Safety Evaluation of Perforated String by Simulation Modeling and Mechanics Analysis Under Shock Loading
Abstract
1. Introduction
2. Analysis Model of Perforated String
2.1. Material Parameters
2.2. Simplified Analysis of Perforated String System
2.3. Simulation Analysis
2.4. Calculation Model
3. Safety Evaluation Method
3.1. Safety Strength Theory
3.2. Judgment Criteria for Perforated String Buckling Under Pressure
3.3. Judgment Criteria for Tension Fracture of Perforated String
4. Field Case Analysis
4.1. Case 1: XX-1 Well in the Southwest Region
4.2. Case 2: XX-2 Well in the Southwest Region
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, Q.; Zhang, H.; Li, J.; Hou, X.; Wang, H. Study of Downhole Shock Loads for Ultra-Deep Well Perforation and Optimization Measures. Energies 2019, 12, 2743. [Google Scholar] [CrossRef]
- Liu, J.; Jian, Y.; Chen, Y.; Tang, K.; Ren, G.; Chen, J. Shock vibration response characteristic of perforating tubing string in ultra-deep wells. Geoenergy Sci. Eng. 2023, 228, 212008. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Zhou, B.; Xue, S.; Wang, F. Prediction of the Productivity Ratio of Perforated Wells Using Least Squares Support Vector Machine with Particle Swarm Optimization. Appl. Sci. 2023, 13, 12978. [Google Scholar] [CrossRef]
- Jiang, J.; Deng, Q.; Yang, D.; Qi, G.; Zhang, F.; Tan, L. Numerical Simulation Study on the Damage Mechanism of the Combined Perforating Well Testing Tubing in Ultra-Deep Wells. Processes 2024, 12, 380. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, H.; Chen, A.; Li, J.; Hou, X.; Wang, H. Effects of perforation fluid movement on downhole packer with shock loads. J. Pet. Sci. Eng. 2020, 195, 107566. [Google Scholar] [CrossRef]
- Chen, F.; Chen, H.; Tang, K.; Ren, G. Impacts and countermeasures of shock loads on operating pipe column. Nat. Gas Ind. 2010, 30, 61–65. [Google Scholar]
- Baumann, C.E.; Pesantes, E.; Guerra, J.P.; William, A.; Williams, H.A. Reduction of Perforating Gunshock Loads. SPE Drill. Complet. 2012, 27, 65–74. [Google Scholar] [CrossRef]
- Lu, X.; Wang, S.S.; Ma, F.; Zhou, H. Dynamic response test of perforated pipe column under blast impact. Sci. Technol. Eng. 2014, 14, 53–56, 92. [Google Scholar]
- Zhang, W.; Xu, C.; Li, M.F.; Zhang, L.; Wang, G.Q. Transient response and stress intensity analysis of pipe column in shot hole section. Pet. Mach. 2017, 45, 90–94, 110. [Google Scholar]
- Li, M.F.; Xu, F.; Dou, Y.H. Analysis of dynamic response of pipe column in shot hole section under blast shock load. Vib. Shock 2019, 38, 185–191, 222. [Google Scholar]
- Zhang, J.; Liu, H.; Li, M.; Dou, Y. Theoretical and numerical analysis of the dynamic response of the shot hole pipe column under the action of poly energy shot hole blast load. Mech. Des. Manuf. Eng. 2019, 48, 109–113. [Google Scholar]
- Yang, W.; Li, H.; Lin, Y.; Ren, S.; Zhang, Z.; Xu, S.; Li, F. Mechanical analysis of pipe column vibration in shot hole section under the influence of multiple factors. Vib. Shock 2024, 43, 223–229. [Google Scholar]
- Zhang, P.; Zhang, M.Y.; Zhang, W.B. Study on the kinetic characteristics of perforated tubular column. Oil Gas Well Test. 2024, 33, 1–8. [Google Scholar]
- Zhou, X.; Liu, J.; Jian, Y.; Chen, Y.; Liang, S. Vibration safety analysis of cable shot hole in horizontal well. Pet. Mach. 2024, 52, 41–50. [Google Scholar]
- Deng, Q.; Jiang, J.; Yang, D.; Han, H.; Qi, G. Dynamic analysis and optimization of perforated tubing strings in deep-water wells under diverse operating conditions. Ocean. Eng. 2025, 322, 120535. [Google Scholar] [CrossRef]
- Mao, L.; He, X.; Zhang, J. Dynamic behavior and failure analysis of perforating string under explosive load. Eng. Fail. Anal. 2022, 136, 106222. [Google Scholar] [CrossRef]
- Ding, L.; Chen, W.; Han, C.; Xue, Y.; Lei, Q. Study on explosion energy conversion of a perforating shaped charge during perforation detonation. SPE J. 2024, 29, 2938–2952. [Google Scholar] [CrossRef]
- Yin, H.D.; Li, S.Y.; Zhang, J.J. Analysis of force on joint work tubing column of shot hole testing and protection technology of downhole instruments. Oil Drill. Technol. 2003, 25, 61–63. [Google Scholar]
- Chernyshov, S.; Popov, S.; Wang, X.; Derendyaev, V.; Yang, Y.; Liu, H. Analysis of Changes in the Stress–Strain State and Permeability of a Terrigenous Reservoir Based on a Numerical Model of the Near-Well Zone with Casing and Perforation Channels. Appl. Sci. 2024, 14, 9993. [Google Scholar] [CrossRef]
- Lercari, M.; Gonzalez, S.; Espinoza, C.; Longo, G.; Antonacci, F.; Sarti, A. Using mechanical metamaterials in guitar top plates: A numerical study. Appl. Sci. 2022, 12, 8619. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Liu, G.; Lian, W.; Wang, B.; Yang, H. Numerical study on damage law and influencing factors of cement sheath under perforation conditions. Pet. Sci. Technol. 2024, 42, 613–633. [Google Scholar] [CrossRef]
- Lian, Z.; Mou, Y.; Liu, Y.; Xu, D. Research on the buckling behavior of oil tubing column in high temperature and high pressure ultra-deep gas wells. Nat. Gas Ind. 2018, 38, 89–94. [Google Scholar]
- Lee, E.L.; Hornig, H.C.; Kury, J.W. Adiabatic Expansion of High Explosive Detonation Products; U.S. Department of Energy Office of Scientific and Technical Information: Richland, WA, USA, 2018. [Google Scholar]
- Nan, Y.; Jiang, J.; Wang, S.; Men, J. A parameterization method of JWL equation closed with blast parameter. Explos. Shock 2015, 35, 157–163. [Google Scholar]
- Hallquist, J.O. LS-Dyna Theory Manual; Livermore Software Technology Corporation: Livermore, CA, USA, 2006. [Google Scholar]
- Fang, Q.; Kong, X.; Wu, H.; Gong, Z. Method for determining parameters of Holmquist-Johnson-Cook model for rocks. Eng. Mech. 2014, 31, 197–204. [Google Scholar]
- Deng, Q. Safety Analysis for Downhole Wellbore During Perforating. Ph.D. Thesis, China University of Petroleum (Beijing), Beijing, China, 2020. [Google Scholar]
- Cole, R.H. Underwater Explosions; Princeton University Press: Princeton, NJ, USA, 1948; pp. 10–50. [Google Scholar]
- Deng, Q.; Zhang, H.; Li, J.; Dong, J.; Wang, H.; Hou, X. Safety Distances of Packers for Deep-Water Tubing-Conveyed Perforating. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2018; p. OTC-28770-MS. [Google Scholar]
- Schatz, J.F.; Folse, K.C.; Fripp, M.; Dupont, R. High-Speed Pressure and Accelerometer Measurements Characterize Dynamic Behavior During Perforating Events in Deepwater Gulf of Mexico. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004; p. SPE-90042-MS. [Google Scholar]
- Bale, D.S.; Satti, R.P.; Ji, M.; Howard, J.J. A Next-generation Shock-capturing, Multi-phase Flow Simulator for Perforating Applications in HPHT Environment. In Proceedings of the SPE Deepwater Drilling & Completions Conference, Galveston, TX, USA, 14–15 September 2016; p. SPE-180283-MS. [Google Scholar]
- Lubinski, A.; Althouse, W.S.; Logan, J.L. Helical Buckling of Tubing Sealed in Packers. J. Pet. Technol. 1962, 16, 655–670. [Google Scholar] [CrossRef]
- Paslay, P.R.; Bogy, D. The Stability of a Circular Rod Laterally Constrained to Be in Contact with an Inclined Circular Cylinder. J. Appl. Mech. 1964, 31, 605–610. [Google Scholar] [CrossRef]
- Miska, S.; Cunha, J.C. An Analysis of Helical Buckling of Tubulars Subjected to Axial and Torsional Loading in Inclined Wellbores. SPE Prod. Oper. Symp. 1995, 4, 173–180. [Google Scholar]
- Mitchell, R.F. Effects of Well Deviation on Helical Buckling. SPE Drill. Complet. 2013, 12, 63–70. [Google Scholar] [CrossRef]
- Schatz, J.F.; Haney, B.L.; Ager, S.A. High-speed downhole memory recorder and software used to design and confirm perforating/propellant behavior and formation fracturing. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–6 October 1999. [Google Scholar]
- Li, Z.; Zhang, C.; Song, G. Research advances and debates on tubular mechanics in oil and gas wells. J. Pet. Sci. Eng. 2017, 151, 194–212. [Google Scholar] [CrossRef]
Category | Parameter | Value |
---|---|---|
Perforation charge parameters | Type of explosives | HMX |
Bursting charge amount | 45 g/piece | |
Loading density | 1.6 g/m3 | |
Perforation parameters | Hole density of the perforation | 16 holes/m |
Phase angle | 60° | |
Hole diameter | 12 mm | |
Perforating gun model | 127 mm | |
Top perforation boundary | 4307 m | |
Bottom perforation boundary | 4354 m | |
Casing parameters of the perforating section | Outer diameter | 177.8 mm |
Wall thickness | 12.65 mm | |
Steel type | 140 V | |
Tubing parameters of the perforating section | Outer diameter | 88.9 mm |
Wall thickness | 6.45 mm | |
Steel type | CB110SS | |
Packer parameters | Packer type | 7″ RTTS |
Setting position | 4200 m | |
Construction parameters | Artificial well bottom | 4400 m |
Screen tube top boundary | 4305 m | |
Screen tube bottom boundary | 4306 m | |
Shock absorber location | 4303–4305 m | |
Perforating fluid density | 1.0 g/cm3 | |
Reservoir parameters | Poisson’s ratio | 0.33 |
Reservoir porosity | 2.0–7.1% | |
Formation parameters | Well bottom depth (inclined/vertical) | 6398.00 m/5395.28 m |
Logging temperature | 152 °C |
Category | Parameter | Value |
---|---|---|
Perforation charge parameters | Type of explosives | HNS |
Bursting charge amount | 45 g/piece | |
Loading density | 1.3 g/m3 | |
Perforation parameters | Hole density of the perforation | 16 holes/m |
Phase angle | 60° | |
Hole diameter | 10.5 mm | |
Perforating gun model | 127 mm | |
Top perforation boundary | 6155 m | |
Bottom perforation boundary | 6175 m | |
Casing parameters of the perforating section | Outer diameter | 206.38 mm |
Wall thickness | 17.25 mm | |
Steel type | 155 | |
Tubing parameters of the perforating section | Outer diameter | 88.9 mm |
Wall thickness | 7.34 mm | |
Steel type | 110 | |
Packer parameters | Packer type | RTTS |
Setting position | 5800 m | |
Tensile strength | 850 kN | |
Construction parameters | Artificial well bottom | 6225 m |
Screen tube top boundary | 6153 m | |
Screen tube bottom boundary | 6154 m | |
Shock absorber location | 6150–6152 m | |
Perforating fluid density | 1.3 g/cm3 | |
Reservoir parameters | Poisson’s ratio | 0.33 |
Reservoir porosity | 2.0–9.2% | |
Compressive strength of rock | 435.73 MPa | |
Formation parameters | Well bottom depth | 7766 m |
Logging temperature | 160.80 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Deng, Q.; Yuan, M.; Cui, G.; Fan, D.; Jia, B. Safety Evaluation of Perforated String by Simulation Modeling and Mechanics Analysis Under Shock Loading. Appl. Sci. 2025, 15, 7249. https://doi.org/10.3390/app15137249
Yang D, Deng Q, Yuan M, Cui G, Fan D, Jia B. Safety Evaluation of Perforated String by Simulation Modeling and Mechanics Analysis Under Shock Loading. Applied Sciences. 2025; 15(13):7249. https://doi.org/10.3390/app15137249
Chicago/Turabian StyleYang, Dong, Qiao Deng, Meng Yuan, Gang Cui, Dongyang Fan, and Bo Jia. 2025. "Safety Evaluation of Perforated String by Simulation Modeling and Mechanics Analysis Under Shock Loading" Applied Sciences 15, no. 13: 7249. https://doi.org/10.3390/app15137249
APA StyleYang, D., Deng, Q., Yuan, M., Cui, G., Fan, D., & Jia, B. (2025). Safety Evaluation of Perforated String by Simulation Modeling and Mechanics Analysis Under Shock Loading. Applied Sciences, 15(13), 7249. https://doi.org/10.3390/app15137249