained or stimuli-responsive release while minimizing systemic toxicity. Despite these advances, challenges such as mechanical durability, immune compatibility, and translational scalability persist. Ongoing innovations in smart polymer chemistry, hybrid composite design, and patient-specific manufacturing are addressing these limitations. This review aims to provide an integrated perspective on the application of hydrogels in cardiac surgery. The relevant literature was identified through a narrative search of PubMed, Scopus, Web of Science, Embase, and Google Scholar. Taken together, hydrogels offer a uniquely versatile and clinically translatable platform for addressing the multifaceted challenges of cardiac surgery. Hydrogels are poised to redefine clinical strategies in cardiac surgery by enabling tailored, bioresponsive, and functionally integrated therapies. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Tissue Engineering Applications)
Show Figures

Figure 1

20 pages, 19986 KiB  
Article
In Situ Targeting RGD-Modified Cyclodextrin Inclusion Complex/Hydrogel Hybrid System for Enhanced Glioblastoma Therapy
by Xiaofeng Yuan, Zhenhua Wang, Pengcheng Qiu, Zhenhua Tong, Bingwen Wang, Yingjian Sun, Xue Sun, Lu Sui, Haiqiang Jia, Jiajun Wang, Haifeng Tang and Weiliang Ye
Pharmaceutics 2025, 17(7), 938; https://doi.org/10.3390/pharmaceutics17070938 - 20 Jul 2025
Viewed by 325
Abstract
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor, characterized by high malignancy, recurrence rate, and dismal prognosis, thereby demanding innovative therapeutic strategies. In this study, we report a novel in situ targeting inclusion complex hydrogel hybrid system (DOX/RGD-CD@Gel) that integrates [...] Read more.
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor, characterized by high malignancy, recurrence rate, and dismal prognosis, thereby demanding innovative therapeutic strategies. In this study, we report a novel in situ targeting inclusion complex hydrogel hybrid system (DOX/RGD-CD@Gel) that integrates doxorubicin (DOX) with RGD-conjugated cyclodextrin (RGD-CD) and a thermosensitive hydrogel for enhanced GBM therapy. Methods: The DOX/RGD-CD@Gel system was prepared by conjugating doxorubicin (DOX) with RGD-modified cyclodextrin (RGD-CD) and embedding it into a thermosensitive hydrogel. The drug delivery and antitumor efficacy of this system were evaluated in vitro and in vivo. Results: In vitro and in vivo evaluations demonstrated that DOX/RGD-CD@Gel significantly enhanced cytotoxicity compared to free DOX or DOX/CD formulations. The targeted delivery system effectively promoted apoptosis and inhibited cell proliferation and metastasis in GBM cells. Moreover, the hydrogel-based system exhibited prolonged drug retention in the brain, as evidenced by its temperature- and pH-responsive release characteristics. In a GBM mouse model, DOX/RGD-CD@Gel significantly suppressed tumor growth and improved survival rates. Conclusions: This study presents a paradigm of integrating a targeted inclusion complex with a thermosensitive hydrogel, offering a safe and efficacious strategy for localized GBM therapy with potential translational value. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

18 pages, 1436 KiB  
Article
Application of Platelet-Rich Fibrin and Concentrated Growth Factors as Carriers for Antifungal Drugs—In Vitro Study
by Wojciech Niemczyk, Małgorzata Kępa, Jacek Żurek, Ali Aboud, Dariusz Skaba and Rafał Wiench
J. Clin. Med. 2025, 14(14), 5111; https://doi.org/10.3390/jcm14145111 - 18 Jul 2025
Viewed by 244
Abstract
Background: Fungal infections, particularly those caused by Candida species, pose a serious threat to immunocompromised individuals, and therapeutic options are limited due to toxicity and resistance concerns. This in vitro study aimed to explore the feasibility of using liquid fractions of autologous [...] Read more.
Background: Fungal infections, particularly those caused by Candida species, pose a serious threat to immunocompromised individuals, and therapeutic options are limited due to toxicity and resistance concerns. This in vitro study aimed to explore the feasibility of using liquid fractions of autologous platelet concentrates (APCs), namely concentrated platelet-rich fibrin (c-PRF) and liquid-phase concentrated growth factor (LPCGF), as carriers for antifungal drugs. Methods: The research was conducted in two phases: first, to evaluate the inherent antifungal properties of different APCs; and second, to assess their effectiveness as drug carriers for fluconazole and voriconazole against Candida albicans, Candida glabrata, and Candida krusei. Results: Results showed that APCs alone exhibited no direct antifungal effects. However, when combined with antifungal agents, notable inhibition zones were observed—especially with voriconazole against C. krusei and fluconazole against C. glabrata using c-PRF. Both c-PRF and LPCGF were compatible with the drugs and did not hinder clot formation. Conclusions: These findings suggest that APCs can act as effective vehicles for localized antifungal drug delivery and warrant further investigation for clinical application in treating fungal-related oral diseases. Full article
Show Figures

Figure 1

22 pages, 5041 KiB  
Article
Molecular Insights into the Temperature-Dependent Binding and Conformational Dynamics of Noraucuparin with Bovine Serum Albumin: A Microsecond-Scale MD Simulation Study
by Erick Bahena-Culhuac and Martiniano Bello
Pharmaceuticals 2025, 18(7), 1048; https://doi.org/10.3390/ph18071048 - 17 Jul 2025
Viewed by 347
Abstract
Background/Objectives: Understanding the molecular interactions between small bioactive compounds and serum albumins is essential for drug development and pharmacokinetics. Noraucuparin, a biphenyl-type phytoalexin with promising pharmacological properties, has shown a strong binding affinity to bovine serum albumin (BSA), a model protein for [...] Read more.
Background/Objectives: Understanding the molecular interactions between small bioactive compounds and serum albumins is essential for drug development and pharmacokinetics. Noraucuparin, a biphenyl-type phytoalexin with promising pharmacological properties, has shown a strong binding affinity to bovine serum albumin (BSA), a model protein for drug transport. This study aims to elucidate the structural and energetic characteristics of the noraucuparin–BSA complex under physiological and slightly elevated temperatures. Methods: Microsecond-scale molecular dynamics (MD) simulations and Molecular Mechanics Generalized Born Surface Area (MMGBSA)-binding-free energy calculations were performed to investigate the interaction between noraucuparin and BSA at 298 K and 310 K. Conformational flexibility and per-residue energy decomposition analyses were conducted, along with interaction network mapping to assess ligand-induced rearrangements. Results: Noraucuparin preferentially binds to site II of BSA, near the ibuprofen-binding pocket, with stabilization driven by hydrogen bonding and hydrophobic interactions. Binding at 298 K notably increased the structural mobility of BSA, affecting its global conformational dynamics. Key residues, such as Trp213, Arg217, and Leu237, contributed significantly to complex stability, and the ligand induced localized rearrangements in the protein’s intramolecular interaction network. Conclusions: These findings offer insights into the dynamic behavior of the noraucuparin–BSA complex and enhance the understanding of serum albumin–ligand interactions, with potential implications for drug delivery systems. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop