Leveraging Machine Learning (ML) to Enhance the Structural Properties of a Novel Alkali Activated Bio-Composite
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Soil Excavation and Processing
2.1.2. Natural Fiber Extraction
2.1.3. Composite Production
2.2. Experimental Program
2.2.1. Mechanical Behavior Experiment
2.2.2. Hygroscopic Analysis
2.2.3. Scanning Electron Microscopy (SEM)/Electron Dispersive X-Ray (EDX)
2.2.4. Machine Learning Models
- Performance metrics
- b.
- Framework to establish the machine learning models
- T.build(X_train, y_train)
- ○
- Recursively split nodes:
- ■
- Find best feature f using a splitting criterion (e.g., Gini impurity, information gain)
- ■
- Split node into child nodes based on f
- ○
- Stop splitting when criteria met
- ŷ = T.predict(x)
- Metrics on X_test
- ŷ0 = initial model prediction (e.g., average target value)
- M = ensemble of weak learners
- For m = 1 to M:
- ○
- Calculate residuals: ri = yi − ŷi−1
- ○
- Train weak learner hₘ(x) on (X, r)
- ○
- Update ensemble: ŷi = ŷi−1 + α ∗ hₘ(xi)
- ŷ = Σ[αₘ ∗ hₘ(x)]
- Metrics on X_test
- ŷ0 = initial model prediction
- y = model parameters: β = 0
- For each training (xi, yi):
- ○
- Calculate the residual: ri = yi − ŷi
- ○
- Update the model parameters: β = β + α ∗ xi ∗ ri
- ○
- Update the prediction: ŷi = β ∗ xi
- For a new input x:
- ○
- Calculate the predicted value: ŷ = β ∗ x
- Calculate metrics on X_test
3. Results and Discussion
3.1. Physico-Morphological Observations of Borassus Fruit-Reinforced Composite (BFRC)
3.2. Young’s Modulus Prediction
3.3. Compressive Strength Prediction
3.4. Hygroscopic Properties Prediction
3.5. Feature Importance Analysis
4. Limitations, Challenges, and Practical and Theoretical Implications with Examples to Enhance Decision-Making
- The input used during training has a substantial impact on the model’s performance based on the expected attributes.
- EL models can often achieve higher accuracy; however, some SMs compete with EL models in terms of performance.
- Making rational choices requires quantifying the degree of uncertainty in the forecasts. Because of the amount and caliber of the dataset, the models were straightforward to comprehend.
4.1. Theoretical Implications
4.2. Practical Implications
5. Conclusions
- The morphological characterization of the Borassus fibers showed an appropriate fiber length and diameter for reinforcement, with superficial pores that could improve adhesion to the matrix. The earthen matrix properties are influenced by its moisture content, Atterberg limits, dry density, and specific gravity.
- The prediction of the Young’s modulus and compressive strength of the BFRC using machine learning (ML) models demonstrated the superiority of ensemble learning (EL) and gradient boosting regression (GBR) over single models (SMs). These models exhibited high accuracy and robustness in capturing the complex relationships between the input variables and the output properties.
- Using ML models to predict the hygroscopic properties, it was shown that LR best captured the linear relationship between the experimental and predicted values. Even while the EL model performed better than its SM, in this instance, it was not superior to LR.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
BF | Borassus Fruit Fiber |
BFRC | Borassus Fruit Fiber Reinforced Composite |
BS | British Standard |
DTR | Decision Tree Regressor (or Regression) |
EDX | Energy-Dispersive X-ray Spectroscopy |
EL | Ensemble Learning |
GB | Gradient Boosting |
GBR | Gradient Boosting Regression |
GBRT | Gradient Boosting Regression Tree |
HPC | High-Performance Concrete |
HSC | High-Strength Concrete |
IET | Impulse Excitation Technique |
LR | Linear Regression |
LSSVM | Least Squares Support Vector Machine |
LSSVR | Least Squares Support Vector Regression |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
ML | Machine Learning |
MSE | Mean Square Error |
RAC | Recycled Aggregate Concrete |
RF | Random Forest |
RMSE | Root Mean Square Error |
SEM | Scanning Electron Microscopy |
SFRC | Steel Fiber Reinforced Concrete |
SMs | Single Models |
SVM | Support Vector Machine |
UHPC | Ultra-High-Performance Concrete |
UTM | Universal Testing Machine |
Wa | Water Absorption |
wt% | Weight Percent |
References
- Frmer, G.T.; Cook, J. Scientific Principles and the Scientific Method. In Climate Change Science: A Modern Synthesis; Springer: New York, NY, USA, 2012. [Google Scholar]
- Huang, G.; Abou-Chakra, A.; Geoffroy, S.; Absi, J. A Multi-Scale Numerical Simulation on Thermal Conductivity of Bio-Based Construction Materials. Constr. Mater. 2022, 2, 148–165. [Google Scholar] [CrossRef]
- Medvey, B.; Dobszay, G. Durability of Stabilized Earthen Constructions: A Review. Geotech. Geol. Eng. 2020, 38, 2403–2425. [Google Scholar] [CrossRef]
- Hashemi, A.; Cruickshank, H.; Cheshmehzangi, A. Environmental impacts and embodied energy of construction methods and materials in low-income tropical housing. Sustainability 2015, 7, 7866–7883. [Google Scholar] [CrossRef]
- McLellan, B.C.; Williams, R.P.; Lay, J.; Van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, G.; Chen, B.; Song, D.; Qi, J.; Liu, X. Analysis of CO2 Emission for the cement manufacturing with alternative raw materials: A LCA-based framework. In Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; pp. 2541–2545. [Google Scholar]
- Mahamat, A.A.; Leklou, N.; Obianyo, I.I.; Stanislas, T.T.; Ayeni, O.; Bih, N.L. Evaluation of the microstructural and physico-mechanical characteristics of cement-stabilized termite hill soil for construction application. Discov. Civ. Eng. 2024, 1, 54. [Google Scholar] [CrossRef]
- Ngayakamo, B.; Aboubakar, A.M.; Komadja, C.G.; Bello, A.; Onwualu, A.P. Eco-friendly use of eggshell powder as a bio-filler and flux material to enhance technological properties of fired clay bricks. Metall. Mater. Eng. 2021, 27, 371–383. [Google Scholar] [CrossRef]
- Stazi, F.; Nacci, A.; Tittarelli, F.; Pasqualini, E.; Munafò, P. An experimental study on earth plasters for earthen building protection: The effects of different admixtures and surface treatments. J. Cult. Herit. 2016, 17, 27–41. [Google Scholar] [CrossRef]
- Toniolo, N.; Rincón, A.; Roether, J.A.; Ercole, P.; Bernardo, E.; Boccaccini, A.R. Extensive reuse of soda-lime waste glass in fly ash-based geopolymers. Constr. Build. Mater. 2018, 188, 1077–1084. [Google Scholar] [CrossRef]
- Ahmad, J.; Arbili, M.M.; Majdi, A.; Althoey, F.; Farouk Deifalla, A.; Rahmawati, C. Performance of concrete reinforced with jute fibers (natural fibers): A review. J. Eng. Fiber Fabr. 2022, 17, 15589250221121871. [Google Scholar] [CrossRef]
- Stanislas, T.T.; Komadja, G.C.; Obianyo, I.I.; Ayeni, O.; Mahamat, A.A.; Tendo, J.F.; Junior, H.S. Multivariate regression approaches to predict the flexural performance of cellulose fibre reinforced extruded earth bricks for sustainable buildings. Clean. Mater. 2023, 7, 100180. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Savastano, H.; Turner, A.; Mercer, C.; Soboyejo, W.O. Mechanical behavior of cement-based materials reinforced with sisal fibers. J. Mater. Sci. 2006, 41, 6938–6948. [Google Scholar] [CrossRef]
- Concha-Riedel, J.; Araya-Letelier, G.; Antico, F.C.; Reidel, U.; Glade, A. Influence of Jute Fibers to Improve Flexural Toughness, Impact Resistance and Drying Shrinkage Cracking in Adobe Mixes. In Earthen Dwellings and Structures; Springer Transactions in Civil and Environmental Engineering: Cham, Switzerland, 2019; pp. 269–278. [Google Scholar]
- Ayeni, O.; Mahamat, A.A.; Bih, N.L.; Stanislas, T.T.; Isah, I.; Junior, H.S.; Boakye, E.; Onwualu, A.P. Effect of Coir Fiber Reinforcement on Properties of Metakaolin-Based Geopolymer Composite. Appl. Sci. 2022, 12, 5478. [Google Scholar] [CrossRef]
- Morton, J. Notes on Distribution, Propagation, and Products of Borassus Palms (Arecaceae). Econ. Bot. 1988, 42, 420–441. [Google Scholar] [CrossRef]
- Mahamat, A.A.; Leklou, N.; Obianyo, I.I.; Poullain, P.; Stanislas, T.T.; Ayeni, O.; Bih, N.L.; Savastano, H. Assessment of hygrothermal and mechanical performance of alkali activated Borassus fiber reinforced earth-based bio-composite. J. Build. Eng. 2022, 62, 105411. [Google Scholar] [CrossRef]
- Chowdhury, M.N.K.; Beg, M.D.H.; Khan, M.R.; Mina, M.F. Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment. Cellulose 2013, 20, 1477–1490. [Google Scholar] [CrossRef]
- Sridhar, R. A Review on performance of coir fiber reinforced sand. Int. J. Eng. Technol. 2017, 9, 249–256. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, Y.; Wu, X.; Skibniewski, M.J. Lecture Notes in Civil Engineering Artificial Intelligence in Construction Engineering and Management; Springer: Singapore, 2021; Available online: http://www.springer.com/series/15087 (accessed on 19 July 2024).
- Russell, S.J.; Norvig, P.; Davis, E.; Edwards, D.D.; Forsyth, D.; Hay, N.J.; Malik, J.M.; Mittal, V.; Sahami, M.; Thrun, S. Artificial Intelligence A Modern Approach, 3rd ed.; Pearson: London, UK, 2022. [Google Scholar]
- Koyamparambath, A.; Adibi, N.; Szablewski, C.; Adibi, S.A.; Sonnemann, G. Implementing Artificial Intelligence Techniques to Predict Environmental Impacts: Case of Construction Products. Sustainability 2022, 14, 3699. [Google Scholar] [CrossRef]
- Mahamat Boukar, M.; Mahamat, A.A.; Djibrine, O.H. The Impact of Artificial Intelligence (AI) on Content Management Systems (CMS): A Deep Dive. Int. J. Intell. Syst. Appl. Eng. 2024, 12, 552–560. Available online: www.ijisae.org (accessed on 19 July 2024).
- Oyedele, A.O.; Ajayi, A.O.; Oyedele, L.O. Machine learning predictions for lost time injuries in power transmission and distribution projects. Mach. Learn. Appl. 2021, 6, 100158. [Google Scholar] [CrossRef]
- Mahamat, A.A.; Boukar, M.M.; Ibrahim, N.M.; Stanislas, T.T.; Bih, N.L.; Obianyo, I.I.; Savastano, H. Machine learning approaches for prediction of the compressive strength of alkali activated termite mound soil. Appl. Sci. 2021, 11, 4754. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Kamiński, P.; Deifalla, A.F.; Sufian, M.; Dyczko, A.; Ben Kahla, N.; Atig, M. Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques. Materials 2022, 15, 4209. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Nguyen, Q.D.; Le, T.A.; Shin, J.; Lee, K. Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches. Constr. Build. Mater. 2020, 247, 118581. [Google Scholar] [CrossRef]
- Mahamat, A.A.; Boukar, M.M.; Leklou, N.; Obianyo, I.I.; Stanislas, T.T.; Bih, N.L.; Ayeni, O.; Ibrahim, N.M.; Savastano, H. A Machine Learning Led Investigation Predicting the Thermos-mechanical Properties of Novel Waste-based Composite in Construction. Waste Biomass Valorization 2024, 15, 5445–5461. [Google Scholar] [CrossRef]
- Arabnia, H.R.; Tran, Q.N. (Eds.) Software Tools and Algorithms for Biological Systems; Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2011; Volume 696, Available online: https://link.springer.com/10.1007/978-1-4419-7046-6 (accessed on 19 July 2024).
- Paudel, S.; Pudasaini, A.; Shrestha, R.K.; Kharel, E. Compressive strength of concrete material using machine learning techniques. Clean. Eng. Technol. 2023, 15, 100661. [Google Scholar] [CrossRef]
- Rincy, T.N.; Gupta, R. Ensemble learning techinques and its efficiency in machine learning: A survey. In Proceedings of the 2nd International Conference on Data, Engineering and Applications (IDEA), Bhopal, India, 28–29 February 2020. [Google Scholar]
- Shatnawi, A.; Alkassar, H.M.; Al-Abdaly, N.M.; Al-Hamdany, E.A.; Bernardo, L.F.A.; Imran, H. Shear Strength Prediction of Slender Steel Fiber Reinforced Concrete Beams Using a Gradient Boosting Regression Tree Method. Buildings 2022, 12, 550. [Google Scholar] [CrossRef]
- Munir, M.J.; Kazmi, S.M.S.; Wu, Y.F.; Lin, X.; Ahmad, M.R. Development of a novel compressive strength design equation for natural and recycled aggregate concrete through advanced computational modeling. J. Build. Eng. 2022, 55, 104690. [Google Scholar] [CrossRef]
- Upreti, K.; Verma, M.; Agrawal, M.; Garg, J.; Kaushik, R.; Agrawal, C.; Singh, D.; Narayanasamy, R.; Chelladurai, S.J.S. Prediction of Mechanical Strength by Using an Artificial Neural Network and Random Forest Algorithm. J. Nanomater. 2022, 2022, 7791582. [Google Scholar] [CrossRef]
- Mahamat, A.A.; Boukar, M.M. Machine learning techniques versus classical statistics in strength predictions of eco-friendly masonry units. In Proceedings of the 16th International Conference on Electronics Computer and Computation (ICECCO 2021), Kaskelen, Kazakhstan, 25–26 November 2021. [Google Scholar]
- Obianyo, I.I.; Onwualu, A.P.; Mahamat, A.A. Evaluation of Predictive Models for Mechanical Properties of Earth-Based Composites for Sustainable Building Applications. In New Advances in Soft Computing in Civil Engineering, AI-Based Optimization and Prediction; Bekdaş, G., Nigdeli, S.M., Eds.; Studies in Systems, Decision and Control; Springer Nature: Cham, Switzerland, 2024; Volume 547, pp. 179–190. Available online: https://link.springer.com/10.1007/978-3-031-65976-8 (accessed on 19 July 2024).
- Mangalathu, S.; Jang, H.; Hwang, S.H.; Jeon, J.S. Data-driven machine-learning-based seismic failure mode identification of reinforced concrete shear walls. Eng. Struct. 2020, 208, 110331. [Google Scholar] [CrossRef]
- Mohanraj, T.; Yerchuru, J.; Krishnan, H.; Nithin Aravind, R.S.; Yameni, R. Development of tool condition monitoring system in end milling process using wavelet features and Hoelder’s exponent with machine learning algorithms. Measurement 2021, 173, 108671. [Google Scholar] [CrossRef]
- Alghamdi, S.J. Classifying High Strength Concrete Mix Design Methods Using Decision Trees. Materials 2022, 15, 1950. [Google Scholar] [CrossRef]
- Ahmad, A.; Farooq, F.; Niewiadomski, P.; Ostrowski, K.; Akbar, A.; Aslam, F.; Alyousef, R. Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm. Materials 2021, 14, 794. [Google Scholar] [CrossRef]
- Phung, B.N.; Le, T.H.; Mai, H.V.T.; Nguyen, T.A.; Ly, H.B. Advancing basalt fiber asphalt concrete design: A novel approach using gradient boosting and metaheuristic algorithms. Case Stud. Constr. Mater. 2023, 19, e02528. [Google Scholar] [CrossRef]
- BS 1377-2:2022; Part 2: British Standard Methods of Test for Soils for Civil Engineering Purposes. British Standard Institutions: London, UK, 2020.
- ASTM D854-23; Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International: West Conshohocken, PA, USA, 2002; Volume 4, pp. 1–9.
- ASTM D7263-21; Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens. ASTM International: West Conshohocken, PA, USA, 2021. Available online: http://www.astm.org/cgi-bin/resolver.cgi?D7263-21 (accessed on 19 July 2024).
- ASTM D4318-17e1; Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2017. Available online: http://www.astm.org/cgi-bin/resolver.cgi?D4318-17E1 (accessed on 19 July 2024).
- Mahamat, A.A.; Obianyo, I.I.; Ngayakamo, B.; Bih, N.L.; Ayeni, O.; Azeko, S.T.; Savastano, H. Alkali activation of compacted termite mound soil for eco-friendly construction materials. Heliyon 2021, 7, e06597. [Google Scholar] [CrossRef] [PubMed]
- ASTM C109/C109M-20; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://store.astm.org/c0109_c0109m-20.html (accessed on 19 July 2024).
- Barnaure, M.; Bonnet, S.; Poullain, P. Earth buildings with local materials: Assessing the variability of properties measured using non-destructive methods. Constr. Build. Mater. 2021, 281, 122613. [Google Scholar] [CrossRef]
- ASTM C1548–02 (R2007); Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio of Refractory Materials by Impulse Excitation of Vibration1. ASTM International: West Conshohocken, PA, USA, 2007. Available online: www.astm.org (accessed on 12 January 2024).
- Linda Bih, N.; Aboubakar Mahamat, A.; Bidossèssi Hounkpè, J.; Azikiwe Onwualu, P.; Boakye, E.E. The Effect of Polymer Waste Addition on the Compressive Strength and Water Absorption of Geopolymer Ceramics. Appl. Sci. 2021, 11, 3540. [Google Scholar] [CrossRef]
- AA Mahamat, M.M. Boukar. On the Use of Machine Learning Technique to Appraise Thermal Properties of Novel Earthen Composite for Sustainable Housing in Sub-Saharan Africa. In Innovations and Interdisciplinary Solutions for Underserved Areas; Springer: Cham, Switzerland, 2023; pp. 161–170. [Google Scholar]
- Mahamat, A.A.; Boukar, M.M.; Leklou, N.; Celino, A.; Obianyo, I.I.; Bih, N.L.; Stanislas, T.T.; Savastanos, H. Decision Tree Regression vs. Gradient Boosting Regressor Models for the Prediction of Hygroscopic Properties of Borassus Fruit Fiber. Appl. Sci. 2024, 14, 7540. [Google Scholar] [CrossRef]
- Mahamat, A.A.; Bih, N.L.; Ayeni, O.; Onwualu, P.A.; Savastano, H.; Soboyejo, W.O. Development of sustainable and eco-friendly materials from termite hill soil stabilized with cement for low-cost housing in Chad. Buildings 2021, 11, 86. [Google Scholar] [CrossRef]
- Abushanab, W.S.; Moustafa, E.B.; Ghandourah, E.I.; Hussein, H.; Taha, M.A.; Mosleh, A.O. Impact of Hard and Soft Reinforcements on the Microstructure, Mechanical, and Physical Properties of the Surface Composite Matrix Manufactured by Friction Stir Processing. Coatings 2023, 13, 284. [Google Scholar] [CrossRef]
- Mahamat, A.A.; Dayyabu, A.; Sanusi, A.; Ado, M.; Obianyo, I.I.; Stanislas, T.T.; Bih, N.L. Dimensionnal stability and strength appraisal of termite hill soil stabilisation using hybrid bio-waste and cement for eco-friendly housing. Heliyon 2022, 8, e09406. [Google Scholar] [CrossRef]
- Rahmat, M.N.; Ismail, N. Effect of optimum compaction moisture content formulations on the strength and durability of sustainable stabilised materials. Appl. Clay Sci. 2018, 157, 257–266. [Google Scholar] [CrossRef]
- Alshameri, B. Maximum dry density of sand–kaolin mixtures predicted by using fine content and specific gravity. SN Appl. Sci. 2020, 2, 1693. [Google Scholar] [CrossRef]
- Obi Reddy, K.; Shukla, M.; Uma Maheswari, C.; Varada Rajulu, A. Mechanical and physical characterization of sodium hydroxide treated Borassus fruit fibers. J. For. Res. 2012, 23, 667–674. [Google Scholar] [CrossRef]
- Verma, D.; Goh, K.L. Effect of mercerization/alkali surface treatment of natural fibres and their utilization in polymer composites: Mechanical and morphological studies. J. Compos. Sci. 2021, 5, 175. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Amin, M.N.; Khan, K.; Javed, M.F.; Aslam, F.; Qadir, M.G.; Faraz, M.I. Prediction of Mechanical Properties of Fly-Ash/Slag-Based Geopolymer Concrete Using Ensemble and Non-Ensemble Machine-Learning Techniques. Materials 2022, 15, 3478. [Google Scholar] [CrossRef] [PubMed]
- Wadhawan, S.; Bassi, A.; Singh, R.; Patel, M. Prediction of Compressive Strength for Fly Ash-Based Concrete: Critical Comparison of Machine Learning Algorithms. J. Soft Comput. Civ. Eng. 2023, 7, 68–110. [Google Scholar]
- Lu, X.; Zhou, W.; Ding, X.; Shi, X.; Luan, B.; Li, M. Ensemble Learning Regression for Estimating Unconfined Compressive Strength of Cemented Paste Backfill. IEEE Access 2019, 7, 72125–72133. [Google Scholar] [CrossRef]
- Li, Q.F.; Song, Z.M. High-performance concrete strength prediction based on ensemble learning. Constr. Build. Mater. 2022, 324, 126694. [Google Scholar] [CrossRef]
- Xiong, W.; Xiao, L.; Han, D.; Yue, W. A prediction model for water absorption in sublayers based on stacking ensemble learning method. Geoenergy Sci. Eng. 2024, 239, 212896. [Google Scholar] [CrossRef]
LR | GBR | DTR |
---|---|---|
+ ε | Non-parametric, henceforth complex to represent mathematically |
Fiber Content (%) | Activator (%) | Curing Days | Dry Weight (g) | Saturated Weight (g) | Water Absorption (%) |
---|---|---|---|---|---|
0.5 | 0.03 | 14 | 479.1 | 541.5 | 13.02 |
0.5 | 0.03 | 14 | 442.2 | 489.1 | 10.60 |
0.5 | 0.03 | 14 | 482.4 | 535.4 | 10.99 |
0.5 | 0.03 | 14 | 501.6 | 596.5 | 18.92 |
0.5 | 0.03 | 14 | 496.9 | 607.6 | 22.28 |
0.5 | 0.03 | 14 | 489.2 | 605.4 | 23.75 |
0.5 | 0.03 | 14 | 488.4 | 610.7 | 25.04 |
0.5 | 0.03 | 14 | 538.6 | 670.9 | 24.57 |
0.5 | 0.03 | 14 | 478.4 | 640.3 | 33.83 |
0.5 | 0.03 | 14 | 489.1 | 531.5 | 8.67 |
0.5 | 0.03 | 14 | 452.2 | 499.1 | 10.37 |
… | … | … | … | … | … |
… | … | … | … | … | … |
… | … | … | … | … | … |
0.5 | 0.03 | 90 | 499.3 | 615.8 | 23.33 |
0.5 | 0.03 | 90 | 452.2 | 605.7 | 33.94 |
0.5 | 0.03 | 90 | 492.2 | 640.6 | 30.16 |
Fiber Content (%) | Activator (%) | Curing Days | Cross Sectional Area (mm2) | Maximum Load (kN) | Compressive Strength (MPa) |
---|---|---|---|---|---|
0.5 | 0.03 | 14 | 1000 | 1290 | 1.29 |
0.5 | 0.03 | 14 | 1000 | 1290 | 1.29 |
0.5 | 0.03 | 14 | 1000 | 1290 | 1.29 |
0.5 | 0.03 | 14 | 1000 | 2290 | 2.29 |
0.5 | 0.03 | 14 | 1000 | 2345 | 2.35 |
0.5 | 0.03 | 14 | 970 | 1234 | 1.27 |
0.5 | 0.03 | 14 | 970 | 1580 | 1.63 |
0.5 | 0.03 | 14 | 970 | 1305 | 1.35 |
0.5 | 0.03 | 14 | 970 | 1495 | 1.54 |
0.5 | 0.03 | 14 | 900 | 1495 | 1.66 |
0.5 | 0.03 | 14 | 900 | 1890 | 2.10 |
… | … | … | … | … | … |
… | … | … | … | … | … |
… | … | … | … | … | … |
0.5 | 0.03 | 90 | 800 | 19,475 | 24.34 |
0.5 | 0.03 | 90 | 800 | 18,543 | 23.18 |
0.5 | 0.03 | 90 | 800 | 17,456 | 21.82 |
Fiber Content (%) | Activator (%) | Curing Days | Mass (g) | Flexural Vibration (Hz) | Torsional Vibration (Hz) | Correction Factor | Young’s Modulus (Pa) |
---|---|---|---|---|---|---|---|
0.5 | 0.03 | 14 | 465.17 | 3.15 | 4.41 | 1.4115625 | 462,555.777 |
0.5 | 0.03 | 14 | 500.12 | 3.12 | 4.48 | 1.4115625 | 534,674.114 |
0.5 | 0.03 | 14 | 520.09 | 2.94 | 2.71 | 1.4115625 | 578,226.139 |
0.5 | 0.03 | 14 | 421.16 | 2.74 | 4.07 | 1.4115625 | 379,170.854 |
0.5 | 0.03 | 14 | 469.08 | 2.73 | 4.41 | 1.4115625 | 470,364.51 |
0.5 | 0.03 | 14 | 532.77 | 3.11 | 4.35 | 1.4115625 | 606,764.603 |
0.5 | 0.03 | 14 | 487.53 | 3.13 | 3.9 | 1.4115625 | 508,093.224 |
0.5 | 0.03 | 14 | 469.46 | 3.03 | 3.87 | 1.4115625 | 471,126.9 |
0.5 | 0.03 | 14 | 476.57 | 3.1 | 3.18 | 1.4115625 | 485,505.454 |
0.5 | 0.03 | 14 | 520.6 | 2.59 | 3.16 | 1.4115625 | 579,360.711 |
0.5 | 0.03 | 14 | 451.6 | 2 | 2.63 | 1.4115625 | 435,961.943 |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
0.5 | 0.03 | 90 | 425.16 | 3.02 | 3.16 | 1.4115625 | 386,407.467 |
0.5 | 0.03 | 90 | 468 | 2.97 | 2.63 | 1.4115625 | 468,201.089 |
0.5 | 0.03 | 90 | 512 | 2.82 | 3.37 | 1.4115625 | 560,377.43 |
Soil’s Physical Characteristics | BNF Properties: Fine Fibers | ||
Particle size distribution | 75% > 80 μm | Length/diameter | 5 cm/50 µm |
Specific gravity | 2.50 | Elongation | 25% |
Dry density | 0.56 g/cm3 | Modulus | 7.5 GPa |
Moisture content | 3.55% | BNF Properties: Coarse Fibers | |
Liquid limit | 33.50% | Length/diameter | 10 cm/170 µm |
Plastic limit | 20.30% | Elongation | 30% |
Plasticity index | 13.20% | Modulus | 8.5 GPa |
Feature | Importance | ||
---|---|---|---|
Young’s Modulus | Compressive Strength | Water Absorption | |
Fiber content (%) | 0.5535 | 0.6218 | 0.4715 |
Activator (%) | 0.2504 | 0.2227 | 0.2740 |
Curing days | 0.1961 | 0.1555 | 0.2545 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahamat, A.A.; Boukar, M.M.; Obianyo, I.I.; Nshimiyimana, P.; Ngayakamo, B.; Leklou, N.; Bih, N.L. Leveraging Machine Learning (ML) to Enhance the Structural Properties of a Novel Alkali Activated Bio-Composite. J. Compos. Sci. 2025, 9, 464. https://doi.org/10.3390/jcs9090464
Mahamat AA, Boukar MM, Obianyo II, Nshimiyimana P, Ngayakamo B, Leklou N, Bih NL. Leveraging Machine Learning (ML) to Enhance the Structural Properties of a Novel Alkali Activated Bio-Composite. Journal of Composites Science. 2025; 9(9):464. https://doi.org/10.3390/jcs9090464
Chicago/Turabian StyleMahamat, Assia Aboubakar, Moussa Mahamat Boukar, Ifeyinwa Ijeoma Obianyo, Philbert Nshimiyimana, Blasius Ngayakamo, Nordine Leklou, and Numfor Linda Bih. 2025. "Leveraging Machine Learning (ML) to Enhance the Structural Properties of a Novel Alkali Activated Bio-Composite" Journal of Composites Science 9, no. 9: 464. https://doi.org/10.3390/jcs9090464
APA StyleMahamat, A. A., Boukar, M. M., Obianyo, I. I., Nshimiyimana, P., Ngayakamo, B., Leklou, N., & Bih, N. L. (2025). Leveraging Machine Learning (ML) to Enhance the Structural Properties of a Novel Alkali Activated Bio-Composite. Journal of Composites Science, 9(9), 464. https://doi.org/10.3390/jcs9090464