Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = lithium market

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 2479 KB  
Article
Cost–Benefit and Market Viability Analysis of Metals and Salts Recovery from SWRO Brine Compared with Terrestrial Mining and Traditional Chemical Production Methods
by Olufisayo E. Ojo and Olanrewaju A. Oludolapo
Water 2025, 17(19), 2855; https://doi.org/10.3390/w17192855 - 30 Sep 2025
Viewed by 795
Abstract
Seawater reverse osmosis (SWRO) desalination generates a concentrated brine byproduct rich in dissolved salts and minerals. This study presents an extensive economic and technical analysis of recovering all major ions from SWRO brine, which includes Na, Cl, Mg, Ca, SO4, K, [...] Read more.
Seawater reverse osmosis (SWRO) desalination generates a concentrated brine byproduct rich in dissolved salts and minerals. This study presents an extensive economic and technical analysis of recovering all major ions from SWRO brine, which includes Na, Cl, Mg, Ca, SO4, K, Br, B, Li, Rb, and Sr in comparison to conventional mining and chemical production of these commodities. Data from recent literature and case studies are compiled to quantify the composition of a typical SWRO brine and the potential yield of valuable products. A life-cycle cost framework is applied, incorporating capital expenditure (CAPEX), operational expenditure (OPEX), and total water cost (TWC) impacts. A representative simulation for a large 100,000 m3/day SWRO plant shows that integrated “brine mining” systems could recover on the order of 3.8 million tons of salts per year. At optimistic recovery efficiencies, the gross annual revenue from products (NaCl, Mg(OH)2/MgO, CaCO3, KCl, Br2, Li2CO3, etc.) can reach a few hundred million USD. This revenue is comparable to or exceeds the added costs of recovery processes under favorable conditions, potentially offsetting desalination costs by USD 0.5/m3 or more. We compare these projections with the economics of obtaining the same materials through conventional mining and chemical processes worldwide. Major findings indicate that recovery of abundant low-value salts (especially NaCl) can supply bulk revenue to cover processing costs, while extraction of scarce high-value elements (Li, Rb, Sr, etc.) can provide significant additional profit if efficient separation is achieved. The energy requirements and unit costs for brine recovery are analyzed against those of terrestrial or conventional mining; in many cases, brine-derived production is competitive due to avoided raw material extraction and potential use of waste or renewable energy. CAPEX for adding mineral recovery to a desalination plant is significant but can be justified by revenue and by strategic benefits such as reduced brine disposal. Our analysis, drawing on global data and case studies (e.g., projects in Europe and the Middle East), suggests that metals and salts recovery from SWRO brine is technically feasible and, at sufficient scale, economically viable in many regions. We provide detailed comparisons of cost, yield, and market value for each target element, along with empirical models and formulas for profitability. The results offer a roadmap for integrating brine mining into desalination operations and highlight key factors such as commodity prices, scale economies, energy integration, and policy incentives that influence the competitiveness of brine recovery against traditional mining. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

20 pages, 6015 KB  
Article
Selective Lithium Extraction via Chlorination Roasting and Subsequent Valuable Metal Leaching from Spent Lithium-Ion Batteries
by Minji Kim, Seungyun Han, Yong Hwan Kim, Young-Min Kim and Eunmi Park
Metals 2025, 15(10), 1085; https://doi.org/10.3390/met15101085 - 29 Sep 2025
Viewed by 268
Abstract
The rapid growth of the electric vehicle (EV) market has highlighted the critical importance of securing a stable supply chain for lithium-ion battery (LIB) resources, thereby increasing the need for efficient recycling technologies. Among these, lithium recovery remains a major challenge due to [...] Read more.
The rapid growth of the electric vehicle (EV) market has highlighted the critical importance of securing a stable supply chain for lithium-ion battery (LIB) resources, thereby increasing the need for efficient recycling technologies. Among these, lithium recovery remains a major challenge due to significant losses during conventional processes. In this study, a chlorination roasting process was introduced to convert Li2O in spent LIBs into LiCl, which was subsequently evaporated for selective lithium extraction and recovery. Roasting experiments were conducted under air, vacuum, and N2 conditions at 800–1000 °C for 1–5 h, with Cl/Li molar ratios ranging from 0.5 to 8. The optimal condition for lithium evaporation, achieving 100% recovery, was identified as 1000 °C for 5 h, with a Cl/Li molar ratio of 6 under vacuum. Following lithium removal, residual valuable metals were extracted through H2SO4 leaching, and the effects of acid concentration and H2O2 addition on leaching efficiency were examined. The air-roasted samples exhibited the highest leaching performance, while the vacuum- and N2-roasted samples showed relatively lower efficiency; however, the addition of H2O2 significantly enhanced leaching yields in these cases. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Graphical abstract

32 pages, 1106 KB  
Article
Optimising Sustainable Home Energy Systems Amid Evolving Energy Market Landscape
by Tomasz Siewierski, Andrzej Wędzik and Michał Szypowski
Energies 2025, 18(18), 4961; https://doi.org/10.3390/en18184961 - 18 Sep 2025
Viewed by 350
Abstract
The paper presents a linear optimisation model aimed at improving the design and operational efficiency of home energy systems (HESs). It focuses on integrating photovoltaic (PV) installations, hybrid heating systems, and emerging energy storage systems (ESSs). Driven by the EU climate policy and [...] Read more.
The paper presents a linear optimisation model aimed at improving the design and operational efficiency of home energy systems (HESs). It focuses on integrating photovoltaic (PV) installations, hybrid heating systems, and emerging energy storage systems (ESSs). Driven by the EU climate policy and the evolution of the Polish electricity market, which have caused price volatility, the model examines the economic and technical feasibility of shifting detached and semi-detached houses towards low-emission or zero-emission energy self-sufficiency. The model simultaneously optimises the sizing and hourly operation of electricity and heat storage systems, using real-world data from PV output, electricity and gas consumption, and weather conditions. The key contributions include optimisation based on large data samples, evaluation of the synergy between a hybrid heating system with a gas boiler (GB) and a heat pump (HP), analysis of the impact of demand-side management (DSM), storage capacity decline, and comparison of commercial and emerging storage technologies such as lithium-ion batteries, redox flow batteries, and high-temperature thermal storage (HTS). Analysis of multiple scenarios based on three consecutive heating seasons and projected future conditions demonstrates that integrated PV and storage systems, when properly designed and optimally controlled, significantly lower energy costs for prosumers, enhance energy autonomy, and decrease CO2 emissions. The results indicate that under current market conditions, Li-ion batteries and HTS provide the most economically viable storage options. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

26 pages, 10737 KB  
Article
Architecture and Pricing Strategies for Commercial EV Battery Swapping—Dual-Market Cournot Model and Degradation-Sensitive Regulated Framework
by Soham Ghosh
World Electr. Veh. J. 2025, 16(9), 518; https://doi.org/10.3390/wevj16090518 - 12 Sep 2025
Viewed by 366
Abstract
The global electric vehicle (EV) market has experienced sustained growth over the last decade; however, adoption within the commercial EV segment remains comparatively sluggish. This disparity is driven by three primary factors: the intrinsic limitations of lithium-ion battery chemistry, which imposes constraints on [...] Read more.
The global electric vehicle (EV) market has experienced sustained growth over the last decade; however, adoption within the commercial EV segment remains comparatively sluggish. This disparity is driven by three primary factors: the intrinsic limitations of lithium-ion battery chemistry, which imposes constraints on charge–discharge cycling, excessive charging durations for large battery packs used in long-haul semi-trucks, and diminished charging effectiveness under cold weather conditions, which further extends downtime and increases grid demand. To address these operational and infrastructural challenges, this article proposes a novel battery swapping station layout with ‘design-integrated safety’ features, enabling rapid battery replacement while ensuring compliance with safety codes and standards. Two complementary pricing strategies are developed for deployment under differing market structures. The first is a Cournot competition, applicable to deregulated environments, where firms strategically allocate battery inventory between EV swapping services and participation in a secondary energy market. As an extension of the Cournot competition model, the profit functions are analytically derived for a duopoly in which one firm engages in dual markets, enabling assessment of equilibrium outcomes under competitive conditions. The second strategy is a degradation-sensitive pricing framework, intended for regulated markets, which dynamically adjusts swap prices based on state-of-charge depletion, duty cycle intensity, environmental exposure, and nonlinear battery degradation effects. This formulation is evaluated for six representative operational cases, demonstrating its ability to incentivize shallow cycling, penalize deep discharges, and incorporate fair usage-based pricing. The proposed architectures and pricing models offer a viable pathway to accelerate commercial EV adoption while optimizing asset utilization and profitability for station operators. Full article
Show Figures

Graphical abstract

33 pages, 3171 KB  
Review
Advances in Energy Storage, AI Optimisation, and Cybersecurity for Electric Vehicle Grid Integration
by Muhammed Cavus, Huseyin Ayan, Margaret Bell and Dilum Dissanayake
Energies 2025, 18(17), 4599; https://doi.org/10.3390/en18174599 - 29 Aug 2025
Viewed by 836
Abstract
The integration of electric vehicles (EVs) into smart grids (SGs) is reshaping both energy systems and mobility infrastructures. This review presents a comprehensive and cross-disciplinary synthesis of current technologies, methodologies, and challenges associated with EV–SG interaction. Unlike prior reviews that address these aspects [...] Read more.
The integration of electric vehicles (EVs) into smart grids (SGs) is reshaping both energy systems and mobility infrastructures. This review presents a comprehensive and cross-disciplinary synthesis of current technologies, methodologies, and challenges associated with EV–SG interaction. Unlike prior reviews that address these aspects in isolation, this work uniquely connects three critical pillars: (i) the evolution of energy storage technologies, including lithium-ion, second-life, and hybrid systems; (ii) optimisation and predictive control techniques using artificial intelligence (AI) for real-time energy management and vehicle-to-grid (V2G) coordination; and (iii) cybersecurity risks and post-quantum solutions required to safeguard increasingly decentralised and data-intensive grid environments. The novelty of this review lies in its integrated perspective, highlighting how emerging innovations, such as federated AI models, blockchain-secured V2G transactions, digital twin simulations, and quantum-safe cryptography, are converging to overcome existing limitations in scalability, resilience, and interoperability. Furthermore, we identify underexplored research gaps, such as standardisation of bidirectional communication protocols, regulatory inertia in V2G market participation, and the lack of unified privacy-preserving data architectures. By mapping current advancements and outlining a strategic research roadmap, this article provides a forward-looking foundation for the development of secure, flexible, and grid-responsive EV ecosystems. The findings support policymakers, engineers, and researchers in advancing the technical and regulatory landscape necessary to scale EV–SG integration within sustainable smart cities. Full article
Show Figures

Figure 1

42 pages, 1483 KB  
Review
An Overview of Applications, Toxicology and Separation Methods of Lithium
by Ma. del Rosario Moreno-Virgen, Blanca Paloma Escalera-Velasco, Hilda Elizabeth Reynel-Ávila, Herson Antonio González-Ponce, Alvaro Rodrigo Videla-Leiva, Arturo Ignacio Morandé-Thompson, Marco Ludovico-Marques, Noemi Sogari and Adrián Bonilla-Petriciolet
Minerals 2025, 15(9), 917; https://doi.org/10.3390/min15090917 - 28 Aug 2025
Viewed by 1264
Abstract
Lithium has emerged as a critical element in contemporary society. It has been classified as an indispensable feedstock in the manufacture of lithium-ion batteries for electric mobility, portable electronics, and stationary energy storage systems, which are essential for the integration of intermittent renewable [...] Read more.
Lithium has emerged as a critical element in contemporary society. It has been classified as an indispensable feedstock in the manufacture of lithium-ion batteries for electric mobility, portable electronics, and stationary energy storage systems, which are essential for the integration of intermittent renewable energy sources. This metal also has other industrial applications and is projected to support future developments in semiconductor and aerospace technology. However, the exponential growth in global Li demand driven by energy transition and technological innovation requires a resilient and sustainable supply chain where both technological and environmental challenges should be addressed. This review discusses and analyzes some of current challenges associated with the Li supply chain given a particular emphasis on its separation methods. First, statistics of the Li market and its applications are provided, including the main sources from which to recover Li and the environmental impact associated with conventional Li extraction techniques from mineral ores and salar brines. Different separation methods (e.g., solvent extraction, adsorption, ion exchange, membrane technology) to recover Li from different sources are reviewed. Recent advances and developments in these separation strategies are described, including a brief analysis of their main limitations and capabilities. The importance and potential of recycling strategies for end-of-life batteries and industrial residues are also highlighted. A perspective on the gaps to be resolved with the aim of consolidating the Li supply chain to support the energy transition agenda is provided in this review. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

23 pages, 2424 KB  
Article
Designing a Reverse Logistics Network for Electric Vehicle Battery Collection, Remanufacturing, and Recycling
by Aristotelis Lygizos, Eleni Kastanaki and Apostolos Giannis
Sustainability 2025, 17(17), 7643; https://doi.org/10.3390/su17177643 - 25 Aug 2025
Viewed by 1265
Abstract
The growing concern about climate change and increased carbon emissions has promoted the electric vehicle market. Lithium-Ion Batteries (LIBs) are now the prevailing technology in electromobility, and large amounts will soon reach their end-of-life (EoL). Most counties have not designed sustainable reverse logistics [...] Read more.
The growing concern about climate change and increased carbon emissions has promoted the electric vehicle market. Lithium-Ion Batteries (LIBs) are now the prevailing technology in electromobility, and large amounts will soon reach their end-of-life (EoL). Most counties have not designed sustainable reverse logistics networks to collect, remanufacture and recycle EoL electric vehicle batteries (EVBs). This study is focused on estimating the future EoL LIBs generation through dynamic material flow analysis using a three parameter Weibull distribution function under two scenarios for battery lifetime and then designing a reverse logistics network for the region of Attica (Greece), based on a generalizable modeling framework, to handle the discarded batteries up to 2040. The methodology considers three different battery handling strategies such as recycling, remanufacturing, and disposal. According to the estimated LIB waste generation in Attica, the designed network would annually manage between 5300 and 9600 tons of EoL EVBs by 2040. The optimal location for the collection and recycling centers considers fixed costs, processing costs, transportation costs, carbon emission tax and the number of EoL EVBs. The economic feasibility of the network is also examined through projected revenues from the sale of remanufactured batteries and recovered materials. The resulting discounted payback period ranges from 6.7 to 8.6 years, indicating strong financial viability. This research underscores the importance of circular economy principles and the management of EoL LIBs, which is a prerequisite for the sustainable promotion of the electric vehicle industry. Full article
Show Figures

Figure 1

27 pages, 3575 KB  
Article
Preparation of High-Strength and High-Rigidity Carbon Layer on Si/C Material Surface Using Solid–Liquid Coating Method
by Xiaoguang Zhang, Wei Wang and Juan Zhang
Nanomaterials 2025, 15(17), 1300; https://doi.org/10.3390/nano15171300 - 22 Aug 2025
Viewed by 826
Abstract
The application of silicon–carbon (Si/C) composite materials in lithium-ion batteries faces problems regarding volume expansion and surface defects. Although coating is a popular modification scheme in the market, the influence of carbon layer quality on the electrochemical performance of Si/C still needs to [...] Read more.
The application of silicon–carbon (Si/C) composite materials in lithium-ion batteries faces problems regarding volume expansion and surface defects. Although coating is a popular modification scheme in the market, the influence of carbon layer quality on the electrochemical performance of Si/C still needs to be studied. By comparing the carbon layers produced by solid-phase and liquid-phase coating methods, an innovative solid–liquid coating technology was proposed to prepare high-strength and high-stiffness carbon layers, and the effects of different coating processes on the physical, mechanical, and electrochemical properties of the materials were systematically studied. Through physical properties and electrochemical testing, it was found that the solid–liquid coating method (Si/C@Pitch+RGFQ) can form a carbon layer with the least defects and the highest density. Compared with solid-phase coating and liquid-phase coating, its specific surface area (SSA) and carbon increment are the lowest, and the surface carbon content and oxygen content are significantly reduced after solid–liquid coating. Mechanical performance tests show that the Young’s modulus of the carbon layer prepared by this method reaches 30.3 GPa, demonstrating excellent structural strength and elastic deformation ability. The first coulombic efficiency (ICE) of Si/C@Pitch+RGFQ reached 88.17%, the interface impedance (23.2 Ω) was the lowest, and the lithium-ion diffusion coefficient was significantly improved. At a rate of 0.1 C to 2 C, the capacity retention rate is excellent. After one hundred and a half-cell cycles, the remaining capacity is 1420.5 mAh/g, and the capacity retention rate reaches 92.4%. The full-cell test further proves that the material has a capacity retention rate of 82.3% and 81.3% after 1000 cycles at room temperature and high temperature (45 °C), respectively. At the same time, it has good rate performance and high-/low-temperature performance, demonstrating good commercial application potential. The research results provide a key basis for the optimized preparation of the surface carbon layer of Si/C composite materials and promote the practical application of high-performance silicon-based negative electrode materials. Full article
Show Figures

Figure 1

26 pages, 4789 KB  
Article
Analytical Modelling of Arc Flash Consequences in High-Power Systems with Energy Storage for Electric Vehicle Charging
by Juan R. Cabello, David Bullejos and Alvaro Rodríguez-Prieto
World Electr. Veh. J. 2025, 16(8), 425; https://doi.org/10.3390/wevj16080425 - 29 Jul 2025
Viewed by 992
Abstract
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with [...] Read more.
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with exponential growth expected over the next few years. In this article, the various charging modes for EVs are explored, and the risks associated with charging technologies are analysed, particularly for charging systems in high-power DC with Lithium battery energy storage, given their long market deployment and characteristic behaviour. In particular, the Arc Flash (AF) risk present in high-power DC chargers will be studied, involving numerous simulations of the charging process. Subsequently, the Incident Energy (IE) analysis is carried out at different specific points of a commercial high-power ‘Mode 4’ charger. For this purpose, different analysis methods of recognised prestige, such as Doan, Paukert, or Stokes and Oppenlander, are applied, using the latest version of the ETAP® simulation tool version 22.5.0. This study focuses on quantifying the potential severity (consequences) of an AF event, assuming its occurrence, rather than performing a probabilistic risk assessment according to standard methodologies. The primary objective of this research is to comprehensively quantify the potential consequences for workers involved in the operation, maintenance, repair, and execution of tasks related to EV charging systems. This analysis makes it possible to provide safe working conditions and to choose the appropriate and necessary personal protective equipment (PPE) for each type of operation. It is essential to develop this novel process to quantify the consequences of AF and to protect the end users of EV charging systems. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

17 pages, 3466 KB  
Article
Levelized Cost of Storage (LCOS) of Battery Energy Storage Systems (BESS) Deployed for Photovoltaic Curtailment Mitigation
by Luca Migliari, Daniele Cocco and Mario Petrollese
Energies 2025, 18(14), 3602; https://doi.org/10.3390/en18143602 - 8 Jul 2025
Cited by 2 | Viewed by 2307
Abstract
Despite the growing application of storage for curtailment mitigation, its cost-effectiveness remains uncertain. This study evaluates the Levelized Cost of Storage, which also represents an implicit threshold revenue, for Lithium-ion Battery Energy Storage Systems deployed for photovoltaic curtailment mitigation. Specifically, the LCOS is [...] Read more.
Despite the growing application of storage for curtailment mitigation, its cost-effectiveness remains uncertain. This study evaluates the Levelized Cost of Storage, which also represents an implicit threshold revenue, for Lithium-ion Battery Energy Storage Systems deployed for photovoltaic curtailment mitigation. Specifically, the LCOS is assessed—using a mathematical simulation model—for various curtailment scenarios defined by maximum levels (10–40%), hourly profiles (upper limit and proportional), and growth rates (2, 5, and 10 years) at three storage system capacities (0.33, 0.50, 0.67 h) and two European locations (Cagliari and Berlin). The results indicate that the LCOS of batteries deployed for curtailment mitigation is, on average, comparable to that of systems used for bulk energy storage applications (155–320 EUR/MWh) in Cagliari (180–410 EUR/MWh). In contrast, in Berlin, the lower and more variable photovoltaic generation results in significantly higher LCOS values (200–750 EUR/MWh). For both locations, the lowest LCOS values (180 EUR/MWh for Cagliari and 200 EUR/MWh for Berlin), obtained for very high curtailment levels (40%), are significantly above average electricity prices (108 EUR/MWh for Cagliari and 78 EUR/MWh for Berlin), suggesting that BESSs for curtailment mitigation are competitive in the day-ahead market only if their electricity is sold at a significantly higher price. This is particularly true for lower curtailment levels. Indeed, for a curtailment level of 10% reached in 5 years, the LCOS for a 0.5 h BESS capacity is approximately 255 EUR/MWh in Cagliari and 460 EUR/MWh in Berlin. The study further highlights that the curtailment scenario significantly affects the Levelized Cost of Storage, with the upper limit hourly profile being more conservative. Full article
(This article belongs to the Special Issue Advanced Solar Technologies and Thermal Energy Storage)
Show Figures

Figure 1

17 pages, 732 KB  
Review
A Review of Carbon Pricing Mechanisms and Risk Management for Raw Materials in Low-Carbon Energy Systems
by Hongbo Sun, Xinting Zhang and Cuicui Luo
Energies 2025, 18(13), 3401; https://doi.org/10.3390/en18133401 - 27 Jun 2025
Viewed by 1239
Abstract
The global shift to low-carbon energy systems has significantly increased demand for critical raw materials like lithium, cobalt, nickel, rare earth elements, and copper. These materials are essential for renewable technologies and energy storage. However, their extraction and processing produce significant carbon emissions [...] Read more.
The global shift to low-carbon energy systems has significantly increased demand for critical raw materials like lithium, cobalt, nickel, rare earth elements, and copper. These materials are essential for renewable technologies and energy storage. However, their extraction and processing produce significant carbon emissions and face challenges from supply chain vulnerabilities and price volatility. This review examines the complex relationship between carbon pricing mechanisms—such as carbon markets and taxes—and raw material markets. It explores the strategic importance of these materials, recent policy developments, and the transmission of carbon pricing impacts through supply chains. The review also analyzes the systemic risks created by carbon pricing, including regulatory uncertainty, market volatility, and geopolitical tensions. We then discuss financial tools and corporate strategies for managing these risks, such as carbon-linked derivatives and supply chain diversification. Finally, this review identifies key challenges and suggests future research to improve the resilience and sustainability of raw material supply chains. Here, resilience is defined as the capacity to adapt to carbon pricing volatility, geopolitical disruptions, and regulatory shocks, while maintaining operations. The paper concludes that coordinated policies and flexible risk management are urgently needed to support a reliable and sustainable energy transition. Full article
(This article belongs to the Collection Energy Transition Towards Carbon Neutrality)
Show Figures

Figure 1

8 pages, 2364 KB  
Article
Machine Learning-Based Methodology for Fast Assessment of Battery Health Status
by Woongchul Choi
Batteries 2025, 11(7), 236; https://doi.org/10.3390/batteries11070236 - 20 Jun 2025
Viewed by 741
Abstract
Global electric vehicle (EV) markets are rapidly expanding, and the efficient management of batteries has become increasingly important due to supply constraints of rare metals and other raw materials required for lithium-ion batteries. Accordingly, the reuse and recycling of used batteries from early [...] Read more.
Global electric vehicle (EV) markets are rapidly expanding, and the efficient management of batteries has become increasingly important due to supply constraints of rare metals and other raw materials required for lithium-ion batteries. Accordingly, the reuse and recycling of used batteries from early EVs are emerging as key solutions. This study proposes a machine learning-based approach to rapidly and reliably estimate the static capacity of used batteries. While conventional methods require significant measurement time, this study demonstrates that accurate static capacity estimation is possible using only short-term partial discharge data (6 min under 1C-rate CC conditions) by leveraging an RNN (recurrent neural network) architecture specialized for time-series data processing. The proposed model achieves high prediction accuracy, with an average RMSE of 28.439 mAh, average MSE of 808.799 mAh2, average MAE of 13.049 mAh, and average R2 of 0.9993, while significantly reducing the evaluation time compared to conventional methods. This is expected to greatly enhance the efficiency and practicality of battery reuse and recycling processes. Full article
Show Figures

Figure 1

26 pages, 1794 KB  
Article
Can Chinese Electric Vehicles Meet EU Batteries Regulation Targets? A Dynamic Approach to Assess the Potential for Recycled Materials Use in Chinese EV Batteries
by Ping Li, Yaoming Li, Yiyun Qiao, Jing Wang, Dongchang Zhao and Rujie Yu
World Electr. Veh. J. 2025, 16(7), 342; https://doi.org/10.3390/wevj16070342 - 20 Jun 2025
Viewed by 1526
Abstract
The European Union (EU) has put forward a new regulatory framework for batteries through the EU Batteries Regulation (2023/1542), which sets a series of minimum thresholds of recycled materials for electric vehicle (EV) batteries sold on the EU market. Since the EU is [...] Read more.
The European Union (EU) has put forward a new regulatory framework for batteries through the EU Batteries Regulation (2023/1542), which sets a series of minimum thresholds of recycled materials for electric vehicle (EV) batteries sold on the EU market. Since the EU is the largest market for China’s EV export, compliance with the EU Batteries Regulation is a prerequisite for China’s EV export. To evaluate the feasibility of meeting these regulatory requirements, a future-oriented Chinese EV recycled materials use potential analysis model has been developed, forecasting the maximum proportion of recycled materials in China’s EV batteries from 2020 to 2035. To find out the risk factors, influencing aspects such as battery lifespan, demand, technology development, collection rate, and battery reshoring have been considered. The findings indicate that compared to other metals, the maximum proportion of recycled lithium is the lowest, forecast to be 21.2% in 2031, and increasing to 28.3% by 2035. Conversely, the maximum proportion of recycled graphite is the highest, at 28.9% in 2031 and reaching 41.3% in 2035. These results suggest that Chinese EV batteries could meet the targets set by the EU Batteries Regulation in most scenarios. Moreover, the analysis indicates that battery lifespan and collection rate constitute significant risk factors potentially influencing the recycled material content in Chinese EV batteries, which in turn impacts Chinese EV export to the EU. Finally, policy recommendations are proposed to enhance EV export and to bolster EV battery recycling industry development. Full article
Show Figures

Figure 1

14 pages, 4494 KB  
Article
Satellite-Based Lithium Capacity Monitoring in Salt Lakes: The Atacama Case
by Jie Xiang, Yanbin Lian, Suya Li, Yan Zhang and Pengfei Wen
Sustainability 2025, 17(12), 5631; https://doi.org/10.3390/su17125631 - 18 Jun 2025
Viewed by 1131
Abstract
Global energy transition has driven exponential growth in lithium demand, fueled by advancements in new energy vehicles and battery technologies. Despite abundant lithium resources, volatile market fluctuations underscore the critical need for the accurate monitoring of production capacity. Brine-type lithium resources, accounting for [...] Read more.
Global energy transition has driven exponential growth in lithium demand, fueled by advancements in new energy vehicles and battery technologies. Despite abundant lithium resources, volatile market fluctuations underscore the critical need for the accurate monitoring of production capacity. Brine-type lithium resources, accounting for approximately 65% of the global reserves, are concentrated in the “lithium triangle” region of South America (Chile, Argentina, and Bolivia). This region typically employs solar evaporation ponds to extract lithium from brine, where lithium production directly correlates with the pond area, enabling remote sensing-based capacity monitoring. This study focuses on Chile’s Atacama Salt Lake, utilizing long-term Landsat and Sentinel satellite data (1985–2019) to extract evaporation pond areas through visual interpretation and support vector machine (SVM) classification. We further investigated the relationship between salt pond area and lithium production capacity by establishing a linear conversion formula. The results demonstrated a strong correlation (R2 = 0.91), with over 97% of the data points falling within the 95% prediction band, validating the effectiveness of the method. This study proposes a semi-automated monitoring framework for lithium production capacity in salt lake brine systems, offering novel insights for sustainable lithium resource management and supporting the stable development of energy transition. Full article
Show Figures

Figure 1

12 pages, 1993 KB  
Article
Determination of the Precision of Glucometers Used in Saudi Arabia
by Shoug A. Al-Othman, Zahra H. Al-Zaidany, Shahad H. Al-Ghannam, Ahmed M. Al-Turki, Abdulrahman A. Al-Abdulazeem, Chittibabu Vatte, Alawi Habara, Amein K. Al-Ali and Mohammed F. Al-Awami
Sensors 2025, 25(11), 3561; https://doi.org/10.3390/s25113561 - 5 Jun 2025
Viewed by 2166
Abstract
Background: Efforts have been joined to set the parameters for the reliability of glucometers, yet once they are on the market, they are not further tested for the maintenance of accuracy, specificity, or precision. Methods: This comparative analytical study investigated the precision of [...] Read more.
Background: Efforts have been joined to set the parameters for the reliability of glucometers, yet once they are on the market, they are not further tested for the maintenance of accuracy, specificity, or precision. Methods: This comparative analytical study investigated the precision of commonly used glucometers in Saudi Arabia, namely Accu-Chek Instant®, On-Call Sharp®, and ConTour®, as well as the effects of vitamin C, acetaminophen, and maltose on glucose readings. Ten milliliters of blood was drawn in lithium heparin from healthy volunteers (n = 9). Six samples were divided into two groups of three. One group was designed for normal glucose levels. The second group was designed for high glucose levels by adding a dextrose solution. The last three samples were designed for low glucose levels by leaving the sample for 24 h at room temperature and then following with centrifuge and plasma extraction. Results: This study showed that only Accu-Chek Instant met the International Organization for Standardization (ISO) standard for precision across all dextrose concentrations, along with intra-class correlation values ranging from 0.95–1 (p < 0.001). By spiking the plasma samples with sub-therapeutic, therapeutic, and overdose concentrations of the metabolites, we found that vitamin C had a more evident interference on glucose readings compared to acetaminophen and maltose. Conclusions: The ascertainment of the precision of glucometers and the effects of interferences on them are vital in preventing the improper administration of insulin, which can lead to serious complications. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

Back to TopTop