Selective Lithium Extraction via Chlorination Roasting and Subsequent Valuable Metal Leaching from Spent Lithium-Ion Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Chlorination Roasting Process
2.2. Leaching Process
3. Results and Discussions
3.1. Analysis of Black Powder Sample
3.2. Selection of the Optimal Chlorine Donor and Lithium Evaporation Behavior Through Thermodynamic Analysis
3.3. Analysis of Lithium Evaporation Efficiency in Chlorination Roasting Under Various Conditions
3.3.1. Air Condition
Effect of Roasting Temperature and Time
Effect of Cl/Li Molar Ratio
3.3.2. Vacuum Condition
Effect of Roasting Temperature and Time
Effect of Cl/Li Molar Ratio
3.3.3. Nitrogen Condition
Effect of Roasting Temperature and Time
Effect of Cl/Li Molar Ratio
3.3.4. Discussion
3.4. Analysis of the Leaching Behavior of Valuable Metals Remaining After Chlorination Roasting Under Various Conditions
3.4.1. Leaching Behavior as a Function of Sulfuric Acid Molarity
Samples Subjected to Chlorination Roasting in Air
Samples Subjected to Chlorination Roasting in Vacuum
Samples Subjected to Chlorination Roasting in N2
Discussion on the Leaching Behavior of Residual Valuable Metals with Respect to Their Phases
3.4.2. Leaching Behavior as a Function of Hydrogen Peroxide Addition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. Global EV Outlook 2024; IEA: Paris, France, 2024. [Google Scholar]
- Research, S. Global Scrapped Battery Recycling Market Expected to Reach US$ 53.6 Bil in 2030 and US$174.1 Bil in 2040; SNE Research: Seongnam-si, Republic of Korea, 2023. [Google Scholar]
- Melchor-Martínez, E.M.; Macias-Garbett, R.; Malacara-Becerra, A.; Iqbal, H.M.N.; Sosa-Hernández, J.E.; Parra-Saldívar, R. Environmental impact of emerging contaminants from battery waste: A mini review. Case Stud. Chem. Environ. Eng. 2021, 3, 100104. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Costa, C.M.; Barbosa, J.C.; Gonçalves, R.; Castro, H.; Campo, F.J.D.; Lanceros-Méndez, S. Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Mater. 2021, 37, 433–465. [Google Scholar] [CrossRef]
- Friedrich, B.; Schwich, L. New science based concepts for increased efficiency in battery recycling. Metals 2021, 11, 533. [Google Scholar] [CrossRef]
- Guo, L.; Thornton, D.B.; Koronfel, M.A.; Stephens, I.E.L.; Ryan, M.P. Degradation in lithium ion battery current collectors. J. Phys. Energy 2021, 3, 032015. [Google Scholar] [CrossRef]
- Vaccari, M.; Parlanti, F.; Manni, F.M.; Orefice, M.; Mathieux, F.; Pannocchia, G.; Tognotti, L.; Bertei, A. Assessing performance in lithium-ion batteries recycling processes: A quantitative modeling perspective. Resour. Conserv. Recycl. 2024, 206, 107643. [Google Scholar] [CrossRef]
- Marchese, D.; Giosuè, C.; Staffolani, A.; Conti, M.; Orcioni, S.; Soavi, F.; Cavalletti, M.; Stipa, P. An Overview of the Sustainable Recycling Processes Used for Lithium-Ion Batteries. Batteries 2024, 10, 27. [Google Scholar] [CrossRef]
- Azimi, G.; Chan, K.H. A review of contemporary and emerging recycling methods for lithium-ion batteries with a focus on NMC cathodes. Resour. Conserv. Recycl. 2024, 209, 107825. [Google Scholar] [CrossRef]
- Park, E.; Kim, M.; Pin, M.-W.; Park, H.; Kim, Y.-H. Precious metal recovery from waste electrical and electronic equipment through oxidative refining. Recycling 2023, 8, 80. [Google Scholar] [CrossRef]
- Park, E.; Kim, M.; Kim, Y.-M.; Kim, Y.H. High-purity copper recovery from copper sludge via oxidative refining using a FeO–CaO–SiO2 slag system. Materials 2025, 18, 4137. [Google Scholar] [CrossRef]
- Dobó, Z.; Dinh, T.; Kulcsár, T. A review on recycling of spent lithium-ion batteries. Energy Rep. 2023, 9, 6362–6395. [Google Scholar] [CrossRef]
- Gerold, E.; Luidold, S.; Antrekowitsch, H. Separation and Efficient Recovery of Lithium from Spent Lithium-Ion Batteries. Metals 2021, 11, 1091. [Google Scholar] [CrossRef]
- Wang, J.; You, X.; She, X.; Xue, Q. Research on the process of carbon thermal reduction for recovery and resynthesis of LiNi0.6Co0.2Mn0.2O2. J. Mater. Cycles Waste Manag. 2024, 26, 346–359. [Google Scholar] [CrossRef]
- Rouquette, L.M.J.; Lemaître, T.; Vieceli, N.; Petranikova, M. Intensification of lithium carbonation in the thermal treatment of spent EV Li-ion batteries via waste utilization and selective recovery by water leaching. Resour. Conserv. Recycl. Adv. 2023, 17, 200125. [Google Scholar] [CrossRef]
- Lee, J.; Park, K.W.; Sohn, I.; Lee, S. Pyrometallurgical recycling of end-of-life lithium-ion batteries. Int. J. Miner. Metall. Mater. 2024, 31, 1554. [Google Scholar] [CrossRef]
- Xing, Z.; Cheng, G.; Yang, H.; Xue, X.; Jian, P. Mechanism and application of the ore with chlorination treatment: A review. Miner. Eng. 2020, 154, 106404. [Google Scholar] [CrossRef]
- Dang, H.; Wang, B.; Chang, Z.; Wu, X.; Feng, J.; Zhou, H.; Li, W.; Sun, C. Recycled Lithium from Simulated Pyrometallurgical Slag by Chlorination Roasting. ACS Sustain. Chem. Eng. 2018, 6, 13160–13167. [Google Scholar] [CrossRef]
- Shuai, J.; Liu, W.; Rohani, S.; Wang, Z.; He, M.; Ding, C.; Lv, X. Efficient extraction and separation of valuable elements from spent lithium-ion batteries by leaching and solvent extraction: A review. Chem. Eng. J. 2025, 503, 158114. [Google Scholar] [CrossRef]
- Davis, K.; Demopoulos, G.P. Hydrometallurgical recycling technologies for NMC Li-ion battery cathodes: Current industrial practice and new R&D developments & trends. RSC Sustain. 2023, 1, 1932–1951. [Google Scholar]
- Targhan, H.; Evans, P.; Bahrami, K. A review of the role of hydrogen peroxide in organic transformations. J. Ind. Eng. Chem. 2021, 104, 295–332. [Google Scholar] [CrossRef]
- Tasawar, A.; Dotto Munchen, D.; Birich, A.; Yeetsorn, R.; Friedrich, B. Effect of oxidative roasting on selective leaching of lithium from industrially shredded lithium iron phosphate blackmass. Metals 2025, 15, 739. [Google Scholar] [CrossRef]
- Deng, P.; Li, L.; Jia, Y.; Liu, D.; Jiang, W.; Kong, L. Chlorination Behavior of Low-Grade Titanium Slag in AlCl3-NaCl Molten Salt. JOM 2022, 74, 213–221. [Google Scholar] [CrossRef]
- Luo, W.; Hu, G.; Ding, J.; Wu, J.; Ma, W. Thermodynamics of Vacuum Chloride Volatilization of Ni, Co, Mn, Li, Al, and Cu in Spent Lithium−Ion Battery. Metals 2022, 12, 2183. [Google Scholar] [CrossRef]
- Gaw, D.C. Manganese Removal from Sulfuric Acid Leach Solutions of Nickel Laterite Ores, in WASM: Minerals, Energy and Chemical Engineering; Curtin University: Perth, Australia, 2020. [Google Scholar]
- Son, S.H.; Kim, J.H.; Kim, H.-J.; Kim, S.J.; Lee, M.S. Leaching of Valuable Metals from NCM Cathode Active Materials in Spent Lithium-Ion Battery by Malic acid. J. Resour. Recycl. 2014, 23, 21–29. [Google Scholar]
- Su, F.; Zhou, X.; Liu, X.; Yang, J.; Tang, J.; Yang, W.; Li, Z.; Wang, H.; Ma, Y.; Zhang, Y. An efficient recovery process of valuable metals from spent lithium-ion batteries in acidic medium assisted with waste areca powder. J. Environ. Chem. Eng. 2022, 10, 108711. [Google Scholar] [CrossRef]
- Bilczuk, D.; Olvera, O.G.; Asselin, E. Kinetic study of the dissolution of metallic nickel in sulphuric acid solutions in the presence of different oxidants. Can. J. Chem. Eng. 2016, 94, 1872–1879. [Google Scholar] [CrossRef]
Element | Li | Ni | Co | Mn | Cu | Al | Fe | Total |
---|---|---|---|---|---|---|---|---|
wt.% | 2.65 | 9.07 | 4.24 | 2.37 | 4.82 | 5.11 | 0.28 | 28.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Han, S.; Kim, Y.H.; Kim, Y.-M.; Park, E. Selective Lithium Extraction via Chlorination Roasting and Subsequent Valuable Metal Leaching from Spent Lithium-Ion Batteries. Metals 2025, 15, 1085. https://doi.org/10.3390/met15101085
Kim M, Han S, Kim YH, Kim Y-M, Park E. Selective Lithium Extraction via Chlorination Roasting and Subsequent Valuable Metal Leaching from Spent Lithium-Ion Batteries. Metals. 2025; 15(10):1085. https://doi.org/10.3390/met15101085
Chicago/Turabian StyleKim, Minji, Seungyun Han, Yong Hwan Kim, Young-Min Kim, and Eunmi Park. 2025. "Selective Lithium Extraction via Chlorination Roasting and Subsequent Valuable Metal Leaching from Spent Lithium-Ion Batteries" Metals 15, no. 10: 1085. https://doi.org/10.3390/met15101085
APA StyleKim, M., Han, S., Kim, Y. H., Kim, Y.-M., & Park, E. (2025). Selective Lithium Extraction via Chlorination Roasting and Subsequent Valuable Metal Leaching from Spent Lithium-Ion Batteries. Metals, 15(10), 1085. https://doi.org/10.3390/met15101085