Application of the Holt–Winters Model in the Forecasting of Passenger Traffic at Szczecin–Goleniów Airport (Poland)
Abstract
1. Introduction
2. Literature Review
- The impact of aviation on mobility and economic development—global and regional analyses indicate that the growth of the aviation sector correlates strongly with the economic growth of countries and regions.
- Links to tourism and passenger perception—studies highlight how aviation services shape tourism traffic and traveler expectations.
- Resilience of the sector to disruption—post-2020, there has been considerable work analyzing the impact of the COVID-19 pandemic on aviation and the global economy.
- The role of airports in the development of regional transport systems;
- Quality of service and passenger satisfaction;
- Operational flexibility in the face of changes in the environment (e.g., COVID-19);
- Capacity and operational capability of airports and modelling of passenger flows, including traffic forecasting in Europe and worldwide.
- Sustainability (environmental and social aspects);
- Economic condition in stable and crisis periods;
- Infrastructural development and organizational adaptation to user needs.
3. Materials and Methods
3.1. Research Subject
3.2. Research Method
- Level of the variable at time t (1) and (2):
- Trend coefficient at time t (3):
- Seasonal component at time t (4) and (5):
- Stage 1—identification of the enterprise’s macro-environment and competitive environment and the factors that have a key impact on the enterprise’s performance.
- Stage 2—evaluation of the identified factors in terms of:
- The strength and direction of a factor’s impact on the organization on a scale from −5 (greatest negative impact) to +5 (greatest positive impact);
- The likelihood of each factor occurring in three trends: upward, downward, and stabilizing.
- Stage 3—rank the trends according to four scenarios: optimistic (trends with the greatest positive impact on the business), pessimistic (trends with the greatest negative impact on the business), most likely (trends with the highest probability of occurrence, regardless of strength and direction of impact), and surprise (trends with the lowest probability of occurrence, regardless of strength and direction of impact).Stage 4—calculations to determine the average strength of impact of each factor in each scenario.
3.3. Results
4. Discussion and Conclusions
- GDP per capita/wealth—each 1 percentage point increase in real GDP per capita translates (historically) into an increase in regional airport traffic of around 1.2%; therefore, positive macroeconomic scenarios almost linearly increase demand.
- Inflation and ticket prices—higher inflation reduces traffic twice over: it reduces real income and raises line costs (fuel, environmental charges).
- International conflicts—the airport mainly handles point-to-point traffic to Western Europe; however, escalating conflicts can reduce emigration and tourism demand by up to 10%.
- Environmental requirements—the introduction of SAF/ETS will increase the CASK (Cost per Available Seat Kilometer) of the line by EUR 1–3 per passenger; for EUR 70–100 tickets, price elasticity is high, which is a significant risk factor in the pessimistic scenario.
- Destination offer—each new scheduled route brings an average of 25–30,000 additional pax per year; priority is given to revenue destinations for the Polish diaspora and city breaks.
- Access to the airport—shortening the Szczecin airport rail commute to 25 min raises the rail share in the modal split from 5% to about 15%, which translates into about a 5% increase in total traffic.
- Port competition—the launch of CPK in the second half of the 2030s may draw away transfer traffic, but simultaneously take pressure off slots at WAW, which is an opportunity for Goleniów in the charter segment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drop, N. Prognoza zmian w sposobie funkcjonowania niskokosztowych przewoźników lotniczych na rynku europejskim. Przedsiębiorczość Zarz. 2019, 6, 147. [Google Scholar]
- Panasiuk, A.; Pluciński, M. Transport Morski i Lotniczy w Obsłudze Ruchu Pasażerskiego. Implikacje dla Regionów; Wydawnictwo Naukowe Uniwersytetu Szczecińskiego: Szczecin, Poland, 2008; p. 46. [Google Scholar]
- Mańkowska, M. Stan i Perspektywy Rozwoju Rynku Międzynarodowych Przewozów Pasażerskich w Relacjach z Polską w Warunkach Spowolnienia Gospodarczego. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2015, 382, 228. [Google Scholar] [CrossRef]
- Rucińska, D. Rynek Usług Transportowych w Polsce; Polskie Wydawnictwo Ekonomiczne: Warszaw, Poland, 2015; p. 242. [Google Scholar]
- Wensveen, J. Air Transportation. A Global Management Perspective; Routledge: London, UK, 2023. [Google Scholar]
- Tłoczyński, D.; Hoszman, A.; Zagrajek, R. Transport Lotniczy w Rozwoju Globalnej Mobilności; Wydawnictwo Uniwersytetu Gdańskiego: Gdańsk, Poland, 2021. [Google Scholar]
- Karpstein, R.; Brolli, J.; Stiegler, P.; Sucher, R.; Holzapfel, F.; Biberthaler, P. Evaluation of the advanced air mobility potential for organ transplantation in Austria and Germany. Sci. Rep. 2024, 14, 29782. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Driha, O.M.; Bekun, F.V.; Adedoyin, F.F. The asymmetric impact of air transport on economic growth in Spain: Fresh evidence from the tourism-led growth hypothesis. Curr. Issues Tour. 2020, 24, 503–519. [Google Scholar] [CrossRef]
- Khanal, A.; Rahman, M.M.; Khanam, R.; Velayutham, E. Exploring the Impact of Air Transport on Economic Growth: New Evidence from Australia. Sustainability 2022, 14, 11351. [Google Scholar] [CrossRef]
- Niedzielski, P.; Zioło, M.; Kozuba, J.; Kuzionko-Ochrymiuk, E.; Drop, N. Analysis of the Relationship of the Degree of Aviation Sector Development with Greenhouse Gas Emissions and Measures of Economic Development in the European Union Countries. Energies 2021, 14, 3801. [Google Scholar] [CrossRef]
- Papatheodorou, A. A review of research into air transport and tourism: Launching the Annals of Tourism Research Curated Collection on Air Transport and Tourism. Ann. Tour. Res. 2021, 87, 103151. [Google Scholar] [CrossRef]
- Hofman, M.; Winiarski, J. Port lotniczy jako kluczowy czynnik rozwoju turystyki na przykładzie Warszawy. Współczesna Gospod. 2022, 14, 28–44. [Google Scholar]
- Eboli, L.; Bellizzi, M.G.; Mazzulla, G. A Literature Review of Studies Analysing Air Transport Service Quality from the Passengers’ Point of View. Promet-Traffic Transp. 2022, 34, 253–269. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, X. Statistical analysis of resilience in an air transport network. Front. Phys. 2022, 10, 969311. [Google Scholar] [CrossRef]
- Sun, X.; Wandelt, S.; Zheng, C.; Zhang, A. COVID-19 pandemic and air transportation: Successfully navigating the paper hurricane. J. Air. Transp. 2021, 94, 102062. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Kundu, T.; Qin, W.; Goh, M.; Sheu, J.-B. Vulnerability of the worldwide air transportation network to global catastrophes such as COVID-19. Transp. Res. Part Logist. Transp. Rev. 2021, 154, 102469. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues da Silva, A.N.; Pitombo, C.S.; Ubirajara Pedreira, J., Jr.; Medeiros Ciriaco, T.G.; Silva Costa, C. Changes in mobility and challenges to the transport sector in Brazil due to COVID-19. In Transportation Amid Pandemics; Zhang, J., Hayashi, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 105–118. [Google Scholar] [CrossRef]
- Madras, T. Regionalny Port Lotniczy Jako Czynnik Rozwoju Regionalnego–Wybrane Aspekty. Przedsiębiorczość Zarz. 2014, 15, 211–222. Available online: http://bazekon.icm.edu.pl/bazekon/element/bwmeta1.element.ekon-element-000171354901 (accessed on 20 December 2024).
- Huderek-Glapska, S. Port Lotniczy w Systemie Transportu Intermodalnego. LogForum 2010, 6, 47–54. Available online: https://www.researchgate.net/publication/265221858_PORT_LOTNICZY_W_SYSTEMIE_TRANSPORTU_INTERMODALNEGO (accessed on 20 December 2024).
- Bakır, M.; Akan, Ş.; Özdemir, E.; Nguyen, P.-H.; Tsai, J.-F.; Pham, H.-A. How to Achieve Passenger Satisfaction in the Airport? Findings from Regression Analysis and Necessary Condition Analysis Approaches through Online Airport Reviews. Sustainability 2022, 14, 2151. [Google Scholar] [CrossRef]
- Prentice, C.; Kadan, M. The role of airport service quality in airport and destination choice. J. Retail. 2019, 47, 40–48. [Google Scholar] [CrossRef]
- Dissakoon, C.h.; Sajjakaj, J.; Vatanavongs, R. Measurement model of passengers’ expectations of airport service quality. Int. J. Transp. Sci. Technol. 2021, 10, 342–352. [Google Scholar] [CrossRef]
- Halpern, N.; Mwesiumo, D. Airport service quality and passenger satisfaction: The impact of service failure on the likelihood of promoting an airport online. Int. Res. Transp. Bus. Manag. 2021, 41, 100667. [Google Scholar] [CrossRef]
- Jong, H.C. Changes in airport operating procedures and implications for airport strategies post-COVID-19. Int. J. Transp. Manag. 2021, 94, 102065. [Google Scholar] [CrossRef]
- Wandelt, S.; Zhang, A.; Sun, X. Global Airport Resilience Index: Towards a comprehensive understanding of air transportation resilience. Transp. Res. Part D Transp. Environ. 2025, 138, 104522. [Google Scholar] [CrossRef]
- Aasheesh, D.; Suresh, K.J. Airport capacity management: A review and bibliometric analysis. J. Air Transp. 2021, 91, 102010. [Google Scholar] [CrossRef]
- Alodhaibi, S.; Burdett, R.L.; Yarlagadda, P. Framework for Airport Outbound Passenger Flow Modelling. Procedia Eng. 2017, 174, 1100–1109. [Google Scholar] [CrossRef]
- Yamada, H.; Ohori, K.; Iwao, T.; Kira, A.; Kamiyama, N.; Yoshida, H.; Anai, H. Modeling and Managing Airport Passenger Flow Under Uncertainty: A Case of Fukuoka Airport in Japan. SocInfo 2017, 10540, 419–430. [Google Scholar] [CrossRef]
- Fonseca, P.; Casas, J.; Casanovas, F.X. Passenger flow simulation in a hub airport: An application to the Barcelona International Airport. Simul. Model. Pract. Theory 2014, 44, 78–94. [Google Scholar] [CrossRef]
- Tesoriere, G.; Campisi, T.; Canale, A.; Severino, A.; Arena, F. Modelling and simulation of passenger flow distribution at terminal of Catania airport. AIP Conf. Proc. 2018, 2040, 140006. [Google Scholar] [CrossRef]
- Orhan, İ.; Orhan, G. Modelling and Managing Airport Passenger Flow: A Case of Hasan Polatkan Airport in Turkey. Int. J. Av. Sci. Technol. 2020, 1, 71–79. [Google Scholar] [CrossRef]
- Hopfe, D.H.; Lee, K.; Yu, C. Short-term forecasting airport passenger flow during periods of volatility: Comparative investigation of time series vs. neural network models. J. Air Transp. Manag. 2024, 115, 102525. [Google Scholar] [CrossRef]
- Guo, X.; Grushka-Cockayne, Y.; De Reyck, B. Forecasting Airport Transfer Passenger Flow Using Real-Time Data and Machine Learning. Manuf. Serv. Oper. Manag. 2021, 24, 3193–3214. [Google Scholar] [CrossRef]
- Lin, L.; Liu, X.; Liu, X.; Zhang, T.; Cao, Y. A prediction model to forecast passenger flow based on flight arrangement in airport terminals. Energy Built Environ. 2023, 4, 680–688. [Google Scholar] [CrossRef]
- Nikoue, H.; Marzuoli, A.; Clarke, J.-P.; Feron, E.; Peters, J. Passenger Flow Predictions at Sydney International Airport: A Data-Driven Queuing Approach. Available online: https://arxiv.org/abs/1508.04839 (accessed on 8 February 2025).
- Monmousseau, P.G.; Bertosio, J.F.; Delahaye, D.; Houalla, M. Predicting Passenger Flow at Charles De Gaulle Airport Security Checkpoints. In Proceedings of the International Conference on Artificial Intelligence and Data Analytics for Air Transportation, Singapore, 3–4 February 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Liu, X.; Huang, X.; Chen, L.; Qiu, Z.; Chen, M.R. Prediction of Passenger Flow at Sanya Airport Based on Combined Methods. In Data Science. ICPCSEE 2017. In Communications in Computer and Information Science; Zou, B., Li, M., Wang, H., Song, X., Xie, W., Lu, Z., Eds.; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Mańkowska, M.; Tłoczyński, D.; Wach-Kloskowska, M.; Bulczak, G. Factors determining the implementation of green practices in airport management. The case study of Polish airports. J. Air Transp. Manag. 2023, 111, 102438. [Google Scholar] [CrossRef]
- Tłoczyński, D.; Wach-Kloskowska, M.; Martin-Rojas, R. An assessment of airport sustainability measures: A case study of Polish airports. Transp. Probl. 2020, 15, 287–300. [Google Scholar] [CrossRef]
- Leoński, W. Corporate Social Responsibility in Airports: A Study of the Largest Polish Airports. Eur. Res. Stud. J. 2022, 25, 198–209. [Google Scholar] [CrossRef]
- Augustyniak, W. Income statement as an assessment tool of an airport operator: A case study of Polish airports. Int. Enterp. Rev. 2020, 6, 17–35. [Google Scholar] [CrossRef]
- Barczak, A. COVID-19 Pandemic–Financial Consequences for Polish Airports–Selected Aspects. Aerospace 2021, 8, 353. [Google Scholar] [CrossRef]
- Wróbel, P. Trends and Development Perspectives in the Architectural and Urban Forms of Development in Polish Airports and Their Surrounding Areas Compared with Current European Trends. Probl. Rozw. Miast 2020, 68, 91–101. [Google Scholar] [CrossRef]
- Marek, M.; Liszewski, D. Development of Polish regional airports in the context of tourism needs. Pol. J. Manag. Stud. 2015, 11, 90–99. [Google Scholar]
- Ślusarczyk, B.; Baryń, M. Development of Regional Airports in Poland. Mediterr. J. Soc. Sci. 2016, 7, 625–633. [Google Scholar] [CrossRef]
- Wang, X. The Short-Term Passenger Flow Forecasting of Urban Rail Transit Based on Holt-Winters’ Seasonal Method. In Proceedings of the 4th International Conference on Electromechanical Control Technology and Transportation, Guilin, China, 26–28 April 2019; pp. 265–268. [Google Scholar] [CrossRef]
- Wei, Z.M.; Song, H.C. Prediction Scheme of Railway Passenger Flow Based on Multiplicative Holt-Winters Model. Appl. Mech. Mater. 2013, 416–417, 1949–1953. [Google Scholar] [CrossRef]
- Alblooshi, S.A.; Masmoudi, M.; Cheaitou, A.; Hamad, K. Predicting Metro Ridership in Dubai: Analyzing Seasonal Trends with SARIMA, Holt-Winters, and LSTM. In Proceedings of the IEEE International Conference on Technology Management, Operations and Decisions, Glasgow, UK, 20–22 October 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Cyril, A.; Mulangi, R.; George, V. Bus Passenger Demand Modelling Using Time-Series Techniques Big Data Analytics. Open Transp. J. 2019, 13, 41–47. [Google Scholar] [CrossRef]
- State Islamic University of Sultan Syarif Kasim Riau. Available online: https://repository.uin-suska.ac.id/86487/1/JURNAL%20MELKA%20PRATAMA.pdf (accessed on 4 February 2025).
- Deetchiga, S.; Harini, U.K.; Marimuthu, M.; Radhika, J. Prediction of Passenger Traffic for Global Airport using Holt’s Winter Method in Time Series Analysis. In Proceedings of the International Conference on Intelligent Computing and Communication for Smart World, Erode, India, 14–15 December 2018; pp. 165–169. [Google Scholar] [CrossRef]
- ResearchGate. Available online: https://www.researchgate.net/profile/Abraham-Tamber/publication/350923022_The_holt-winters_multiplicative_model_of_passengers’_traffic_forecast_of_the_Nigeria_airports/links/6079db88881fa114b409f893/The-holt-winters-multiplicative-model-of-passengers-traffic-forecast-of-the-Nigeria-airports.pdf (accessed on 4 February 2025).
- Al-Sultan, A.; Al-Rubkhi, A.; Alsaber, A.; Pan, J. Forecasting air passenger traffic volume: Evaluating time series models in long-term forecasting of Kuwait air passenger data. Adv. Appl. Stat. 2021, 70, 69–89. [Google Scholar] [CrossRef]
- Akopov, A.S.; Beklaryan, L.A. Traffic Improvement in Manhattan Road Networks with the Use of Parallel Hybrid Biobjective Generic Algorithm. IEEE Access 2024, 12, 19532–19552. [Google Scholar] [CrossRef]
- Li, Y.; Lu, S. Study on the optimization of urban passenger traffic structure based on multi-objective linear programming—A case study of Beijing. Environ. Sci. Pollut. Res. 2021, 28, 10192–10206. [Google Scholar] [CrossRef]
- Harrou, F.; Dairi, A.; Zeroual, A.; Sun, Y. Forecasting of bicycle and pedestrian traffic using flexible and efficient hybrid deep learning approach. Appl. Sci. 2022, 12, 4482. [Google Scholar] [CrossRef]
- Goldhammer, M.; Doll, K.; Brunsmann, U.; Gensler, A.; Sick, B. Pedestrian’s Trajectory Forecast in Public Traffic with Artificial Neural Networks. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 4110–4115. [Google Scholar] [CrossRef]
- Manibardo, E.L.; Laña, I.; Ser, J.D. Deep Learning for Road Traffic Forecasting: Does it Make a Difference? IEEE Trans. Intell. Transp. Syst. 2022, 23, 6164–6188. [Google Scholar] [CrossRef]
- Jha, K.; Sinha, N.; Arkatkar, S.S.; Sarkar, A.K. A comparative study on application of time series analysis for traffic forecasting in India: Prospects and limitations. Curr. Sci. 2016, 110, 373–385. [Google Scholar] [CrossRef]
- Kumar, S. Video based Traffic Forecasting using Convolution Naural Network Model and Transfer Learning Techniques. J. Innov. Image Process. 2020, 2, 128–134. [Google Scholar] [CrossRef]
- Blog Katowice Airport. Available online: https://blog.katowice-airport.com/2014-03-05/ (accessed on 4 February 2025).
- Szczecin-Goleniów Airport. Available online: http://airport.com.pl (accessed on 4 January 2025).
- Google Maps. Available online: https://www.google.com/maps/place/Port+Lotniczy+Szczecin-Goleniów+im.+NSZZ+Solidarność/@53.9098957,15.5523477,9z/data=!4m6!3m5!1s0x4700996312a1d2fb:0x6211d49bb7fef9da!8m2!3d53.5858774!4d14.902781!16zL20vMDc5YjA5?entry=ttu&g_ep=EgoyMDI1MDIyMy4xIKXMDSoASAFQAw%3D%3D (accessed on 26 February 2025).
- Głos Szczeciński. Available online: https://gs24.pl/nowe-lotnisko-w-goleniowie-przyjmowac-bedzie-nawet-17-mln-pasazerow-rocznie-wizualizacje/ar/c1-18631477 (accessed on 4 November 2024).
- Krupowicz, J. Modele szeregów czasowych z wahaniami okresowymi zmiennej prognozowanej. In Metody Prognozowania; Wydawnictwo Akademii Ekonomicznej im. Oskara Langego we Wrocławiu: Wrocław, Poland, 2000; pp. 57–59. [Google Scholar]
- Wilson, J.; Allison-Koerber, D. Combining Subjective and Objective Forecasts Improves Results. J. Forecast. 1992, 11, 4. [Google Scholar]
- Statistics Poland. Available online: https://stat.gov.pl/metainformacje/slownik-pojec/pojecia-stosowane-w-statystyce-publicznej/2783,pojecie.html (accessed on 30 May 2025).
- Zeliaś, A.; Pawełek, B.; Wanat, S. Prognozowanie Ekonomiczne. Teoria, Przykłady Zadania; Wydawnictwo Naukowe PWN: Warszaw, Poland, 2004; pp. 140–151. [Google Scholar]
- Gąsiorowski, P.; Kuszewski, T. Analiza i prognozowanie szeregów czasowych. In Decyzje Menedżerskie z Excelem; Polskie Wydawnictwo Ekonomiczne: Warszaw, Poland, 2000; p. 211. [Google Scholar]
- Gierszewska, G.; Romanowska, M. Analiza Strategiczna Przedsiębiorstwa; Polskie Wydawnictwo Ekonomiczne: Warszaw, Poland, 2004. [Google Scholar]
- Civil Aviation Authority. Available online: https://ulc.gov.pl/statystyki-analizy/statystyki-wg-portow-lotniczych (accessed on 22 April 2025).
- Asrah, N.; Rahim, S.; Leng, W. Time series forecasting of the number of Malaysia Airlines and AirAsia passengers. J. Phys. 2018, 995, 012006. [Google Scholar] [CrossRef]
- Yang, C.-H.; Lee, B.; Jou, P.-H.; Chung, Y.-F.; Lin, Y.-D. Analysis and Forecasting of International Airport Traffic Volume. Mathematics 2023, 11, 1483. [Google Scholar] [CrossRef]
Carrier | 2023 | 2024 | 2025 |
---|---|---|---|
LOT | Warsaw | Warsaw | Warsaw |
Ryanair | Warsaw Krakow London Liverpool Dublin | Krakow London Liverpool Dublin | Krakow London Liverpool Dublin |
Norwegian | Oslo | Oslo | X |
Wizzair | Oslo | Oslo | Oslo |
EnterAir | Burgas Antalya | X | X |
Ryanair Sun | X | Antalya | Antalya |
SkyUp Airlines | X | X | Marsa Alam |
Time | Passengers | Time | Passengers | Time | Passengers | |||
---|---|---|---|---|---|---|---|---|
2010 | I | 48,638 | 2015 | I | 69,122 | 2020 | I | 92,139 |
II | 57,341 | II | 109,906 | II | 6144 | |||
III | 101,549 | III | 134,345 | III | 64,279 | |||
IV | 61,035 | IV | 98,789 | IV | 23,286 | |||
2011 | I | 48,580 | 2016 | I | 92,264 | 2021 | I | 11,917 |
II | 64,092 | II | 128,660 | II | 24,829 | |||
III | 80,284 | III | 136,496 | III | 78,049 | |||
IV | 65,261 | IV | 110,017 | IV | 67,054 | |||
2012 | I | 55,980 | 2017 | I | 106,727 | 2022 | I | 59,076 |
II | 113,339 | II | 157,191 | II | 111,972 | |||
III | 110,227 | III | 172,760 | III | 144,374 | |||
IV | 67,517 | IV | 141,842 | IV | 104,450 | |||
2013 | I | 58,555 | 2018 | I | 124,587 | 2023 | I | 93,032 |
II | 89,260 | II | 158,369 | II | 129,888 | |||
III | 107,678 | III | 179,539 | III | 158,249 | |||
IV | 66,841 | IV | 136,168 | IV | 96,295 | |||
2014 | I | 54,103 | 2019 | I | 120,055 | 2024 | I | 85,516 |
II | 75,784 | II | 146,609 | II | 127,955 | |||
III | 93,831 | III | 166,468 | III | 145,810 | |||
IV | 62,659 | IV | 147,347 | IV | 119,838 |
Period | Minimum Value | Maximum Value | Average | Standard Deviation | 1st Quartile | Median Value | 3rd Quartile | Coefficient of Variation |
2010–2024 | 6144 | 179,539 | 97,733 | 41,175 | 65,016 | 97,542 | 128,967 | 42.13% |
Specification | Model | ||
---|---|---|---|
Additive | Multiplicative | ||
The result of the 2025 forecast | Quarter I | 106,733 | 94,189 |
Quarter II | 114,926 | 107,044 | |
Quarter III | 158,198 | 165,279 | |
Quarter IV | 117,246 | 114,711 | |
Smoothing factor | α | 0.9991 | 0.7224 |
β | 0 | 0 | |
γ | 0.5972 | 0.2281 |
Period | Minimum Value | Maximum Value | Average | Standard Deviation | 1st Quartile | Median Value | 3rd Quartile | Coefficient of Variation |
---|---|---|---|---|---|---|---|---|
2025 | 106,733 | 158,198 | 124,276 | 23,060 | 111,526 | 116,086 | 142,247 | 18.56% |
Factor | Trend | Strength of Impact | Probability of Occurrence |
---|---|---|---|
GDP per capita level | Growth | +4 | 0.6 |
Stabilization | +1 | 0.3 | |
Regression | −3 | 0.1 | |
Inflation | Growth | −3 | 0.4 |
Stabilization | +2 | 0.4 | |
Regression | +4 | 0.2 | |
Ticket prices | Increase | −3 | 0.6 |
Stabilization | +1 | 0.3 | |
Regression | +5 | 0.1 | |
International conflicts | Growth | −5 | 0.2 |
Stabilization | −1 | 0.3 | |
Regression | +5 | 0.5 | |
Environmental requirements | Growth | −4 | 0.7 |
Stabilization | −1 | 0.2 | |
Regression | +2 | 0.1 | |
Offer of travel destinations | Growth | +5 | 0.2 |
Stabilization | −1 | 0.6 | |
Regression | −5 | 0.2 | |
Level of wealth of society | Growth | +5 | 0.3 |
Stabilization | +3 | 0.2 | |
Regression | −4 | 0.5 | |
Airport access | Increase | +4 | 0.7 |
Stabilization | −1 | 0.2 | |
Regression | −3 | 0.1 | |
Offer of competing airports | Growth | −4 | 0.5 |
Stabilization | −1 | 0.3 | |
Regression | +4 | 0.2 |
Factor | Strength of Impact |
---|---|
GDP per capita level | +4 |
Inflation | +4 |
Ticket prices | +5 |
International conflicts | +5 |
Environmental requirements | +2 |
Offer of travel destinations | +5 |
Level of affluence of society | +5 |
Airport access | +4 |
Offer of competing airports | +4 |
Average impact: | +4.22 |
Factor | Strength of Impact |
---|---|
GDP per capita level | −3 |
Inflation | −3 |
Ticket prices | −3 |
International conflicts | −5 |
Environmental requirements | −4 |
Offer of travel destinations | −5 |
Level of affluence of society | −4 |
Airport access | −3 |
The offer of competing airports | −4 |
Average impact: | −3.77 |
Factor | Positive Force of Impact | Negative Force of Impact | Likelihood of Occurrence |
---|---|---|---|
GDP per capita level | +4 | 0.6 | |
Inflation | +2 | −3 | 0.4 |
Ticket prices | −3 | 0.6 | |
International conflicts | +5 | 0.5 | |
Environmental requirements | −4 | 0.7 | |
Offer of travel destinations | −1 | 0.6 | |
Level of affluence of the population | −4 | 0.4 | |
Access to the airport | +4 | 0.7 | |
Offer of competing airports | −4 | 0.5 | |
Average impact: | +3.75 | −3.16 |
Factor | Positive Force of Impact | Negative Strength of Impact | Probability of Occurrence |
---|---|---|---|
GDP per capita level | −3 | 0.1 | |
Inflation | +4 | 0.2 | |
Ticket prices | +5 | 0.1 | |
International conflicts | −5 | 0.2 | |
Environmental requirements | +2 | 0.1 | |
Offer of travel destinations | +5 | −5 | 0.2 |
Level of affluence of society | +3 | 0.2 | |
Access to the airport | −3 | 0.1 | |
Offer of competing airports | +4 | 0.2 | |
Average impact: | +3.83 | −4.00 |
Area | Actions |
---|---|
Infrastructure | Maintain flexibility in the design of the new terminal (easy modular expansion), prepare a CAPEX reserve plan in the case of a slowdown. |
Route network | Continue discussions with low-cost carriers about routes to hubs and tourist destinations; conditional incentives for carriers. |
Non-aero revenue | Develop retail and parking services; in the pessimistic scenario, increase the share of cargo and e-commerce logistics. |
Sustainability | Implement photovoltaic installations with energy storage; prepare SAF and carbon footprint reporting, which will improve the negotiating position with the lines and authorities. |
Operational resilience | Exercise emergency response procedures in the event of a pandemic or cyberattack; maintain a cash reserve for approximately 6 months of OPEX. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drop, N.; Bohdan, A. Application of the Holt–Winters Model in the Forecasting of Passenger Traffic at Szczecin–Goleniów Airport (Poland). Sustainability 2025, 17, 6407. https://doi.org/10.3390/su17146407
Drop N, Bohdan A. Application of the Holt–Winters Model in the Forecasting of Passenger Traffic at Szczecin–Goleniów Airport (Poland). Sustainability. 2025; 17(14):6407. https://doi.org/10.3390/su17146407
Chicago/Turabian StyleDrop, Natalia, and Adriana Bohdan. 2025. "Application of the Holt–Winters Model in the Forecasting of Passenger Traffic at Szczecin–Goleniów Airport (Poland)" Sustainability 17, no. 14: 6407. https://doi.org/10.3390/su17146407
APA StyleDrop, N., & Bohdan, A. (2025). Application of the Holt–Winters Model in the Forecasting of Passenger Traffic at Szczecin–Goleniów Airport (Poland). Sustainability, 17(14), 6407. https://doi.org/10.3390/su17146407