Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (594)

Search Parameters:
Keywords = loading shocks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2144 KiB  
Article
In Vitro Release and In Vivo Study of Recombinant TGF-β and EGCG from Dual Self-Cross-Linked Alginate-Di-Aldehyde In Situ Injectable Hydrogel for the Repair of a Degenerated Intervertebral Disc in a Rat Tail
by Bushra Begum, Seema Mudhol, Baseera Begum, Syeda Noor Madni, Sharath Honganoor Padmanabha, Vazir Ashfaq Ahmed and N. Vishal Gupta
Gels 2025, 11(8), 565; https://doi.org/10.3390/gels11080565 - 22 Jul 2025
Abstract
Background and Objective: Intervertebral disc degeneration (IVDD) is a leading cause of lower back pain with limited regenerative treatments. Among emerging regenerative approaches, growth factor-based therapies, such as recombinant human transforming growth factor-beta (Rh-TGF-β), have shown potential for disc regeneration but are [...] Read more.
Background and Objective: Intervertebral disc degeneration (IVDD) is a leading cause of lower back pain with limited regenerative treatments. Among emerging regenerative approaches, growth factor-based therapies, such as recombinant human transforming growth factor-beta (Rh-TGF-β), have shown potential for disc regeneration but are hindered by rapid degradation and uncontrolled release by direct administration. Additionally, mechanical stress elevates heat shock protein 90 (HSP-90), impairing cell function and extracellular matrix (ECM) production. This study aimed to investigate a dual self-cross-linked alginate di-aldehyde (ADA) hydrogel system for the sustained delivery of Rh-TGF-β and epigallocatechin gallate (EGCG) to enhance protein stability, regulate release, and promote disc regeneration by targeting both regenerative and stress-response pathways. Methods: ELISA and UV-Vis spectrophotometry assessed Rh-TGF-β and EGCG release profiles. A rat tail IVDD model was established with an Ilizarov-type external fixator for loading, followed by hydrogel treatment with or without bioactive agents. Disc height, tissue structure, and protein expression were evaluated via radiography, histological staining, immunohistochemistry, and Western blotting. Results: The hydrogel demonstrated a biphasic release profile with 100% Rh-TGF-β released over 60 days and complete EGCG release achieved within 15 days. Treated groups showed improved disc height, structural integrity, and proteoglycan retention revealed by histological analysis and elevated HSP-90 expression by immunohistochemistry. In contrast, Western blot analysis confirmed that EGCG effectively downregulated HSP-90 expression, suggesting a reduction in mechanical stress-induced degeneration. Conclusions: ADA hydrogel effectively delivers therapeutic agents, offering a promising strategy for IVDD treatment. Full article
Show Figures

Figure 1

14 pages, 7306 KiB  
Article
Influence of Gear Set Loading on Surface Damage Forms for Gear Teeth with DLC Coating
by Edyta Osuch-Słomka, Remigiusz Michalczewski, Anita Mańkowska-Snopczyńska, Michał Gibała, Andrzej N. Wieczorek and Emilia Skołek
Coatings 2025, 15(7), 857; https://doi.org/10.3390/coatings15070857 - 21 Jul 2025
Viewed by 42
Abstract
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is [...] Read more.
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is applied gradually, the presented tests employed direct maximum loading—shock loading—without prior lapping of the gears under lower loads. This loading method significantly increases the vulnerability of the analyzed components to scuffing, enabling an evaluation of their limit in terms of operational properties. To identify the changes and the types of the teeth’s working surface damage, the following microscopy techniques were applied: scanning electron microscopy (FE-SEM) with EDS microanalyzer, optical interferential profilometry (WLI), atomic force microscope (AFM), and optical microscopy. The results allowed us to define the characteristic damage mechanisms and assess the efficiency of the applied DLC coatings when it comes to resistance to scuffing in shock scuffing conditions. Tribological tests were performed by means of an FZG T-12U gear test rig in a power circulating system to test cylindrical gear scuffing. The gears were made from 18CrNiMo7-6 steel and 35CrMnSiA nano-bainitic steel and coated with W-DLC/CrN. Full article
Show Figures

Figure 1

15 pages, 3857 KiB  
Article
Numerical and Experimental Investigation of Damage and Failure Analysis of Aero-Engine Electronic Controllers Under Thermal Shock
by Fang Wen, Jinshan Wen and Jie Jin
Aerospace 2025, 12(7), 636; https://doi.org/10.3390/aerospace12070636 - 16 Jul 2025
Viewed by 153
Abstract
The Engine Electronic Controller (EEC), as the core component of an aircraft engine control system, is vulnerable to rapid failure when exposed to thermal shock during engine fire incidents, potentially leading to catastrophic aviation accidents. To address this issue, this study conducts both [...] Read more.
The Engine Electronic Controller (EEC), as the core component of an aircraft engine control system, is vulnerable to rapid failure when exposed to thermal shock during engine fire incidents, potentially leading to catastrophic aviation accidents. To address this issue, this study conducts both numerical simulations and experimental investigations to evaluate the thermal performance of the EEC under thermal shock conditions, exploring the weaknesses of the EEC chassis under high-temperature thermal shock and the damage to important internal electronic components. A three-dimensional finite element model of the EEC was established to simulate its behavior under a thermal shock of 1100 °C. Simulation results reveal that the aluminum alloy chassis wall cannot withstand the extreme thermal load, resulting in failure of the internal electronic components within the first 5 min of exposure, thereby rendering the EEC inoperative. In contrast, when the chassis wall is made of stainless steel, all components and internal electronics remain functional throughout the initial 5 min thermal shock period. Experimental results show that the temperature evolution and component failure patterns under both scenarios align well with the simulation outcomes, thus validating the model’s accuracy. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 5627 KiB  
Article
Reliability Modeling of Wind Turbine Gearbox System Considering Failure Correlation Under Shock–Degradation
by Xiaojun Liu, Ziwen Wu, Yiping Yuan, Wenlei Sun and Jianxiong Gao
Sensors 2025, 25(14), 4425; https://doi.org/10.3390/s25144425 - 16 Jul 2025
Viewed by 238
Abstract
To address traditional methods’ limitations in neglecting the interaction between random shock loads and progressive degradation, as well as failure correlations, this study proposes a dynamic reliability framework integrating Gamma processes, homogeneous Poisson processes (HPP), and mixed Copula functions. The framework develops a [...] Read more.
To address traditional methods’ limitations in neglecting the interaction between random shock loads and progressive degradation, as well as failure correlations, this study proposes a dynamic reliability framework integrating Gamma processes, homogeneous Poisson processes (HPP), and mixed Copula functions. The framework develops a wind turbine gearbox reliability model under shock–degradation coupling while quantifying failure correlations. Gamma processes characterize continuous degradation, with parameters estimated from P-S-N curves. Based on stress–strength interference theory, random shocks within damage thresholds are integrated to form a coupled reliability model. A Gumbel–Clayton–Frank mixed Copula with a multi-layer nested algorithm quantifies failure correlations, with correlation parameters estimated via the RSS principle and genetic algorithms. Validation using a 2 MW gearbox’s planetary gear-stage system covers four scenarios: natural degradation, shock–degradation coupling, and both scenarios with failure correlations. The results show that compared to independent assumptions, the model accelerates reliability decline, increasing failure rates by >37%. Relative to natural degradation-only models, failure rates rise by >60%, validating the model’s effectiveness and alignment with real-world operational conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

21 pages, 7716 KiB  
Article
Resplace of the Car–Driver–Passenger System in a Frontal Crash Using a Water Impact Attenuator
by Claudiu Nedelescu, Calin Itu, Anghel Chiru, Sorin Vlase and Bogdan Cornel Benea
Vehicles 2025, 7(3), 74; https://doi.org/10.3390/vehicles7030074 - 16 Jul 2025
Viewed by 252
Abstract
Passenger safety remains a primary goal in vehicle engineering, requiring the development of advanced passive safety systems to reduce injuries during collisions. Impact attenuators (particularly for race cars) are a crucial component for the safety of the driver. The impact of the impact [...] Read more.
Passenger safety remains a primary goal in vehicle engineering, requiring the development of advanced passive safety systems to reduce injuries during collisions. Impact attenuators (particularly for race cars) are a crucial component for the safety of the driver. The impact of the impact attenuator (IA) is demonstrated by the behavior of a seat-belted dummy in a frontal collision with a rigid wall. The aim of this paper is to confirm the qualities of water as a damping agent in the manufacturing of the IA. To reach a conclusion, a theoretical model is used and experimental tests are performed. Once the loads operating on the dummy have been identified, it is confirmed that they fall within the range that the existing requirements recommend. The car is viewed as a structure with a seat-belt-fastened dummy and an impact attenuator. Research is being conducted on a new water-based impact attenuator technology. A frontal collision of the car–dummy assembly was taken into consideration when analyzing the dummy’s behavior in accordance with the criteria. A simulation program was used to calculate the accelerations at various points on the mannequin’s body as well as the force that manifested on the seat belts. So, the good qualities of IAs using water are revealed and support designers in their efforts to obtain better shock behavior. In the simulation, the variation of internal energy accumulated by the vehicle, displacements and velocities of various points on the chassis, as well as the accelerations of the vehicle and the occupant were determined. In the experiment, the vehicle velocities for both test cases were established and used in the simulation, and the accelerations of the vehicle and dummy were measured. The assessment was carried out by comparing experimental and simulation data, focusing on acceleration values recorded on both the dummy and the vehicle. Evaluation criteria such as HIC and ThAC were applied to determine the severity of the impact and the effectiveness of the proposed water-based attenuator. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

21 pages, 2533 KiB  
Article
Application of the Holt–Winters Model in the Forecasting of Passenger Traffic at Szczecin–Goleniów Airport (Poland)
by Natalia Drop and Adriana Bohdan
Sustainability 2025, 17(14), 6407; https://doi.org/10.3390/su17146407 - 13 Jul 2025
Viewed by 414
Abstract
Accurate short-term passenger forecasts help regional airports align capacity with demand and plan investments effectively. Drawing on quarterly traffic data for 2010–2024 supplied by the Polish Civil Aviation Authority, this study employs Holt–Winters exponential smoothing to predict passenger volumes at Szczecin–Goleniów Airport for [...] Read more.
Accurate short-term passenger forecasts help regional airports align capacity with demand and plan investments effectively. Drawing on quarterly traffic data for 2010–2024 supplied by the Polish Civil Aviation Authority, this study employs Holt–Winters exponential smoothing to predict passenger volumes at Szczecin–Goleniów Airport for 2025. Additive and multiplicative formulations were parameterized with Excel Solver, using the mean absolute percentage error to identify the better-fitting model. The additive version captured both the steady post-pandemic recovery and pronounced seasonal peaks, indicating that passenger throughput is likely to rise modestly year on year, with the highest loads expected in the summer quarter and the lowest in early spring. These findings suggest the airport should anticipate continued growth and consider adjustments to terminal capacity, apron allocation, and staffing schedules to maintain service quality. Because the Holt–Winters method extrapolates historical patterns and does not incorporate external shocks—such as economic downturns, policy changes, or public health crises—its projections are most reliable over the short horizon examined and should be complemented by scenario-based analyses in future work. This study contributes to sustainable airport management by providing a reproducible, data-driven forecasting framework that can optimize resource allocation with minimal environmental impact. Full article
Show Figures

Figure 1

20 pages, 13675 KiB  
Article
Research on the Use of Hydro-Pneumatic Shock Absorbers for the Rear Suspension of a Vehicle Cabin
by Vasile Gheorghe, Eliza Chircan and Horatiu Teodorescu Draghicescu
Appl. Sci. 2025, 15(14), 7759; https://doi.org/10.3390/app15147759 - 10 Jul 2025
Viewed by 179
Abstract
This work explores enhancing rear cabin suspension in vehicles using hydro-pneumatic shock absorbers to maintain the cabin position regardless of load and improve safety by mitigating oscillation impacts. Advanced solutions employ pneumatic elastic elements with automatic adjustment, addressing classic suspension disadvantages like variable [...] Read more.
This work explores enhancing rear cabin suspension in vehicles using hydro-pneumatic shock absorbers to maintain the cabin position regardless of load and improve safety by mitigating oscillation impacts. Advanced solutions employ pneumatic elastic elements with automatic adjustment, addressing classic suspension disadvantages like variable cab position and natural frequency with load changes. The experimental analysis of reinforced rubber samples from the air socket material involved tensile testing and scanning electron microscopy. The tensile results showed a clear trend: weak reinforced samples (L, T) were ductile but had a lower strength, while the ones on the reinforcing direction (D_45, D_60) exhibited a significantly increased strength and stiffness, with D_60 being the strongest but least ductile. Stress–strain curves visually confirmed these mechanical behaviors. Crucially, SEM images of fracture surfaces consistently revealed widespread fiber pull out. This indicates that weak interfacial adhesion between the reinforcing fibers and the rubber matrix is a primary limiting factor for the composite′s overall strength. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

23 pages, 17945 KiB  
Article
Real-Time Temperature Effects on Dynamic Impact Mechanical Properties of Hybrid Fiber-Reinforced High-Performance Concrete
by Pengcheng Huang, Yan Li, Fei Ding, Xiang Liu, Xiaoxi Bi and Tao Xu
Materials 2025, 18(14), 3241; https://doi.org/10.3390/ma18143241 - 9 Jul 2025
Viewed by 211
Abstract
Metallurgical equipment foundations exposed to prolonged 300–500 °C environments are subject to explosion risks, necessitating materials that are resistant to thermo-shock-coupled loads. This study investigated the real-time dynamic compressive behavior of high-performance concrete (HPC) reinforced with steel fibers (SFs), polypropylene fibers (PPFs), polyvinyl [...] Read more.
Metallurgical equipment foundations exposed to prolonged 300–500 °C environments are subject to explosion risks, necessitating materials that are resistant to thermo-shock-coupled loads. This study investigated the real-time dynamic compressive behavior of high-performance concrete (HPC) reinforced with steel fibers (SFs), polypropylene fibers (PPFs), polyvinyl alcohol fibers (PVAFs), and their hybrid systems under thermo-shock coupling using real-time high-temperature (200–500 °C) SHPB tests. The results revealed temperature-dependent dynamic responses: SFs exhibited a V-shaped trend in compressive strength evolution (minimum at 400 °C), while PPFs/PVAFs showed inverted V-shaped trends (peaking at 300 °C). Hybrid systems demonstrated superior performance: SF-PVAF achieved stable dynamic strength at 200–400 °C (dynamic increase factor, DIF ≈ 1.65) due to synergistic toughening via SF bridging and PVAF melt-induced pore energy absorption. Microstructural analysis confirmed that organic fiber pores and SF crack-bridging collaboratively optimized failure modes, reducing brittle fracture. A temperature-adaptive design strategy is proposed: SF-PVAF hybrids are prioritized for temperatures of 200–400 °C, while SF-PPF combinations are recommended for 400–500 °C environments, providing critical guidance for explosion-resistant HPC in extreme thermal–industrial settings. Full article
Show Figures

Figure 1

15 pages, 239 KiB  
Case Report
Clinical Presentation of Postnatally Acquired Cytomegalovirus Infection in Preterm Infants—A Case Series Report
by Dobrochna Wojciechowska, Dominika Galli, Justyna Kowalczewska, Tomasz Szczapa and Katarzyna Ewa Wróblewska-Seniuk
Children 2025, 12(7), 900; https://doi.org/10.3390/children12070900 - 8 Jul 2025
Viewed by 264
Abstract
Background: Human cytomegalovirus (HCMV) is the leading cause of congenital and acquired viral infections in newborns. While acquired infections are often asymptomatic, premature infants—especially those born before 30 weeks of gestation or with a very low birth weight (<1500 g)—are at an [...] Read more.
Background: Human cytomegalovirus (HCMV) is the leading cause of congenital and acquired viral infections in newborns. While acquired infections are often asymptomatic, premature infants—especially those born before 30 weeks of gestation or with a very low birth weight (<1500 g)—are at an increased risk for severe infections. These can manifest as thrombocytopenia, liver failure, sepsis-like symptoms, and, in rare cases, death. HCMV is transmitted through various human secretions, including breast milk, which is the optimal feeding method for premature infants. Methods: We present five premature neonates, born between 23 and 26 weeks of gestation, each with a distinct clinical presentation of acquired HCMV infection. Results: All infants tested negative for congenital CMV infection via molecular urine testing within the first three weeks of life. Acquired infection was diagnosed between the second and third month of life, with symptoms such as septic shock, persistent thrombocytopenia, and signs of liver failure. Each infant received antiviral treatment along with regular viral load monitoring. Unfortunately, one patient died due to complications of prematurity. The remaining infants were discharged and continue to receive follow-up care in an outpatient clinic. Conclusions: These cases of postnatally acquired CMV infection aim to increase awareness of its highly heterogeneous and nonspecific clinical presentation, which may result in an incorrect, delayed, or concealed diagnosis. Currently, there are no clear guidelines on how to manage the presence of the virus in maternal breast milk, particularly for premature infants. It should be recommended to perform a molecular CMV test in all breast-fed preterm infants who present with sepsis-like symptoms, thrombocytopenia, liver failure, or other organ involvement. In case of a confirmed aCMV diagnosis, appropriate treatment should be introduced. Full article
13 pages, 3753 KiB  
Article
Thermal Shock and Synergistic Plasma and Heat Load Testing of Powder Injection Molding Tungsten-Based Alloys
by Mauricio Gago, Steffen Antusch, Alexander Klein, Arkadi Kreter, Christian Linsmeier, Michael Rieth, Bernhard Unterberg and Marius Wirtz
J. Nucl. Eng. 2025, 6(3), 25; https://doi.org/10.3390/jne6030025 - 7 Jul 2025
Viewed by 257
Abstract
Powder injection molding (PIM) has been used to produce nearly net-shaped samples of tungsten-based alloys. These alloys have been previously shown to have favorable characteristics when compared with standard ITER-grade tungsten. Six different alloys were produced with this method: W-1TiC, W-2Y2O [...] Read more.
Powder injection molding (PIM) has been used to produce nearly net-shaped samples of tungsten-based alloys. These alloys have been previously shown to have favorable characteristics when compared with standard ITER-grade tungsten. Six different alloys were produced with this method: W-1TiC, W-2Y2O3, W-3Re-1TiC, W-3Re-2Y2O3, W-1HfC and W-1La2O3-1TiC. These were tested alongside ITER-grade tungsten in the PSI-2 linear plasma device under ITER-relevant plasma and heat loads to assess their suitability for use in a fusion reactor. All materials showed good behavior when exposed to the lower pulse number tests (≤1000 ELM-like pulses), although standard tungsten performed slightly better, with no observable difference in surface roughness. High-power shots, namely one laser pulse of 1.6 GWm−2, revealed that samples containing yttria are more prone to melting and droplet ejection. After high pulse number tests (10,000 and 100,000 pulses), with and without plasma, the reference tungsten showed the most cracking and highest surface roughness of all materials, while the PIM samples seemed to have a higher resistance to cracking. This can be attributed to the higher ductility of these alloys, particularly those containing rhenium. This means that tungsten-based alloys, whether produced via PIM or other methods, could potentially be used in certain areas of a fusion reactor. Full article
Show Figures

Graphical abstract

15 pages, 1864 KiB  
Article
Administration of Purified Alpha-1 Antitrypsin in Salt-Loaded Hypertensive 129Sv Mice Attenuates the Expression of Inflammatory Associated Proteins in the Kidney
by Van-Anh L. Nguyen, Yunus E. Dogan, Niharika Bala, Erika S. Galban, Sihong Song and Abdel A. Alli
Biomolecules 2025, 15(7), 951; https://doi.org/10.3390/biom15070951 - 30 Jun 2025
Viewed by 331
Abstract
Background: Alpha-1 antitrypsin (AAT) is a multifunctional protease inhibitor that has been shown to have anti-inflammatory properties in various diseases. AAT has been reported to protect against renal injury via anti-apoptotic, anti-fibrotic, and anti-inflammatory effects. However, its role in mitigating renal inflammation and [...] Read more.
Background: Alpha-1 antitrypsin (AAT) is a multifunctional protease inhibitor that has been shown to have anti-inflammatory properties in various diseases. AAT has been reported to protect against renal injury via anti-apoptotic, anti-fibrotic, and anti-inflammatory effects. However, its role in mitigating renal inflammation and reducing high blood pressure induced by salt-loading has never been studied. Methods: In this study, we salt-loaded 129Sv mice to induce hypertension and then administered purified human AAT (hAAT) or the vehicle to investigate whether renal inflammation and associated inflammatory/signaling pathways are mitigated. Results: Western blotting and densitometric analysis showed administration of hAAT attenuated protein expression of kidney injury molecule-1 (KIM1), CD93, CD36, and the toll-like receptor 2 and 4 (TLR-2/4) in kidney lysates. Similarly, protein expression of two key inflammatory transcription factors, signal transducer and activator of transcription 3 (STAT3) and NF-Kappa B were shown to be attenuated in the kidneys of 129Sv mice that received hAAT. Conversely, hAAT treatment upregulated the expression of heat shock protein 70 (HSP70) and immunohistochemistry confirmed these findings. Conclusions: Purified hAAT administration may be efficacious in mitigating renal inflammation associated with the development of hypertension from salt-loading, potentially through a mechanism involving the reduction of pro-inflammatory and injury-associated proteins. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

17 pages, 2234 KiB  
Article
Safety Evaluation of Perforated String by Simulation Modeling and Mechanics Analysis Under Shock Loading
by Dong Yang, Qiao Deng, Meng Yuan, Gang Cui, Dongyang Fan and Bo Jia
Appl. Sci. 2025, 15(13), 7249; https://doi.org/10.3390/app15137249 - 27 Jun 2025
Viewed by 252
Abstract
The operating environment of perforated strings is highly complex, making their safety a critical concern, particularly when evaluating their performance under shock loading conditions. A simplified model of the perforated string system subjected to shock loading is developed, leading to the formulation of [...] Read more.
The operating environment of perforated strings is highly complex, making their safety a critical concern, particularly when evaluating their performance under shock loading conditions. A simplified model of the perforated string system subjected to shock loading is developed, leading to the formulation of a shock load calculation model. This model is then used to analyze the relationship between peak pressure and axial force under shock loading. Based on field data and commercial software to verify the accuracy of the model, two wells in the Southwest region were evaluated for safety. The results show that, using this model, the peak pipe pressures under shock loading for the two wells are calculated to be 69.52 MPa and 82.93 MPa, respectively. When compared to results from a commercial software for analyzing wellbore dynamics, the error is minimal, suggesting that the model provides accurate calculations and predictions of peak pipe pressure within acceptable error margins. This model meets engineering requirements and can serve as a practical tool for safety evaluation. Overall, the findings demonstrate that the safety evaluation method and calculation model offer valuable guidance for engineering practice and provide a reliable reference for assessing the safety of perforated strings under shock loading conditions. Full article
Show Figures

Figure 1

22 pages, 5141 KiB  
Article
Maifanstone Powder-Modified PE Filler for Enhanced MBBR Start-Up in Treating Marine RAS Wastewater
by Rubina Altaf, Tianyu Xiao, Kai Wang, Jianlin Guo, Qian Li, Jing Zou, Neemat Jaafarzadeh, Daoji Wu and Dezhao Liu
Water 2025, 17(13), 1888; https://doi.org/10.3390/w17131888 - 25 Jun 2025
Viewed by 412
Abstract
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia [...] Read more.
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia nitrogen which is toxic to fish, so it is necessary to overcome the salinity conditions to achieve rapid and efficient nitrification for recycling. The moving bed biofilm reactor (MBBR) has been widely applied often by using PE fillers for efficient wastewater treatment. However, the start-up of MBBR in seawater environments has remained a challenge due to salinity stress and harsh inoculation conditions. This study investigated a new PE-filler surface modification method towards the enhanced start-up of mariculture MBBR by combining liquid-phase oxidation and maifanstone powder. The aim was to obtain a higher porous surface and roughness and a strong adsorption and alkalinity adjustment for the MBBR PE filler. The hydrophilic properties, surface morphology, and chemical structure of a raw polyethylene filler (an unmodified PE filler), liquid-phase oxidation modified filler (LO-PE), and liquid-phase oxidation combined with a coating of a maifanstone-powder-surface-modified filler (LO-SCPE) were first investigated and compared. The results showed that the contact angle was reduced to 45.5° after the optimal liquid-phase oxidation modification for LO-PE, 49.8% lower than that before modification, while SEM showed increased roughness and surface area by modification. Moreover, EDS presented the relative content of carbon (22.75%) and oxygen (42.36%) on the LO-SCPE surface with an O/C ratio of 186.10%, which is 177.7% higher than that of the unmodified filler. The start-up experiment on MBBRs treating simulated marine RAS wastewater (HRT = 24 h) showed that the start-up period was shortened by 10 days for LO-SCPE compared to the PE reactor, with better ammonia nitrogen removal observed for LO-SCPE (95.8%) than the PE reactor (91.7%). Meanwhile, the bacterial community composition showed that the LO-SCPE reactor had a more diverse and abundant AOB and NOB. The Nitrospira has a more significant impact on nitrification because it would directly oxidize NH4⁺-N to NO3⁻-N (comammox pathway) as mediated by AOB and NOB. Further, the LO-SCPE reactor showed a higher NH4+-N removal rate (>99%), less NO2-N accumulation, and a shorter adaption period than the PE reactor. Eventually, the NH4+-N concentrations of the three reactors (R1, R2, and R3) reached <0.1 mg/L within 3 days, and their NH4+-N removal efficiencies achieved 99.53%, 99.61%, and 99.69%, respectively, under ammonia shock load. Hence, the LO-SCPE media have a higher marine wastewater treatment efficiency. Full article
Show Figures

Figure 1

26 pages, 1569 KiB  
Review
Unlocking the Secrets of Knee Joint Unloading: A Systematic Review and Biomechanical Study of the Invasive and Non-Invasive Methods and Their Influence on Knee Joint Loading
by Nuno A. T. C. Fernandes, Ana Arieira, Betina Hinckel, Filipe Samuel Silva, Óscar Carvalho and Ana Leal
Rheumato 2025, 5(3), 8; https://doi.org/10.3390/rheumato5030008 - 25 Jun 2025
Viewed by 357
Abstract
Background/Objectives: This review analyzes the effects of invasive and non-invasive methods of knee joint unloading on knee loading, employing a biomechanical model to evaluate their impact. Methods: PubMed, Web of Science, Cochrane, and Scopus were searched up to 15 May 2024 [...] Read more.
Background/Objectives: This review analyzes the effects of invasive and non-invasive methods of knee joint unloading on knee loading, employing a biomechanical model to evaluate their impact. Methods: PubMed, Web of Science, Cochrane, and Scopus were searched up to 15 May 2024 to identify eligible clinical studies evaluating Joint Space Width, Cartilage Thickness, the Western Ontario and McMaster Universities Osteoarthritis Index, the Knee Injury and Osteoarthritis Outcome Score system, Gait velocity, Peak Knee Adduction Moment, time to return to sports and to work, ground reaction force, and the visual analogue scale pain score. A second search was conducted to select a biomechanical model that could be parametrized, including the modifications that each treatment would impose on the knee joint and was capable of estimate joint loading to compare the effectiveness of each method. Results: Analyzing 28 studies (1652 participants), including 16 randomized clinical trials, revealed significant improvements mainly when performing knee joint distraction surgery, increasing Joint Space Width even after removal, and high tibial osteotomy, which realigns the knee but does not reduce loading. Implantable shock absorbers are also an attractive option as they partially unload the knee but require further investigation. Non-invasive methods improve biomechanical indicators of knee joint loading; however, they lack quantitative analysis of cartilage volume or Joint Space Width. Conclusions: Current evidence indicates a clear advantage in knee joint unloading methods, emphasizing the importance of adapted therapy. However, more extensive research, particularly using non-invasive approaches, is required to further understand the underlying knee joint loading mechanisms and advance the state of the art. Full article
Show Figures

Figure 1

13 pages, 5470 KiB  
Article
Cushioning Performance of Specialized Running Socks for Enhanced Shock Absorption and Reduced Plantar Pressure
by Xia Zhou, Pui-Ling Li, Kit-Lun Yick and Annie Yu
Materials 2025, 18(13), 2941; https://doi.org/10.3390/ma18132941 - 21 Jun 2025
Viewed by 853
Abstract
Running socks play an important role in alleviating foot impact and preventing foot injuries. Despite the variety of commercial options, their cushioning effectiveness is not well understood. This study examines three different types of running socks made of bio-based and synthetic textiles. Material [...] Read more.
Running socks play an important role in alleviating foot impact and preventing foot injuries. Despite the variety of commercial options, their cushioning effectiveness is not well understood. This study examines three different types of running socks made of bio-based and synthetic textiles. Material testing includes compression, tensile, and shock absorption, while wear tests assess plantar loading in 10 adult recreational runners on a treadmill. Results show that specialized running socks offer superior shock absorption compared to regular running socks, largely due to fabric thickness and weight. Socks made of high-performance bio-composite fibers significantly reduced maximum peak pressure and impulse in the great toe (p < 0.05) and first metatarsal head (p < 0.05) during running. Additionally, ground contact time in the forefoot (p < 0.05) area was significantly lower with specialized running socks. Compared to regular running socks, five-toed running socks can reduce the pressure load on the forefoot area. These findings can guide the design of specialized sockwear for better foot protection and improved sports performance. Full article
(This article belongs to the Special Issue Leather, Textiles and Bio-Based Materials)
Show Figures

Graphical abstract

Back to TopTop