Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (220)

Search Parameters:
Keywords = load on a square area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8441 KB  
Article
Radar in 7500 m Well Based on Channel Adaptive Algorithm
by Handing Liu, Huanyu Yang, Changjin Bai, Siming Li, Cheng Guo and Qing Zhao
Sensors 2025, 25(19), 5994; https://doi.org/10.3390/s25195994 - 28 Sep 2025
Abstract
Deep-well radar telemetry over ultra-long cables suffers from strong frequency-selective attenuation and impedance drift under high temperature and pressure. We have proposed a channel-adaptive “communication + acquisition” architecture for a 7500 m borehole radar system. The scheme integrates spread-spectrum time domain reflectometry (SSTDR; [...] Read more.
Deep-well radar telemetry over ultra-long cables suffers from strong frequency-selective attenuation and impedance drift under high temperature and pressure. We have proposed a channel-adaptive “communication + acquisition” architecture for a 7500 m borehole radar system. The scheme integrates spread-spectrum time domain reflectometry (SSTDR; m-sequence with BPSK) to monitor the cable in situ, identify termination/cable impedance, and adaptively match the load, thereby reducing reflection-induced loss. On the receiving side, we combine time domain adaptive equalization—implemented as an LMS-driven FIR filter—with frequency domain OFDM equalization based on least-squares (LS) channel estimation, enabling constellation recovery and robust demodulation over the distorted channel. The full processing chain is realized in real time on a Xilinx Artix-7 (XC7A100T) FPGA with module-level reuse and pre-stored training sequences for efficient hardware scheduling. In a field deployment in the Shunbei area at 7500 m depth, radar results show high agreement with third-party geological logs: the GR-curve correlation reaches 0.92, the casing reflector at ~7250 m is clearly reproduced, and the key bottom depth error is 0.013%. These results verify that the proposed system maintains stable communication and accurate imaging in harsh deep-well environments while remaining compact and implementable on cost-effective hardware. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

18 pages, 5127 KB  
Article
Design of Two-Degree-of-Freedom PID Controllers Optimized by Bee Algorithm for Frequency Control in Renewable Energy Systems
by Sarawoot Boonkirdram, Sitthisak Audomsi, Worawat Sa-Ngiamvibool and Wassana Kasemsin
Energies 2025, 18(18), 4880; https://doi.org/10.3390/en18184880 - 13 Sep 2025
Viewed by 416
Abstract
The increasing incorporation of renewable energy sources, such as photovoltaic and wind power, results in considerable variability and uncertainty within modern power systems, thereby complicating load frequency control. Conventional controllers, including PI and PID, often fail to provide sufficient performance in dynamic conditions. [...] Read more.
The increasing incorporation of renewable energy sources, such as photovoltaic and wind power, results in considerable variability and uncertainty within modern power systems, thereby complicating load frequency control. Conventional controllers, including PI and PID, often fail to provide sufficient performance in dynamic conditions. This study introduces a Two-Degree-of-Freedom PID (2DOF-PID) controller optimized through the Bee Algorithm (BA) for Load Frequency Control (LFC) in a two-area interconnected power system that includes renewable energy sources. The BA is employed to enhance controller parameters according to two objective functions: the Integral of Time-weighted Absolute Error (ITAE) and the Integral of Time-weighted Squared Error (ITSE). Simulation studies utilizing MATLAB/Simulink are conducted to evaluate the comparative effectiveness of PI, PID, and 2DOF-PID controllers. The results demonstrate that the 2DOF-PID controller consistently outperforms conventional PI and PID controllers in terms of frequency stability. The ITAE optimization of the 2DOF-PID results in a reduction in the ITAE index by more than 95% compared to PI and PID controllers, a decrease in settling time by approximately 40–60%, and a near elimination of overshoot and undershoot. Through ITSE optimization, the 2DOF-PID achieves an error reduction exceeding 90% and ensures smooth convergence with minimal oscillations. The PID controller has slightly improved effectiveness in minimizing tie-line power deviation, whereas the 2DOF-PID demonstrates greater resilience and damping capability in frequency regulation across both regions. The findings confirm that the Bee Algorithm-tuned 2DOF-PID controller serves as a robust and effective approach for frequency management in systems primarily reliant on renewable energy sources. Future research should incorporate multi-objective optimization algorithms that concurrently address frequency and tie-line power variations, thereby providing a more equitable control framework for practical Automatic Generation Control (AGC) operations. Full article
(This article belongs to the Special Issue Modeling, Simulation and Optimization of Power Systems: 2nd Edition)
Show Figures

Figure 1

24 pages, 4872 KB  
Article
Leveraging Machine Learning (ML) to Enhance the Structural Properties of a Novel Alkali Activated Bio-Composite
by Assia Aboubakar Mahamat, Moussa Mahamat Boukar, Ifeyinwa Ijeoma Obianyo, Philbert Nshimiyimana, Blasius Ngayakamo, Nordine Leklou and Numfor Linda Bih
J. Compos. Sci. 2025, 9(9), 464; https://doi.org/10.3390/jcs9090464 - 1 Sep 2025
Viewed by 427
Abstract
This study explored the use of Borassus fruit fiber as reinforcement for earthen matrices (BFRC). The experimental results of the testing carried out on the structural properties were used to generate a primary dataset for training and testing machine learning (ML) models. Linear [...] Read more.
This study explored the use of Borassus fruit fiber as reinforcement for earthen matrices (BFRC). The experimental results of the testing carried out on the structural properties were used to generate a primary dataset for training and testing machine learning (ML) models. Linear regression (LR), Decision tree regressor (DTR), and gradient boosting regression (GBR) were used to build an ensemble learning (EL) model during the prediction of the hygroscopic properties, Young’s modulus, and compressive strength of the BFRC. Fiber content, activation concentration, curing days, dry weight, saturated weight, mass, flexural vibration, longitudinal vibration, correction factor, maximum load, and cross-sectional area were the various inputs considered in the structural properties prediction. The performance of both EL and single models (SMs) was appraised via three performance metrics—mean square error (MSE), root mean square (RMSE), and the coefficient of determination (R2)—to comparatively ascertain the model’s efficiency. Results showed that all models exhibited high accuracy in predicting Young’s modulus and compressive strength. Ensemble learning outperformed single models in predicting these properties, with MSE, RMSE, and R2 of 0.01 MPa, 0.1 MPa, and 99% and 3,923,262.5 MPa, 1980.7 Pa, and 99% for compressive strength and Young’s modulus, respectively. However, for hygroscopic behavior, linear regression (LR) demonstrated superior performance compared to other models, with MSE, RMSE, and R2 values of 0.13%, 0.36%, and 99%. Full article
Show Figures

Figure 1

12 pages, 2445 KB  
Article
The Effect of Girth Design and Girth Tension on Saddle-Horse Pressures and Forelimb Stride Kinematics in Rising Trot
by David Marlin, Olivia Randell, Emma Mayhew and Roberta Blake
Animals 2025, 15(17), 2540; https://doi.org/10.3390/ani15172540 - 29 Aug 2025
Viewed by 740
Abstract
The aim of this study was to investigate the effect of girth design and girth tension; six horses regularly ridden were used. Each horse underwent four experimental sessions in an unbalanced Latin-square design with two girth tensions (8 kg or 16 kg) and [...] Read more.
The aim of this study was to investigate the effect of girth design and girth tension; six horses regularly ridden were used. Each horse underwent four experimental sessions in an unbalanced Latin-square design with two girth tensions (8 kg or 16 kg) and two girth designs (straight girth (S) or anatomical girth (A)). Pressure between the saddle and the horse was measured at 100 Hz with a pressure mat (0.5 sensels per cm2). Notably, 2D limb kinematics were determined from anatomical markers placed on the fore and hindlimbs. Video was collected at 240 fps. There was no significant effect of girth type, girth tension, or girth type*tension interaction for any of the measured variables, with the exception of carpal flexion, which was significantly greater for A8 (median: 103°, 25th–75th percentile: 100–112°) than S8 (101°, 96–106°; p = 0.043). There was no effect of girth type (A or S) on mean saddle pressure for either cranial or caudal regions (p > 0.05), but caudal average pressure was significantly lower than cranial average pressure both at 8 and 16 kg tensions (p < 0.05). For both mean and peak pressure, the ratio cranial: caudal was significantly higher with 16 kg tension (p < 0.05), indicating that as the girth tension increases, the pressures shift towards the cranial aspect. In conclusion, neither girth tension nor girth type significantly influenced 2D limb kinematics, but higher tension has shifted the load towards the cranial area significantly, which could contribute to cranial thoracic back pain or injuries. Full article
(This article belongs to the Special Issue Advances in Equine Sports Medicine, Therapy and Rehabilitation)
Show Figures

Figure 1

20 pages, 2922 KB  
Article
A Comparative Study on the Spatio-Temporal Evolution and Driving Factors of Oases in the Tarim River Basin and the Heihe River Basin During the Historical Period
by Luchen Yao, Donglei Mao, Jie Xue, Shunke Wang and Xinxin Li
Sustainability 2025, 17(17), 7742; https://doi.org/10.3390/su17177742 - 28 Aug 2025
Viewed by 511
Abstract
Oases are the core carriers of societal development in arid regions, and their spatial patterns have changed significantly, driven by climate change and anthropogenic activities. This study integrates historical documents, archeological materials, maps, and remote sensing data. The changes in the temperature, precipitation, [...] Read more.
Oases are the core carriers of societal development in arid regions, and their spatial patterns have changed significantly, driven by climate change and anthropogenic activities. This study integrates historical documents, archeological materials, maps, and remote sensing data. The changes in the temperature, precipitation, settlements, war frequency, and oasis area were identified by combining quantitative and qualitative methods, and the partial least squares path model (PLS-PM) was utilized to quantify the natural and human driving factors. The results show that the oasis development in the Tarim and Heihe River Basins exhibits distinct spatio-temporal variability and phased characteristics and is comprehensively shaped by both natural and anthropogenic drivers. The Tarim Basin’s natural oases demonstrate a “fluctuating recovery” pattern. The cultivated oases gradually expanded. The natural oases within the Heihe River Basin have persistently decreased, and cultivated oases show a “U”-shaped evolution pattern. This reflects the strong intervention of human reclamation in the cultivated oases. The introverted social ecosystem has endowed the Tarim River Basin with the ability to self-repair and achieve a periodic recovery. The Heihe River Basin serves as a strategic corridor for national external engagement, relying on regime stability. A regime collapse led to its lack of a stable recovery period. The PLS-PM reveals that the Tarim River Basin oasis evolution is predominantly driven by climate fluctuations. The path coefficient of natural factors for artificial oases is 0.63, and extreme drought leads to natural oasis contraction. The human influence dominates the Heihe River Basin, with a −0.93 path coefficient linking the cultivated oasis area to human factors. The frequency of wars (load 0.74) and changes in settlements (load −0.92) are the key factors. This study provides a powerful case for the analysis of the evolution and driving mechanism of future oases in drylands. Full article
Show Figures

Figure 1

17 pages, 5141 KB  
Article
Optimization of the Photovoltaic Panel Design Towards Durable Solar Roads
by Peichen Cai, Yutong Chai, Susan Tighe, Meng Wang and Shunde Yin
Inventions 2025, 10(4), 70; https://doi.org/10.3390/inventions10040070 - 11 Aug 2025
Cited by 1 | Viewed by 595
Abstract
To improve the mechanical stability and service durability of solar road structures, this study systematically investigates the mechanical response characteristics of photovoltaic panels with different geometric shapes—including triangles, rectangles, squares, regular pentagons, and regular hexagons—under consistent boundary and loading conditions using the discrete [...] Read more.
To improve the mechanical stability and service durability of solar road structures, this study systematically investigates the mechanical response characteristics of photovoltaic panels with different geometric shapes—including triangles, rectangles, squares, regular pentagons, and regular hexagons—under consistent boundary and loading conditions using the discrete element method (DEM). All panels have a uniform thickness of 10 cm and equivalent surface areas to ensure shape comparability. Side lengths vary among the shapes: square panels with sides of 0.707 m, 1.0 m, and 1.5 m; triangle 1.155 m; rectangle (aspect ratio 1:2) 0.707 m; pentagon 1.175 m; and hexagon 0.577 m. Results show that panel geometry significantly influences stress distribution and deformation behavior. Although triangular panels exhibit higher ultimate bearing capacity and failure energy, they suffer from severe stress concentration and low stiffness. Regular hexagonal panels, due to their geometric symmetry, enable more uniform stress and displacement distributions, offering better stability and crack resistance. Size effect analysis reveals that larger panels improve load-bearing and energy dissipation capacity but exacerbate edge stress concentration and reduce overall stiffness, leading to more pronounced “thinning” deformation and premature failure. Failure mode analysis further indicates that shape governs crack initiation and path, while size determines crack propagation rate and failure extent—revealing a coupled shape–size mechanical mechanism. Regarding assembly, honeycomb arrangements demonstrate superior mechanical performance due to higher compactness and better load-sharing characteristics. The study ultimately recommends the use of small-sized regular hexagonal units and optimized splicing structures to balance strength, stiffness, and durability. These findings provide theoretical guidance and parameter references for the structural design of solar roads. Full article
Show Figures

Figure 1

15 pages, 2700 KB  
Article
Rainfall-Driven Nitrogen Dynamics in Catchment Ponds: Comparing Forest, Paddy Field, and Orchard Systems
by Mengdie Jiang, Yue Luo, Hengbin Xiao, Peng Xu, Ronggui Hu and Ronglin Su
Agriculture 2025, 15(14), 1459; https://doi.org/10.3390/agriculture15141459 - 8 Jul 2025
Viewed by 409
Abstract
The event scale method, employed for assessing changes in nitrogen (N) dynamics pre- and post-rain, provides insights into its transport to surface water systems. However, the relationships between N discharge in catchments dominated by different land uses and water quality remain unclear. This [...] Read more.
The event scale method, employed for assessing changes in nitrogen (N) dynamics pre- and post-rain, provides insights into its transport to surface water systems. However, the relationships between N discharge in catchments dominated by different land uses and water quality remain unclear. This study quantified variations in key N components in ponds across forest, paddy field, and orchard catchments before and after six rainfall events. The results showed that nitrate (NO3-N) was the main N component in the ponds. Post-rainfall, N concentrations increased, with ammonium (NH4+-N) and particulate nitrogen (PN) exhibiting significant elevations in agricultural ponds. Orchard catchments contributed the highest N load to the ponds, while forest catchments contributed the lowest. Following a heavy rainstorm event, total nitrogen (TN) loads in the ponds within forest, paddy field, and orchard catchments reached 6.68, 20.93, and 34.62 kg/ha, respectively. These loads were approximately three times higher than those observed after heavy rain events. The partial least squares structural equation model (PLS-SEM) identified that rainfall amount and changes in water volume were the dominant factors influencing N dynamics. Furthermore, the greater slopes of forest and orchard catchments promoted more N loss to the ponds post-rain. In paddy field catchments, larger catchment areas were associated with decreased N flux into the ponds, while larger pond surface areas minimized the variability in N concentration after rainfall events. In orchard catchment ponds, pond area was positively correlated with N concentrations and loads. This study elucidates the effects of rainfall characteristics and catchment heterogeneity on N dynamics in surface waters, offering valuable insights for developing pollution management strategies to mitigate rainfall-induced alterations. Full article
(This article belongs to the Special Issue Soil-Improving Cropping Systems for Sustainable Crop Production)
Show Figures

Figure 1

18 pages, 3131 KB  
Article
Enhancing Load Frequency Control in Power Systems Using Hybrid PIDA Controllers Optimized with TLBO-TS and TLBO-EDO Techniques
by Ahmed M. Shawqran, Mahmoud A. Attia, Said F. Mekhamer, Hossam Kotb, Moustafa Ahmed Ibrahim and Ahmed Mordi
Processes 2025, 13(5), 1532; https://doi.org/10.3390/pr13051532 - 16 May 2025
Cited by 1 | Viewed by 1033
Abstract
Load frequency control (LFC) is essential for maintaining the stability of power systems subjected to load variations and renewable energy disturbances. This paper presents two advanced Proportional–Integral–Derivative–Acceleration (PIDA) controllers optimized using hybrid techniques: Teaching–Learning-Based Optimization combined with transit search (PIDA-TLBO-TS) and with Exponential [...] Read more.
Load frequency control (LFC) is essential for maintaining the stability of power systems subjected to load variations and renewable energy disturbances. This paper presents two advanced Proportional–Integral–Derivative–Acceleration (PIDA) controllers optimized using hybrid techniques: Teaching–Learning-Based Optimization combined with transit search (PIDA-TLBO-TS) and with Exponential Distribution Optimization (PIDA-TLBO-EDO). The proposed hybrid optimization approaches integrate global exploration and local exploitation capabilities to achieve near-global optimal solutions with superior convergence performance. Three test scenarios are studied to assess controller performance: a load disturbance in area 1, a disturbance in area 2, and a disturbance introduced by stochastic wave energy input. In each case, the proposed hybrid controllers are benchmarked against the conventional TLBO-based PIDA controller available in the literature. Simulation results confirm that the hybrid PIDA-TLBO-EDO controller consistently outperforms the alternatives in terms of peak-to-peak oscillation, root mean square (RMS) error, settling time, and overshoot. Specifically, it achieves a 0.49% to 15% reduction in peak-to-peak oscillations and a 2.5% to 18% improvement in RMS error, along with a 10.27% improvement in tie-line power deviation and a 15.38% reduction in frequency oscillations under wave energy disturbances. Moreover, the PIDA structure, enhanced by its acceleration term, contributes to better dynamic response compared to traditional controller designs. The results highlight the effectiveness and robustness of the proposed hybrid controllers in damping oscillations and maintaining system stability, particularly in modern power systems with high levels of renewable energy integration. This study emphasizes the potential of combining complementary optimization techniques to enhance LFC system performance under diverse and challenging conditions. Full article
(This article belongs to the Special Issue Modeling, Operation and Control in Renewable Energy Systems)
Show Figures

Figure 1

15 pages, 16118 KB  
Article
Axial Tensile Experiment of the Lap-Type Asymmetric K-Shaped Square Tubular Joints with Built-In Stiffeners
by Zhihua Zhong, Peiyu Peng, Zheweng Zhu, Xiang Ao, Shiwei Xiong, Jinkun Huang, Lihong Zhou and Xiaochuan Bai
Buildings 2025, 15(10), 1634; https://doi.org/10.3390/buildings15101634 - 13 May 2025
Viewed by 403
Abstract
To study the mechanical properties of asymmetric K-shaped square tubular joints with built-in stiffening rib lap joints, axial tensile tests were carried out on one K-shaped joint without built-in stiffening ribs and four K-shaped joints with built-in stiffening ribs using an electro-hydraulic servo [...] Read more.
To study the mechanical properties of asymmetric K-shaped square tubular joints with built-in stiffening rib lap joints, axial tensile tests were carried out on one K-shaped joint without built-in stiffening ribs and four K-shaped joints with built-in stiffening ribs using an electro-hydraulic servo structural testing system. The effects of the addition of stiffening ribs and the welding method of the stiffening ribs on the mechanical properties were studied comparatively. The failure mode of the K-shaped joint was obtained, and the strain distribution and peak displacement reaction force in the nodal region were analyzed. A finite element analysis of the K-shaped joint was carried out, and the finite element results were compared with the experimental results. The results showed that the addition of transverse reinforcement ribs and more complete welds shared the squeezing effect of the brace on the chord. Arranging more reinforcing ribs in the fittings makes the chord more uniformly stressed and absorbs more energy while increasing the flexural load capacity of the fittings’ side plates. The presence of a weld gives a short-lived temperature increase in the area around the crack, and the buckling of the structure causes the surface temperature in the buckling area to continue to increase for some time. The temperature change successfully localized where the structure was deforming and creating cracks. The addition of the reinforcing ribs resulted in a change in the deformation pattern of the model, and the difference occurred because the flexural capacity of the brace with the added reinforcing ribs was greater than that of the side plate buckling. Full article
(This article belongs to the Special Issue Application of Experiment and Simulation Techniques in Engineering)
Show Figures

Figure 1

20 pages, 10497 KB  
Article
Dual Circularly Polarized Textile Antenna with Dual Bands and On-/Off-Body Communication Modes for Multifunctional Wearable Devices
by Yi Fan, Xiongying Liu, Hongcai Yang and Zhenglin Ju
Electronics 2025, 14(9), 1898; https://doi.org/10.3390/electronics14091898 - 7 May 2025
Cited by 1 | Viewed by 701
Abstract
A circularly polarized (CP) textile antenna is investigated for concurrent on- and off-body wireless communications in the 2.38 GHz medical body area network and 5.8 GHz industrial, scientific, and medical bands in the wireless body area network. The proposed scheme consists of a [...] Read more.
A circularly polarized (CP) textile antenna is investigated for concurrent on- and off-body wireless communications in the 2.38 GHz medical body area network and 5.8 GHz industrial, scientific, and medical bands in the wireless body area network. The proposed scheme consists of a square microstrip patch antenna (MPA), in which four shorting pins are employed to tune the two resonate modes of TM10 and TM00. Notably, the slant corners on MPA are cut symmetrically to realize unidirectional CP radiation, enabling off-body communication. Moreover, four rotating L-shaped parasite elements are loaded to excite the horizontal polarization mode (TMhp), which is combined with the TM00 mode to implement CP omnidirectional radiation along the human body. For verification, a proof-of-concept prototype with the dimensions of 45 mm × 45 mm × 2 mm was fabricated and characterized. The measured −10 dB impedance bandwidths of 2.5% and 6.7%, the 3 dB AR bandwidths of 2.5% and 2.7%, and the maximum realized gains of −2.8 and 6.8 dBic are achieved in dual bands, respectively. The experimental tests, such as human body loading, structural deformation, and humidity variation, were carried out. In addition, the wireless communication capability was measured and the radiation safety is evaluated. These performances show that the proposed antenna is an appropriate choice for multifunctional wearable applications. Full article
(This article belongs to the Special Issue Antenna Design and Its Applications)
Show Figures

Figure 1

15 pages, 6842 KB  
Article
Finite Element Analysis of Post-Buckling Failure in Stiffened Panels: A Comparative Approach
by Jakiya Sultana and Gyula Varga
Machines 2025, 13(5), 373; https://doi.org/10.3390/machines13050373 - 29 Apr 2025
Cited by 1 | Viewed by 617
Abstract
Stiffened panels are extensively used in aerospace applications, particularly in wing and fuselage sections, due to their favorable strength-to-weight ratio under in-plane loading conditions. This research employs the commercial finite element software Ansys-19 to analysis the critical buckling and ultimate collapse load of [...] Read more.
Stiffened panels are extensively used in aerospace applications, particularly in wing and fuselage sections, due to their favorable strength-to-weight ratio under in-plane loading conditions. This research employs the commercial finite element software Ansys-19 to analysis the critical buckling and ultimate collapse load of an aluminum stiffened panel having a dimension of 1244 mm (Length) × 957 mm (width) × 3.5 mm (thickness), with three stiffener blades located 280 mm away from each other. Both the critical buckling load and post-buckling ultimate failure load of the panel are validated against the experimental data found in the available literature, where the edges towards the length are clamped and simply supported, and the other two edges are free. For nonlinear buckling analysis, a plasticity power law is adopted with a small geometric imperfection of 0.4% at the middle of the panel. After the numerical validation, the investigation is further carried out considering four different lateral pressures, specifically 0.013 MPa, 0.065 MPa, 0.085 MPa, and 0.13 MPa, along with the compressive loading boundary conditions. It was found that even though the pressure application of 0.013 MPa did not significantly impact the critical buckling load of the panel, the ultimate collapse load was reduced by 18.5%. In general, the ultimate collapse load of the panel was severely affected by the presence of lateral pressure while edge compressing. Three opening shapes—namely, square, circular, and rectangular/hemispherical—were also investigated to understand the behavior of the panel with openings. It was found that the openings significantly affected the critical buckling load and ultimate collapse load of the stiffened panel, with the lateral pressure also contributing to this effect. Finally, in critical areas with higher lateral pressure load, a titanium panel can be a good alternative to the aluminum panel since it can provide almost twice to thrice better buckling stability and ultimate collapse load to the panels with a weight nearly 1.6 times higher than aluminum. These findings highlight the significance of precision manufacturing, particularly in improving and optimizing the structural efficiency of stiffened panels in aerospace industries. Full article
Show Figures

Figure 1

20 pages, 1963 KB  
Article
Matching the Sensory Analysis of Serpa PDO Cheese with the Volatile Profiles—A Preliminary Study
by Antónia Macedo, Maria João Carvalho, Elsa Mecha, Leonor Costa, António Ferreira, Rita S. Inácio and Maria do Rosário Bronze
Foods 2025, 14(9), 1509; https://doi.org/10.3390/foods14091509 - 25 Apr 2025
Viewed by 780
Abstract
Serpa cheese, a Portuguese Protected of Denomination Origin (PDO) cheese, known for its unique sensory attributes, is made from the raw milk of native sheep. In this preliminary work, ten samples of Serpa cheese were submitted for a sensory evaluation performed by an [...] Read more.
Serpa cheese, a Portuguese Protected of Denomination Origin (PDO) cheese, known for its unique sensory attributes, is made from the raw milk of native sheep. In this preliminary work, ten samples of Serpa cheese were submitted for a sensory evaluation performed by an expert panel in a sensory laboratory accredited according to ISO 17025 for Serpa cheese parameters, and the panelists classified the cheeses based on texture, taste and odor scores, in accordance with the specifications for the classification of this type of cheese. All cheeses were analyzed by SPME-GC-MS. Following an exploratory unsupervised multivariate analysis, the supervised multivariate analysis by partial least squares—discriminant analysis (PLS-DA), associated the relative percent area of the identified volatiles with the classification of cheeses attributed by the sensory panel. Among the 144 compounds putatively identified, there was a pattern of compound distribution of some of them, such as acetoin, diacetyl, and 2,3-butanediol, leaning toward the cheese samples with high taste and odor scores, while other compounds, such as ethyl caprate, capric acid, and 3-methylindole, were more associated with the cheese samples rated with a low score. Despite the reduced number of samples that may have imposed some restrictions on the conclusions drawn, there was a clear trend in the volatiles’ distribution, allowing us to identify, based on the higher correlation loadings, potential candidates for the Serpa cheese sensory quality. This preliminary study presents, for the first time, an overview of the volatiles that are present in Serpa PDO cheese that may be responsible for the positive or negative sensory evaluation of this PDO cheese. Full article
(This article belongs to the Section Dairy)
Show Figures

Graphical abstract

26 pages, 12604 KB  
Article
Investigation of Lattice Geometries Formed by Metal Powder Additive Manufacturing for Energy Absorption: A Comparative Study on Ti6Al4V, Inconel 718, and AISI 316L
by Ömer Faruk Çakır and Mehmet Erdem
Machines 2025, 13(4), 316; https://doi.org/10.3390/machines13040316 - 13 Apr 2025
Cited by 1 | Viewed by 1098
Abstract
Impact absorbers are needed in many different areas in terms of energy absorption and crashworthiness. While the design of these structures is expected to increase mechanical performance, they are expected to be lightweight, and when evaluated in this context, lattice structures come to [...] Read more.
Impact absorbers are needed in many different areas in terms of energy absorption and crashworthiness. While the design of these structures is expected to increase mechanical performance, they are expected to be lightweight, and when evaluated in this context, lattice structures come to the fore. In this study, impact absorbers, also known as crash boxes, consisting of lattice structures designed to increase energy absorption performance were fabricated by a new manufacturing method, metal powder additive manufacturing, and their mechanical performance was experimentally investigated under quasi-static axial loading, and energy absorption data were obtained. The specimens were designed from Ti6Al4V, INC 718, and AISI 316L materials by forming 18 matrix structures with square and hexagonal geometries. According to this study, the lattice structures absorbed up to 4.5 times more energy than the shell structures of a similar material group. According to the normalized values among all samples, the hexagonal sample made of Ti6Al4V material showed 4.3 times higher energy absorption efficiency. The AISI 316L material showed the best crushing performance due to its ductile structure. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

21 pages, 4097 KB  
Article
Regionalization of the Location-Dependent Charging Demand of Electric Passenger Cars at the Grid Square Level Using an Agent-Based Mobility Simulation
by Nelly-Lee Fischer, Luka Eschmann and Krzysztof Rudion
Energies 2025, 18(6), 1544; https://doi.org/10.3390/en18061544 - 20 Mar 2025
Viewed by 450
Abstract
The charging demand of electric passenger cars needs to be considered during the planning and operation of the electric power grid, especially at high penetration rates. It is not sufficient to simply quantify these additional loads, but rather time- and location-dependent modeling of [...] Read more.
The charging demand of electric passenger cars needs to be considered during the planning and operation of the electric power grid, especially at high penetration rates. It is not sufficient to simply quantify these additional loads, but rather time- and location-dependent modeling of these loads is required, so that grid operators can precisely predict the magnitude and location of the additional load. For this purpose, an agent-based modeling approach was developed that calculates, locates, and aggregates the charging demand of electric passenger cars per 100 m by 100 m grid squares in an observed area. The mobility of individual vehicles is simulated by efficiently finding destinations in the form of grid squares for generated trips using a k-d tree and parking space data. In a case study, the developed approach is applied to regionalize the charging demand of electric passenger cars at the transmission grid level within the federal state of Baden-Wuerttemberg, Germany. The resulting charging demand can be determined for each individual node of the transmission grid. The analysis shows that the developed approach can be used to quantify regional differences in charging demand and can therefore be used to improve grid planning and operation. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

20 pages, 10346 KB  
Article
Investigating Source Mechanisms for Nonlinear Displacement of GNSS Using Environmental Loads
by Jian Wang, Wenlan Fan, Weiping Jiang, Zhao Li, Tianjun Liu and Qusen Chen
Remote Sens. 2025, 17(6), 989; https://doi.org/10.3390/rs17060989 - 12 Mar 2025
Cited by 1 | Viewed by 643
Abstract
Global surface pressure, terrestrial water storage models, and seabed pressure grids provide valuable support for studying the mechanisms of the nonlinear motion behind GNSS stations. These data allow for the precise identification and analysis of displacement effects caused by environmental loads. This study [...] Read more.
Global surface pressure, terrestrial water storage models, and seabed pressure grids provide valuable support for studying the mechanisms of the nonlinear motion behind GNSS stations. These data allow for the precise identification and analysis of displacement effects caused by environmental loads. This study analyzes GNSS coordinate time series data from 186 ITRF reference stations worldwide over a 10-year period, thoroughly examining the magnitude, spatial distribution, and impact of hydrological, atmospheric, and non-tidal oceanic loading on nonlinear motion. The results indicate that the atmospheric loading effects had a magnitude of approximately ±5 mm in the up (U) direction and ±1 mm in the east (E) and north (N) directions. Moreover, the impact of atmospheric loading on station displacements was more pronounced in high-latitude regions compared with mid- and low-latitude regions. Secondly, the hydrological loading showed a magnitude of approximately ±5 mm in the U direction and ±0.8 mm in the E and N directions, with inland areas causing larger displacements than coastal regions. Furthermore, the non-tidal oceanic loading induced displacements with magnitudes of approximately ±0.5 mm in the E and N directions and ±2 mm in the U direction, significantly affecting stations in the nearshore areas more than inland stations. Subsequently, this study analyzes the corrective effects of environmental loads on the coordinate time series. The average correlation coefficients between the E, N, and U directions and the coordinate time series were 0.35, 0.31, and 0.52, respectively. After removing the displacements caused by environmental loads, the root mean square (RMS) values of the coordinate time series decreased by 85.5% in the E direction, 77.4% in the N direction, and 89.8% in the U direction, with average reductions of 6.2%, 4.4%, and 16.7%, respectively. Lastly, it also comprehensively assesses the consistency between environmental loads and coordinate time series from the perspectives of the optimal noise model, velocity and uncertainty, and amplitude and phase. This study demonstrates that the geographic location of a station is closely related to the impact of environmental loads, with a significantly greater effect in the vertical direction than that in the horizontal direction. By correcting for environmental loads, the accuracy of the coordinate time series can be significantly enhanced. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

Back to TopTop