Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (392)

Search Parameters:
Keywords = localization of construction machines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 1868 KiB  
Article
A Logifold Structure for Measure Space
by Inkee Jung and Siu-Cheong Lau
Axioms 2025, 14(8), 599; https://doi.org/10.3390/axioms14080599 (registering DOI) - 1 Aug 2025
Viewed by 54
Abstract
In this paper, we develop a geometric formulation of datasets. The key novel idea is to formulate a dataset to be a fuzzy topological measure space as a global object and equip the space with an atlas of local charts using graphs of [...] Read more.
In this paper, we develop a geometric formulation of datasets. The key novel idea is to formulate a dataset to be a fuzzy topological measure space as a global object and equip the space with an atlas of local charts using graphs of fuzzy linear logical functions. We call such a space a logifold. In applications, the charts are constructed by machine learning with neural network models. We implement the logifold formulation to find fuzzy domains of a dataset and to improve accuracy in data classification problems. Full article
(This article belongs to the Special Issue Recent Advances in Function Spaces and Their Applications)
Show Figures

Figure 1

28 pages, 7946 KiB  
Article
Service Composition Optimization Method for Sewing Machine Cases Based on an Improved Multi-Objective Artificial Hummingbird Algorithm
by Gan Shi, Shanhui Liu, Keqiang Shi, Langze Zhu, Zhenjie Gao and Jiayue Zhang
Processes 2025, 13(8), 2433; https://doi.org/10.3390/pr13082433 - 31 Jul 2025
Viewed by 110
Abstract
In response to the low efficiency of collaborative processing of sewing machine cases at the part level in network collaborative manufacturing, this paper proposes a sewing machine cases manufacturing service composition optimization method based on an improved multi-objective artificial hummingbird algorithm. The structure [...] Read more.
In response to the low efficiency of collaborative processing of sewing machine cases at the part level in network collaborative manufacturing, this paper proposes a sewing machine cases manufacturing service composition optimization method based on an improved multi-objective artificial hummingbird algorithm. The structure and production process of sewing machine cases are analyzed; a framework for service composition optimization in the sewing machine cases manufacturing service platform is established; the required manufacturing resource service composition is determined; and a dual-objective service composition optimization mathematical model that considers Quality of Service (QoS) indicators and flexibility indicators is constructed. Opposition-based learning strategies, roulette wheel selection strategies, and improved differential evolution strategies are embedded in the multi-objective artificial hummingbird algorithm, and the improved artificial hummingbird algorithm (ORAHA_DE) is used to solve the sewing machine cases manufacturing service composition optimization model. The experimental results show the effectiveness and superiority of this composition optimization method in solving the sewing machine cases manufacturing composition optimization problem while avoiding entrapment in a local optimum during the solution process, thereby achieving the composition optimization of sewing machine cases collaborative manufacturing services. Full article
Show Figures

Figure 1

20 pages, 11920 KiB  
Article
Enhancing Tip Detection by Pre-Training with Synthetic Data for Ultrasound-Guided Intervention
by Ruixin Wang, Jinghang Wang, Wei Zhao, Xiaohui Liu, Guoping Tan, Jun Liu and Zhiyuan Wang
Diagnostics 2025, 15(15), 1926; https://doi.org/10.3390/diagnostics15151926 - 31 Jul 2025
Viewed by 165
Abstract
Objectives: Automatic tip localization is critical in ultrasound (US)-guided interventions. Although deep learning (DL) has been widely used for precise tip detection, existing methods are limited by the availability of real puncture data and expert annotations. Methods: To address these challenges, [...] Read more.
Objectives: Automatic tip localization is critical in ultrasound (US)-guided interventions. Although deep learning (DL) has been widely used for precise tip detection, existing methods are limited by the availability of real puncture data and expert annotations. Methods: To address these challenges, we propose a novel method that uses synthetic US puncture data to pre-train DL-based tip detectors, improving their generalization. Synthetic data are generated by fusing clinical US images of healthy controls with tips created using generative DL models. To ensure clinical diversity, we constructed a dataset from scans of 20 volunteers, covering 20 organs or anatomical regions, obtained with six different US machines and performed by three physicians with varying expertise levels. Tip diversity is introduced by generating a wide range of synthetic tips using a denoising probabilistic diffusion model (DDPM). This method synthesizes a large volume of diverse US puncture data, which are used to pre-train tip detectors, followed by subsequently training with real puncture data. Results: Our method outperforms MSCOCO pre-training on a clinical puncture dataset, achieving a 1.27–7.19% improvement in AP0.1:0.5 with varying numbers of real samples. State-of-the-art detectors also show performance gains of 1.14–1.76% when applying the proposed method. Conclusions: The experimental results demonstrate that our method enhances the generalization of tip detectors without relying on expert annotations or large amounts of real data, offering significant potential for more accurate visual guidance during US-guided interventions and broader clinical applications. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

23 pages, 783 KiB  
Article
An Effective QoS-Aware Hybrid Optimization Approach for Workflow Scheduling in Cloud Computing
by Min Cui and Yipeng Wang
Sensors 2025, 25(15), 4705; https://doi.org/10.3390/s25154705 (registering DOI) - 30 Jul 2025
Viewed by 158
Abstract
Workflow scheduling in cloud computing is attracting increasing attention. Cloud computing can assign tasks to available virtual machine resources in cloud data centers according to scheduling strategies, providing a powerful computing platform for the execution of workflow tasks. However, developing effective workflow scheduling [...] Read more.
Workflow scheduling in cloud computing is attracting increasing attention. Cloud computing can assign tasks to available virtual machine resources in cloud data centers according to scheduling strategies, providing a powerful computing platform for the execution of workflow tasks. However, developing effective workflow scheduling algorithms to find optimal or near-optimal task-to-VM allocation solutions that meet users’ specific QoS requirements still remains an open area of research. In this paper, we propose a hybrid QoS-aware workflow scheduling algorithm named HLWOA to address the problem of simultaneously minimizing the completion time and execution cost of workflow scheduling in cloud computing. First, the workflow scheduling problem in cloud computing is modeled as a multi-objective optimization problem. Then, based on the heterogeneous earliest finish time (HEFT) heuristic optimization algorithm, tasks are reverse topologically sorted and assigned to virtual machines with the earliest finish time to construct an initial workflow task scheduling sequence. Furthermore, an improved Whale Optimization Algorithm (WOA) based on Lévy flight is proposed. The output solution of HEFT is used as one of the initial population solutions in WOA to accelerate the convergence speed of the algorithm. Subsequently, a Lévy flight search strategy is introduced in the iterative optimization phase to avoid the algorithm falling into local optimal solutions. The proposed HLWOA is evaluated on the WorkflowSim platform using real-world scientific workflows (Cybershake and Montage) with different task scales (100 and 1000). Experimental results demonstrate that HLWOA outperforms HEFT, HEPGA, and standard WOA in both makespan and cost, with normalized fitness values consistently ranking first. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

22 pages, 14160 KiB  
Article
Commute Networks as a Signature of Urban Socioeconomic Performance: Evaluating Mobility Structures with Deep Learning Models
by Devashish Khulbe, Alexander Belyi and Stanislav Sobolevsky
Smart Cities 2025, 8(4), 125; https://doi.org/10.3390/smartcities8040125 - 29 Jul 2025
Viewed by 237
Abstract
Urban socioeconomic modeling has predominantly concentrated on extensive location and neighborhood-based features, relying on the localized population footprint. However, networks in urban systems are common, and many urban modeling methods do not account for network-based effects. Additionally, network-based research has explored a multitude [...] Read more.
Urban socioeconomic modeling has predominantly concentrated on extensive location and neighborhood-based features, relying on the localized population footprint. However, networks in urban systems are common, and many urban modeling methods do not account for network-based effects. Additionally, network-based research has explored a multitude of data from urban landscapes. However, achieving a comprehensive understanding of urban mobility proves challenging without exhaustive datasets. In this study, we propose using commute information records from the census as a reliable and comprehensive source to construct mobility networks across cities. Leveraging deep learning architectures, we employ these commute networks across U.S. metro areas for socioeconomic modeling. We show that mobility network structures provide significant predictive performance without considering any node features. Consequently, we use mobility networks to present a supervised learning framework to model a city’s socioeconomic indicator directly, combining Graph Neural Network and Vanilla Neural Network models to learn all parameters in a single learning pipeline. In experiments in 12 major U.S. cities, the proposed model achieves considerable explanatory performance and is able to outperform previous conventional machine learning models based on extensive regional-level features. Providing researchers with methods to incorporate network effects in urban modeling, this work also informs stakeholders of wider network-based effects in urban policymaking and planning. Full article
Show Figures

Figure 1

21 pages, 3722 KiB  
Article
State of Health Estimation for Lithium-Ion Batteries Based on TCN-RVM
by Yu Zhao, Yonghong Xu, Yidi Wei, Liang Tong, Yiyang Li, Minghui Gong, Hongguang Zhang, Baoying Peng and Yinlian Yan
Appl. Sci. 2025, 15(15), 8213; https://doi.org/10.3390/app15158213 - 23 Jul 2025
Viewed by 252
Abstract
A State of Health (SOH) estimation of lithium-ion batteries is a core function of battery management systems, directly affecting the safe operation, lifetime prediction, and economic efficiency of batteries. However, existing methods still face challenges in balancing feature robustness and model generalization ability; [...] Read more.
A State of Health (SOH) estimation of lithium-ion batteries is a core function of battery management systems, directly affecting the safe operation, lifetime prediction, and economic efficiency of batteries. However, existing methods still face challenges in balancing feature robustness and model generalization ability; for instance, some studies rely on features whose physical correlation with SOH lacks strict verification, or the models struggle to simultaneously capture the temporal dynamics of health factors and nonlinear mapping relationships. To address this, this paper proposes an SOH estimation method based on incremental capacity (IC) curves and a Temporal Convolutional Network—Relevance Vector Machine (TCN-RVM) model, with core innovations reflected in two aspects. Firstly, five health factors are extracted from IC curves, and the strong correlation between these features and SOH is verified using both Pearson and Spearman coefficients, ensuring the physical rationality and statistical significance of feature selection. Secondly, the TCN-RVM model is constructed to achieve complementary advantages. The dilated causal convolution of TCN is used to extract temporal local features of health factors, addressing the insufficient capture of long-range dependencies in traditional models; meanwhile, the Bayesian inference framework of RVM is integrated to enhance the nonlinear mapping capability and small-sample generalization, avoiding the overfitting tendency of complex models. Experimental validation is conducted using the lithium-ion battery dataset from the University of Maryland. The results show that the mean absolute error of the SOH estimation using the proposed method does not exceed 0.72%, which is significantly superior to comparative models such as CNN-GRU, KELM, and SVM, demonstrating higher accuracy and reliability compared with other models. Full article
Show Figures

Figure 1

17 pages, 382 KiB  
Review
Physics-Informed Neural Networks: A Review of Methodological Evolution, Theoretical Foundations, and Interdisciplinary Frontiers Toward Next-Generation Scientific Computing
by Zhiyuan Ren, Shijie Zhou, Dong Liu and Qihe Liu
Appl. Sci. 2025, 15(14), 8092; https://doi.org/10.3390/app15148092 - 21 Jul 2025
Viewed by 835
Abstract
Physics-informed neural networks (PINNs) have emerged as a transformative methodology integrating deep learning with scientific computing. This review establishes a three-dimensional analytical framework to systematically decode PINNs’ development through methodological innovation, theoretical breakthroughs, and cross-disciplinary convergence. The contributions include threefold: First, identifying the [...] Read more.
Physics-informed neural networks (PINNs) have emerged as a transformative methodology integrating deep learning with scientific computing. This review establishes a three-dimensional analytical framework to systematically decode PINNs’ development through methodological innovation, theoretical breakthroughs, and cross-disciplinary convergence. The contributions include threefold: First, identifying the co-evolutionary path of algorithmic architectures from adaptive optimization (neural tangent kernel-guided weighting achieving 230% convergence acceleration in Navier-Stokes solutions) to hybrid numerical-deep learning integration (5× speedup via domain decomposition) and second, constructing bidirectional theory-application mappings where convergence analysis (operator approximation theory) and generalization guarantees (Bayesian-physical hybrid frameworks) directly inform engineering implementations, as validated by 72% cost reduction compared to FEM in high-dimensional spaces (p<0.01,n=15 benchmarks). Third, pioneering cross-domain knowledge transfer through application-specific architectures: TFE-PINN for turbulent flows (5.12±0.87% error in NASA hypersonic tests), ReconPINN for medical imaging (SSIM=+0.18±0.04 on multi-institutional MRI), and SeisPINN for seismic systems (0.52±0.18 km localization accuracy). We further present a technological roadmap highlighting three critical directions for PINN 2.0: neuro-symbolic, federated physics learning, and quantum-accelerated optimization. This work provides methodological guidelines and theoretical foundations for next-generation scientific machine learning systems. Full article
Show Figures

Figure 1

18 pages, 3556 KiB  
Article
Multi-Sensor Fusion for Autonomous Mobile Robot Docking: Integrating LiDAR, YOLO-Based AprilTag Detection, and Depth-Aided Localization
by Yanyan Dai and Kidong Lee
Electronics 2025, 14(14), 2769; https://doi.org/10.3390/electronics14142769 - 10 Jul 2025
Viewed by 531
Abstract
Reliable and accurate docking remains a fundamental challenge for autonomous mobile robots (AMRs) operating in complex industrial environments with dynamic lighting, motion blur, and occlusion. This study proposes a novel multi-sensor fusion-based docking framework that significantly enhances robustness and precision by integrating YOLOv8-based [...] Read more.
Reliable and accurate docking remains a fundamental challenge for autonomous mobile robots (AMRs) operating in complex industrial environments with dynamic lighting, motion blur, and occlusion. This study proposes a novel multi-sensor fusion-based docking framework that significantly enhances robustness and precision by integrating YOLOv8-based AprilTag detection, depth-aided 3D localization, and LiDAR-based orientation correction. A key contribution of this work is the construction of a custom AprilTag dataset featuring real-world visual disturbances, enabling the YOLOv8 model to achieve high-accuracy detection and ID classification under challenging conditions. To ensure precise spatial localization, 2D visual tag coordinates are fused with depth data to compute 3D positions in the robot’s frame. A LiDAR group-symmetry mechanism estimates heading deviation, which is combined with visual feedback in a hybrid PID controller to correct angular errors. A finite-state machine governs the docking sequence, including detection, approach, yaw alignment, and final engagement. Simulation and experimental results demonstrate that the proposed system achieves higher docking success rates and improved pose accuracy under various challenging conditions compared to traditional vision- or LiDAR-only approaches. Full article
Show Figures

Figure 1

26 pages, 1566 KiB  
Article
Predictive Framework for Regional Patent Output Using Digital Economic Indicators: A Stacked Machine Learning and Geospatial Ensemble to Address R&D Disparities
by Amelia Zhao and Peng Wang
Analytics 2025, 4(3), 18; https://doi.org/10.3390/analytics4030018 - 8 Jul 2025
Viewed by 319
Abstract
As digital transformation becomes an increasingly central focus of national and regional policy agendas, parallel efforts are intensifying to stimulate innovation as a critical driver of firm competitiveness and high-quality economic growth. However, regional disparities in innovation capacity persist. This study proposes an [...] Read more.
As digital transformation becomes an increasingly central focus of national and regional policy agendas, parallel efforts are intensifying to stimulate innovation as a critical driver of firm competitiveness and high-quality economic growth. However, regional disparities in innovation capacity persist. This study proposes an integrated framework in which regionally tracked digital economy indicators are leveraged to predict firm-level innovation performance, measured through patent activity, across China. Drawing on a comprehensive dataset covering 13 digital economic indicators from 2013 to 2022, this study spans core, broad, and narrow dimensions of digital development. Spatial dependencies among these indicators are assessed using global and local spatial autocorrelation measures, including Moran’s I and Geary’s C, to provide actionable insights for constructing innovation-conducive environments. To model the predictive relationship between digital metrics and innovation output, this study employs a suite of supervised machine learning techniques—Random Forest, Extreme Learning Machine (ELM), Support Vector Machine (SVM), XGBoost, and stacked ensemble approaches. Our findings demonstrate the potential of digital infrastructure metrics to serve as early indicators of regional innovation capacity, offering a data-driven foundation for targeted policymaking, strategic resource allocation, and the design of adaptive digital innovation ecosystems. Full article
Show Figures

Figure 1

26 pages, 1170 KiB  
Article
Digital Empowerment, Novel Productive Forces, and Regional Green Innovation Efficiency: Causal Inference Based on Spatial Difference-in-Differences and Double Machine Learning Approaches
by Qi Liu, Siyu Liu, Tianning Guan, Luhan Yu, Zemenghong Bao, Yuzhu Wen and Kun Lv
Information 2025, 16(7), 578; https://doi.org/10.3390/info16070578 - 6 Jul 2025
Viewed by 302
Abstract
Amidst the dual challenges of escalating ecological environmental pressures and economic transformation globally, green innovation emerges as a pivotal pathway toward achieving high-quality sustainable development. To elucidate how digitalization and novel productive forces synergistically drive the green transition, the research utilizes panel data [...] Read more.
Amidst the dual challenges of escalating ecological environmental pressures and economic transformation globally, green innovation emerges as a pivotal pathway toward achieving high-quality sustainable development. To elucidate how digitalization and novel productive forces synergistically drive the green transition, the research utilizes panel data from 30 provincial-level administrative regions in China spanning 2009 to 2022, constructing a green innovation efficiency measurement frame-work grounded in the Super Slack-Based Measure (Super-SBM)model, alongside a novel productive forces evaluation system based on the triad of laborers, labor objects, and means of production. Employing spatial difference-in-differences and double machine learning methodologies within a quasi-natural experimental design, the research investigates the causal mechanisms through which digital empowerment and novel productive forces influence regional green innovation efficiency. The findings reveal that both digital empowerment and novel productive forces significantly enhance regional green innovation efficiency, exhibiting pronounced positive spatial spillover effects on neighboring regions. Heterogeneity analyses demonstrate that the promotive impacts are more pronounced in eastern provinces compared to central and western counterparts, in provinces participating in carbon trading relative to those that do not, and in innovation-driven provinces versus non-innovative ones. Mediation analysis indicates that digital empowerment operates by fostering the aggregation of innovative talent and elevating governmental ecological attentiveness, whereas new-type productivity exerts its influence primarily through intellectual property protection and the clustering of high-technology industries. The results offer empirical foundations for policymakers to devise coordinated regional green development strategies, refine digital transformation policies, and promote industrial structural optimization. Furthermore, this research provides valuable data-driven insights and theoretical guidance for local governments and enterprises in cultivating green innovation and new-type productivity. Full article
(This article belongs to the Special Issue Carbon Emissions Analysis by AI Techniques)
Show Figures

Figure 1

25 pages, 7504 KiB  
Article
Explainable Artificial Intelligence (XAI) for Flood Susceptibility Assessment in Seoul: Leveraging Evolutionary and Bayesian AutoML Optimization
by Kounghoon Nam, Youngkyu Lee, Sungsu Lee, Sungyoon Kim and Shuai Zhang
Remote Sens. 2025, 17(13), 2244; https://doi.org/10.3390/rs17132244 - 30 Jun 2025
Viewed by 466
Abstract
This study aims to enhance the accuracy and interpretability of flood susceptibility mapping (FSM) in Seoul, South Korea, by integrating automated machine learning (AutoML) with explainable artificial intelligence (XAI) techniques. Ten topographic and environmental conditioning factors were selected as model inputs. We first [...] Read more.
This study aims to enhance the accuracy and interpretability of flood susceptibility mapping (FSM) in Seoul, South Korea, by integrating automated machine learning (AutoML) with explainable artificial intelligence (XAI) techniques. Ten topographic and environmental conditioning factors were selected as model inputs. We first employed the Tree-based Pipeline Optimization Tool (TPOT), an evolutionary AutoML algorithm, to construct baseline ensemble models using Gradient Boosting (GB), Random Forest (RF), and XGBoost (XGB). These models were further fine-tuned using Bayesian optimization via Optuna. To interpret the model outcomes, SHAP (SHapley Additive exPlanations) was applied to analyze both the global and local contributions of each factor. The SHAP analysis revealed that lower elevation, slope, and stream distance, as well as higher stream density and built-up areas, were the most influential factors contributing to flood susceptibility. Moreover, interactions between these factors, such as built-up areas located on gentle slopes near streams, further intensified flood risk. The susceptibility maps were reclassified into five categories (very low to very high), and the GB model identified that approximately 15.047% of the study area falls under very-high-flood-risk zones. Among the models, the GB classifier achieved the highest performance, followed by XGB and RF. The proposed framework, which integrates TPOT, Optuna, and SHAP within an XAI pipeline, not only improves predictive capability but also offers transparent insights into feature behavior and model logic. These findings support more robust and interpretable flood risk assessments for effective disaster management in urban areas. Full article
(This article belongs to the Special Issue Artificial Intelligence for Natural Hazards (AI4NH))
Show Figures

Figure 1

28 pages, 10102 KiB  
Article
Multi-Source Data and Semantic Segmentation: Spatial Quality Assessment and Enhancement Strategies for Jinan Mingfu City from a Tourist Perception Perspective
by Lin Chen, Xiaoyu Cai and Zhe Liu
Buildings 2025, 15(13), 2298; https://doi.org/10.3390/buildings15132298 - 30 Jun 2025
Cited by 1 | Viewed by 413
Abstract
In the context of cultural tourism integration, tourists’ spatial perception intention is an important carrier of spatial evaluation. In historic cultural districts represented by Jinan Mingfu City, tourists’ perceptual depth remains underexplored, leading to a misalignment between cultural tourism development and spatial quality [...] Read more.
In the context of cultural tourism integration, tourists’ spatial perception intention is an important carrier of spatial evaluation. In historic cultural districts represented by Jinan Mingfu City, tourists’ perceptual depth remains underexplored, leading to a misalignment between cultural tourism development and spatial quality needs. Taking Jinan Mingfu City as a representative case of a historic cultural district, while the living heritage model has revitalized local economies, the absence of a tourist perspective has resulted in misalignment between cultural tourism development and spatial quality requirements. This study establishes a technical framework encompassing “data crawling-factor aggregation-human-machine collaborative optimization”. It integrates Python web crawlers, SnowNLP sentiment analysis, and TF-IDF text mining technologies to extract physical elements; constructs a three-dimensional evaluation framework of “visual perception-spatial comfort-cultural experience” through SPSS principal component analysis; and quantifies physical element indicators such as green vision rate and signboard clutter index through street view semantic segmentation (OneFormer framework). A synergistic mechanism of machine scoring and manual double-blind scoring is adopted for correlation analysis to determine the impact degree of indicators and optimization strategies. This study identified that indicators such as green vision rate, shading facility coverage, and street enclosure ratio significantly influence tourist evaluations, with a severe deficiency in cultural spaces. Accordingly, it proposes targeted strategies, including visual landscape optimization, facility layout adjustment, and cultural scenario implementation. By breaking away from traditional qualitative evaluation paradigms, this study provides data-based support for the spatial quality enhancement of historic districts, thereby enabling the transformation of these areas from experience-oriented protection to data-driven intelligent renewal and promoting the sustainable development of cultural tourism. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

59 pages, 3738 KiB  
Article
A Survey of Visual SLAM Based on RGB-D Images Using Deep Learning and Comparative Study for VOE
by Van-Hung Le and Thi-Ha-Phuong Nguyen
Algorithms 2025, 18(7), 394; https://doi.org/10.3390/a18070394 - 27 Jun 2025
Viewed by 624
Abstract
Visual simultaneous localization and mapping (Visual SLAM) based on RGB-D image data includes two main tasks: One is to build an environment map, and the other is to simultaneously track the position and movement of visual odometry estimation (VOE). Visual SLAM and VOE [...] Read more.
Visual simultaneous localization and mapping (Visual SLAM) based on RGB-D image data includes two main tasks: One is to build an environment map, and the other is to simultaneously track the position and movement of visual odometry estimation (VOE). Visual SLAM and VOE are used in many applications, such as robot systems, autonomous mobile robots, assistance systems for the blind, human–machine interaction, industry, etc. To solve the computer vision problems in Visual SLAM and VOE from RGB-D images, deep learning (DL) is an approach that gives very convincing results. This manuscript examines the results, advantages, difficulties, and challenges of the problem of Visual SLAM and VOE based on DL. In this paper, the taxonomy is proposed to conduct a complete survey based on three methods to construct Visual SLAM and VOE from RGB-D images (1) using DL for the modules of the Visual SLAM and VOE systems; (2) using DL to supplement the modules of Visual SLAM and VOE systems; and (3) using end-to-end DL to build Visual SLAM and VOE systems. The 220 scientific publications on Visual SLAM, VOE, and related issues were surveyed. The studies were surveyed based on the order of methods, datasets, evaluation measures, and detailed results. In particular, studies on using DL to build Visual SLAM and VOE systems have analyzed the challenges, advantages, and disadvantages. We also proposed and published the TQU-SLAM benchmark dataset, and a comparative study on fine-tuning the VOE model using a Multi-Layer Fusion network (MLF-VO) framework was performed. The comparison results of VOE on the TQU-SLAM benchmark dataset range from 16.97 m to 57.61 m. This is a huge error compared to the VOE methods on the KITTI, TUM RGB-D SLAM, and ICL-NUIM datasets. Therefore, the dataset we publish is very challenging, especially in the opposite direction (OP-D) when collecting and annotation data. The results of the comparative study are also presented in detail and available. Full article
(This article belongs to the Special Issue Advances in Deep Learning and Next-Generation Internet Technologies)
Show Figures

Figure 1

26 pages, 3522 KiB  
Article
PCA-GWO-KELM Optimization Gait Recognition Indoor Fusion Localization Method
by Xiaoyu Ji, Xiaoyue Xu, Suqing Yan, Jianming Xiao, Qiang Fu and Kamarul Hawari Bin Ghazali
ISPRS Int. J. Geo-Inf. 2025, 14(7), 246; https://doi.org/10.3390/ijgi14070246 - 26 Jun 2025
Viewed by 637
Abstract
Location-based services have important economic and social values. The positioning accuracy and cost have a crucial impact on the quality, promotion, and market competitiveness of location services. Dead reckoning can provide accurate location information in a short time. However, it suffers from motion [...] Read more.
Location-based services have important economic and social values. The positioning accuracy and cost have a crucial impact on the quality, promotion, and market competitiveness of location services. Dead reckoning can provide accurate location information in a short time. However, it suffers from motion pattern diversity and cumulative error. To address these issues, we propose a PCA-GWO-KELM optimization gait recognition indoor fusion localization method. In this method, 30-dimensional motion features for different motion patterns are extracted from inertial measurement units. Then, constructing PCA-GWO-KELM optimization gait recognition algorithms to obtain important features, the model parameters of the kernel-limit learning machine are optimized by the gray wolf optimization algorithm. Meanwhile, adaptive upper thresholds and adaptive dynamic time thresholds are constructed to void pseudo peaks and valleys. Finally, fusion localization is achieved by combining with acoustic localization. Comprehensive experiments have been conducted using different devices in two different scenarios. Experimental results demonstrated that the proposed method can effectively recognize motion patterns and mitigate cumulative error. It achieves higher localization performance and universality than state-of-the-art methods. Full article
(This article belongs to the Special Issue Indoor Mobile Mapping and Location-Based Knowledge Services)
Show Figures

Figure 1

20 pages, 2670 KiB  
Article
Hybrid Machine Learning Model for Predicting Shear Strength of Rock Joints
by Daxing Lei, Yaoping Zhang, Zhigang Lu, Hang Lin and Yifan Chen
Appl. Sci. 2025, 15(13), 7097; https://doi.org/10.3390/app15137097 - 24 Jun 2025
Viewed by 281
Abstract
The accurate prediction of joint shear strength is crucial for rock mass engineering design and geological hazard assessment. However, traditional machine learning (ML) models often suffer from local optima and limited generalization ability when dealing with complex nonlinear problems, thereby compromising prediction accuracy [...] Read more.
The accurate prediction of joint shear strength is crucial for rock mass engineering design and geological hazard assessment. However, traditional machine learning (ML) models often suffer from local optima and limited generalization ability when dealing with complex nonlinear problems, thereby compromising prediction accuracy and stability. To address these challenges, this study proposes a hybrid ML model that integrates a multilayer perceptron (MLP) with the slime mold algorithm (SMA), termed the SMA-MLP model. While MLP exhibits strong nonlinear mapping capability, SMA enhances its training process through global optimization and parameter tuning, thereby improving predictive accuracy and robustness. A dataset with five input variables was constructed to evaluate the performance of the SMA-MLP model comprehensively. The proposed model was compared with other ML models. The results indicate that SMA-MLP outperforms these models in key metrics such as the root mean squared error (RMSE) and the correlation coefficient (R2), achieving an R2 of 0.97 and an RMSE as low as 0.10 MPa on the test set. Furthermore, feature importance analysis reveals that normal stress has the most significant influence on joint shear strength. This study demonstrates the superiority of SMA-MLP in predicting joint shear strength, highlighting its potential as an efficient and accurate tool for rock mass engineering analysis and providing reliable technical support for geological hazard assessment. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop