Numerical and Experimental Investigation of Damage and Failure Analysis of Aero-Engine Electronic Controllers Under Thermal Shock
Abstract
1. Introduction
2. Theoretical Fundamentals
3. Numerical Analysis
3.1. EEC 3D Model Construction
3.2. Modeling
3.3. Simulation Results
4. Experimental and Analytical Study on Thermal Shock
4.1. Experiment Setup
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hlinka, J.; Kostial, R.; Horpatzka, M. Application of Enhanced Methods for Safety Assessment of FADEC. Eksploat. Niezawodn. 2021, 23, 63–73. [Google Scholar] [CrossRef]
- Esfahani, A.M.; Namazi, M.; Nikolaidis, T.; Jafari, S. Advanced Control Algorithm for FADEC Systems in the Next Generation of Turbofan Engines to Minimize Emission Levels. Mathematics 2022, 10, 1780. [Google Scholar] [CrossRef]
- Montazeri, G.M.; Abyaneh, S. Real-time Simulation of a Turbo-shaft Engine’s Electronic Control Unit. Mech. Ind. 2017, 18, 503. [Google Scholar] [CrossRef]
- Kho, S.; Park, H. Design of the Electronic Engine Control Unit Performance Test System of Aircraft. Aerospace 2021, 8, 158. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, R.; Chen, Y. Reliability Assessment of Engine Electronic Controllers Based on Bayesian Deep Learning and Cloud Computing. Chin. J. Aeronaut. 2021, 34, 252–265. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, X.; Lv, P.; Wang, Y.; Lin, H.; Liu, W.; Yue, Z. Optimization Design of a Two-stage Multidirectional Vibration Isolation System for Large Airborne Equipment. Multidiscip. Model. Mater. Struct. 2023, 20, 126–141. [Google Scholar] [CrossRef]
- Zhou, D.; Wei, M.-X.; Cao, J.; Shi, L.; Shen, J.; An, L. Simulation and Experimental Study of the Field Distribution of Engine for Electromagnetic Pulse. IEEE Access 2022, 10, 118475–118483. [Google Scholar] [CrossRef]
- He, Z.; Yan, Y.; Zhang, Z. Thermal Management and Temperature Uniformity Enhancement of Electronic Devices by Micro Heat Sinks: A Review. Energy 2021, 216, 119223. [Google Scholar] [CrossRef]
- Cui, J.J.; Ren, Z.Q.; Zhang, Z.L. Research on Fire Protection and Fire Resistance Testing of Military Aircraft Engines. Aeronaut. Stand. Qual. 2015, 5, 36–39. (In Chinese) [Google Scholar]
- Sanchez, F.; Liscouët-Hanke, S.; Bhise, T. Influence of Ventilation Flow Rate and Gap Distance on the Radiative Heat Transfer in Aircraft Avionics Bays. Aerospace 2022, 9, 806. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Cai, L.; Li, M.; Fu, Y.; Hao, Y. The Dynamic Prediction Method for Aircraft Cabin Temperatures Based on Flight Test Data. Aerospace 2024, 11, 755. [Google Scholar] [CrossRef]
- Pang, L.; Zhao, M.; Luo, K.; Yin, Y.; Yue, Z. Dynamic Temperature Prediction of Electronic Equipment Under High Altitude Long Endurance Conditions. Chin. J. Aeronaut. 2018, 31, 1189–1197. [Google Scholar] [CrossRef]
- Pang, L.P.; Dang, X.M.; Cheng, J. Study on Heat Transfer Performance of Skin Heat Exchanger. Exp. Heat Transf. 2014, 28, 317–327. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, J.; Yan, Z. Experimental Investigation on Melting Heat Transfer Characteristics of a Phase Change Material Under Hypergravity. Int. J. Heat Mass Transf. 2021, 181, 122004. [Google Scholar] [CrossRef]
- Patel, A.; Ahmed, Z.; Singh, V.K. Natural Convection Within Enclosures for Thermal Management in Low-pressure Environments. Int. J. Heat Fluid Flow 2024, 106, 109307. [Google Scholar] [CrossRef]
- Benyahia, N.; Aksouh, M.; Mataoui, A.; Oztop, H.F. Coupling Turbulent Natural Convection-radiation-conduction in Differentially Heated Cavity with High Aspect Ratio. Int. J. Therm. Sci. 2020, 158, 106518. [Google Scholar] [CrossRef]
- Qu, P.; Cheng, J.; Chen, Y.; Li, Y.; Li, W.; Tao, H. Numerical and Experimental Investigation on Heat Transfer of Multi-heat Sources Mounted on A Fined Radiator Within Embedded Heat Pipes in An Electronic Cabinet. Int. J. Therm. Sci. 2023, 183, 107833. [Google Scholar] [CrossRef]
- Nakayama, W. Study on Heat Conduction in A Simulated Multicore Processor Chip—Part II: Case Studies. J. Electron. Packag. 2013, 135, 021003. [Google Scholar] [CrossRef]
- Adhikari, R.C.; Wood, D.H.; Pahlevani, M. An Experimental and Numerical Study of Forced Convection Heat Transfer from Rectangular Fins at Low Reynolds Numbers. Int. J. Heat Mass Transf. 2020, 163, 120418. [Google Scholar] [CrossRef]
- Vipin, N.; Anjana, B.; Anoop, M.B.; Indrajith, S.; Midhun, M.; Meenakshi, B.N. A Comprehensive Review of Air-cooled Heat Sinks for Thermal Management of Electronic Devices. Int. Commun. Heat Mass Transf. 2024, 159, 108055. [Google Scholar] [CrossRef]
- Huang, C.H.; Chen, W.Y. A Natural Convection Horizontal Straight-fin Heat Sink Design Problem to Enhance Heat Dissipation Performance. Int. J. Therm. Sci. 2022, 176, 107540. [Google Scholar] [CrossRef]
- Abbas, A.; Wang, C.C. Augmentation of Natural Convection Heat Sink Via Using Displacement Design. Int. J. Heat Mass Transf. 2020, 154, 119757. [Google Scholar] [CrossRef]
- Bovesecchi, G.; Corasaniti, S.; Costanza, G.; Piccotti, F.; Potenza, M.; Tata, M.E. Heat Conduction and Microconvection in Nanofluids: Comparison between Theoretical Models and Experimental Results. Aerospace 2022, 9, 608. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Y.; Lv, M.; Wang, X.; Shi, X. Performance-Enhanced Double Serpentine Minichannel Heat Sink for Phased-Array Radar High-Heat-Flux Chip Cooling. Electronies 2025, 14, 2246. [Google Scholar] [CrossRef]
- Gai, T.; Zeng, J.; Xia, Q.; Li, J.; Gong, J. Effects of Operating Conditions on Flow and Heat Transfer Characteristics of Mist Cooling in A Square Ribbed Channel. J. Mech. Sci. Technol. 2017, 31, 1517–1530. [Google Scholar] [CrossRef]
- ISO 2685:1998; Aircraft—Environmental Test Procedure for Airborne Equipment—Resistance to Fire in Designated Fire Zones. International Organization for Standardization: Geneva, Switzerland, 1998.
- RTCA DO-160G-2010; Environmental Conditions and Test Procedures for Airborne Equipment. Radio Technical Commission for Aeronautics: Washington, DC, USA, 2010.
Material | 304 Stainless Steel | 6061-T6 Aluminum Alloy |
---|---|---|
Thermal conductivity (W/(m K)) | 14.986–31.580 | 177 |
Specific heat capacity (J/(kg K)) | 495–678 | 897 |
Melting temperature (°C) | 1398–1454 | 585 |
Density (g/cm3) | 7.93 | 2.7 |
Temperature (°C) | 25 | 100 | 300 | 500 | 700 | 900 | 1100 |
---|---|---|---|---|---|---|---|
Specific heat capacity (J/(kg K)) | 495 | 506 | 537 | 569 | 600 | 631 | 662 |
Thermal conductivity (W/(m K)) | 14.986 | 16.046 | 18.872 | 21.698 | 24.524 | 27.350 | 30.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, F.; Wen, J.; Jin, J. Numerical and Experimental Investigation of Damage and Failure Analysis of Aero-Engine Electronic Controllers Under Thermal Shock. Aerospace 2025, 12, 636. https://doi.org/10.3390/aerospace12070636
Wen F, Wen J, Jin J. Numerical and Experimental Investigation of Damage and Failure Analysis of Aero-Engine Electronic Controllers Under Thermal Shock. Aerospace. 2025; 12(7):636. https://doi.org/10.3390/aerospace12070636
Chicago/Turabian StyleWen, Fang, Jinshan Wen, and Jie Jin. 2025. "Numerical and Experimental Investigation of Damage and Failure Analysis of Aero-Engine Electronic Controllers Under Thermal Shock" Aerospace 12, no. 7: 636. https://doi.org/10.3390/aerospace12070636
APA StyleWen, F., Wen, J., & Jin, J. (2025). Numerical and Experimental Investigation of Damage and Failure Analysis of Aero-Engine Electronic Controllers Under Thermal Shock. Aerospace, 12(7), 636. https://doi.org/10.3390/aerospace12070636