Satellite-Based Lithium Capacity Monitoring in Salt Lakes: The Atacama Case
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Acquisition and Processing
3.1.1. Remote Sensing Data Acquisition and Processing
3.1.2. Production Data Acquisition
3.2. Production Capacity Monitoring Method
3.2.1. Basic Process of Salt Lake Mineral Production
3.2.2. Salt Pond Area Monitoring Method
3.3. Capacity Monitoring Methodology Process
4. Results
4.1. Salt Pond Area Extraction Results
4.2. Linear Regression Model
5. Discussion
6. Conclusions
- Based on remote sensing visual interpretation and SVM technology, the area of the salt pond in Atacama Salt Lake was extracted for each year from 1985 to 2019. The total area of the salt pond has increased annually, with a total increase of approximately 62 km2. During this period, lithium metal production increased from 847 tons to 18,000 tons.
- In the process of lithium extraction using the salt pond concentration and precipitation method, the increase in production is inevitably accompanied by an increase in the area of the salt pond. Therefore, this study used the area of the salt pond and the production data for linear fitting in order to obtain the relationship between the two equations, showing that the two have a high correlation between them, and the R2 of the 35 years of the fitted data reaches 0.91, which fully proves the feasibility of the method.
- Although Formula 1 proposed in this study still has application limitations, and influencing factors such as climatic conditions and technical methods need to be further explored in subsequent studies, it provides new ideas for monitoring the production of brine lithium minerals in salt lakes and can contribute to the sustainability of the new energy transition.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gil-Alana, L.A.; Monge, M. Lithium: Production and estimated consumption. Evidence of persistence. Resour. Policy 2019, 60, 198–202. [Google Scholar] [CrossRef]
- Schulz, K.J.; DeYoung, J.H.; Seal, R.R.; Bradley, D.C. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply; U.S. Geological Survey: Reston, VA, USA, 2017.
- Xu, S.; Song, J.; Bi, Q.; Chen, Q.; He, T. Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice. J. Membr. Sci. 2021, 635, 119441. [Google Scholar] [CrossRef]
- USGS. Lithium in US Geological Survey. In Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2023. [Google Scholar]
- Bowell, R.J.; Lagos, L.; Hoyos, C.R.D.L.; Declercq, J. Classification and Characteristics of Natural Lithium Resources. Elements 2020, 16, 259–264. [Google Scholar] [CrossRef]
- Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- Wen, M.J.; Da, Y.S.; Qing, X.G.; Wei, S.S.; Qi, Z.; Bao, G.Y.; Xiang, L.; Fang, F.X.; Jing, C.; Lin, Z.Z.; et al. New advances on metallogenic studies and exploration on critical minerals of China in 21st century. Miner. Depos. 2019, 38, 935–969. [Google Scholar]
- Zhuo, W.; Xiao, H.R.; Tian, W.D.; Ming, X.F.; Wei, S.; Hui, Z.D.; Dong, Z.Y. The basic characteristics and development potential evaluation of salt lake brine-type lithium deposits. Geol. China 2023, 50, 102–117. [Google Scholar]
- Li, J.; Li, T.; Ma, Y.; Chen, F. Distribution and origin of brine-type Li-Rb mineralization in the Qaidam Basin, NW China. Sci. China Earth Sci. 2022, 65, 477–489. [Google Scholar] [CrossRef]
- Lijun, L.; Denghong, W.; Xifang, L.; Jiankang, L.; Hongzhang, D.; Weidong, Y. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine. Geol. China 2017, 44, 263–278. [Google Scholar]
- S&P Global Market Intelligence. Price Chart. Available online: https://www.capitaliq.spglobal.cn/web/client?auth=inherit#industry/priceChart (accessed on 15 June 2025).
- Chen, L.; Zhang, N.N.; Zhao, T.Y.; Zhang, H.; Chang, J.Y.; Tao, J.T.; Chi, Y.J. Lithium-Bearing Pegmatite Identification, Based on Spectral Analysis and Machine Learning: A Case Study of the Dahongliutan Area, NW China. Remote Sens. 2023, 15, 2. [Google Scholar] [CrossRef]
- Chi, L.T.; Ru, W.D.; Liang, Z.; Fu, F.R. Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data. Remote Sens. Nat. Resour. 2023, 35, 70–79. [Google Scholar]
- Han, Y.; Yi, Z. County–level natural resource survey in western China based on both GF--6 images and the third national land resource survey results. Remote Sens. Nat. Resour. 2023, 35, 277–286. [Google Scholar]
- Jun, Y.F.; Wang, X.X.; Min, Y.J.; Nan, W.L.; Xia, G.X. A technology for identifying Li-Be pegmatite using ASTER remote sensing data in granite of Gobi shallow-covered area:A case study of recognition and prediction of Li-Be pegmatite in Jingerquan, Xinjiang. Miner. Depos. 2020, 39, 686–696. [Google Scholar]
- Li, R.G.; Lei, K.H.; Dong, Z.K.; Min, Y.; Kan, L.; Jian, Z.X.; Shun, J.M.; Yuan, L.W. Spectral Characteristics and Prospecting Implications of Lithium Deposits in Dahongliutan Area, Karakoram, Xinjiang. Northwestern Geol. 2022, 55, 103–114. [Google Scholar]
- Roselung, C. Chile’s solar market is leading the way in South America. Abgerufen Am. 2014, 7, 25. [Google Scholar]
- Sheng, S.P. Comprehensive Utilization of Salt Lake and Related Resources. J. Salt Lake Res. 2000, 8, 33–58. [Google Scholar]
- Marazuela, M.A.; Vazquez-Sune, E.; Ayora, C.; García-Gil, A.; Palma, T. The effect of brine pumping on the natural hydrodynamics of the Salar de Atacama: The damping capacity of salt flats. Sci. Total Environ. 2019, 654, 1118–1131. [Google Scholar] [CrossRef]
- Beyer, H.L. Hawth’s Analysis Tools for ArcGIS. 2004. Available online: http://www.spatialecology.com/htools (accessed on 15 June 2025).
- Leskovec, J.; Sosič, R. Snap: A general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol. (TIST) 2016, 8, 1–20. [Google Scholar] [CrossRef]
- Triglav, J. Exelis Visual Information Solutions. Geoinformatics 2012, 15, 34. [Google Scholar]
- Cabello, J. Lithium brine production, reserves, resources and exploration in Chile: An updated review. Ore Geol. Rev. 2021, 128, 103883. [Google Scholar] [CrossRef]
- Feng, G.; Ping, Z.M.; Zhen, N.; Hua, L.J.; Sheng, S.P. Brine Lithium Resource in the Salt Lake and Advances in Its Exploitation. Acta Geosci. Sin. 2011, 32, 483–492. [Google Scholar]
- Khalil, A.; Mohammed, S.; Hashaikeh, R.; Hilal, N. Lithium recovery from brine: Recent developments and challenges. Desalination 2022, 528, 115611. [Google Scholar] [CrossRef]
- Li, W.X.; Sheng, Y.W. Research progress of electrochemical lithium extraction systems and electrode materials. CIESC J. 2021, 72, 2957. [Google Scholar]
- Li, X.H.; Mo, Y.H.; Qing, W.H.; Shao, S.L.; Tang, C.Y.Y.; Li, J.X. Membrane-based technologies for lithium recovery from water lithium resources: A review. J. Membr. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- Maxwell, P.; Mora, M. Lithium and Chile: Looking back and looking forward. Miner. Econ. 2020, 33, 57–71. [Google Scholar] [CrossRef]
- Stevens, C.G.R.; Valdés-González, H. Lithium production issues in Chile: Perceptions involving the strategic resource and the common good. Renew. Energy Biomass Sustain. 2023, 5, 24–31. [Google Scholar] [CrossRef]
- Sociedad Química y Minera de Chile S.A. Home Page. Available online: https://sqmlitio.com/ (accessed on 15 June 2025).
- Zhen, N.; Qian, W.; Tao, D.; Zhong, B.L.; Sheng, W.Y.; Jiang, Y.J.; Hua, H.X. Research progress on industrialization technology of lithium extraction from salt lake brine in China. Inorg. Chem. Ind. 2022, 54, 1–12. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Han, W.H.; Ze, Z.; Yan, K.X.; Jiao, L.; Xia, Y.C.; Lu, M.L.; Ping, H.C.; Xin, L. Cotton planting area extraction and yield prediction based on Sentinel-2A. Trans. Chin. Soc. Agric. Eng. 2022, 38, 10. [Google Scholar]
- Jian, L.J.; Zhang, L.H.; Cui, H.; Man, S.Y.; Song, C.J.; Yu, H. Extraction of early paddy rice area in Lingao County based on Sentinel-1A data. Remote Sens. Land Resour. 2020, 32, 9. [Google Scholar]
- Jie, S.R.; Feng, N.J.; Ying, L.X.; Rui, C.Q. Apple Orchard Extraction with Quick Bird Imagery Based on Texture Features and Support Vector Machine. Trans. Chin. Soc. Agric. Mach. 2017, 48, 10. [Google Scholar]
- Long, W.X.; Wen, Y.H.; Liang, Z.; Ming, Z.L.; Wei, D.X. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea. Remote Sens. Land Resour. 2020, 32, 9. [Google Scholar]
- IEA. Energy Technology Perspectives 2010: Scenarios & Strategies to 2050; IEA: Paris, France, 2010. [Google Scholar]
- Deetman, S.; Pauliuk, S.; Van Vuuren, D.P.; Van Der Voet, E.; Tukker, A. Scenarios for demand growth of metals in electricity generation technologies, cars, and electronic appliances. Environ. Sci. Technol. 2018, 52, 4950–4959. [Google Scholar] [CrossRef] [PubMed]
- Jaskula, B.W. Lithium in 2012. Min. Eng. 2013, 65, 63–64. [Google Scholar]
- Liu, W.; Agusdinata, D.B. Interdependencies of lithium mining and communities sustainability in Salar de Atacama, Chile. J. Clean. Prod. 2020, 260, 120838. [Google Scholar] [CrossRef]
- Ober, J.A. Mineral Commodity Summaries 2018; U.S. Geological Survey: Reston, VA, USA, 2018; 204p.
Monitoring Time | Monitoring Satellite | Sensor Name | Number of Bands | Resolution | Cloud Cover |
---|---|---|---|---|---|
1985–2011 | Landsat 5 | TM | 7 | 30 m/120 m | <5% |
2012 | Landsat 7 | ETM+ | 8 | 15 m/30 m/60 m | <5% |
2013–2014 | Landsat 8 | OLI/TIRS | 11 | 15 m/30 m/100 m | <5% |
2015–2019 | Sentinel 2 | MSI | 13 | 10 m/20 m/60 m | <5% |
Year | Li Carbonate (t) | Li Hydroxide (t) | Eq. Lithium (t) | Year | Li Carbonate (t) | Li Hydroxide (t) | Eq. Lithium (t) |
---|---|---|---|---|---|---|---|
1985 | 4508 | 0 | 847 | 2003 | 41,667 | 0 | 7833 |
1986 | 4458 | 0 | 838 | 2004 | 43,971 | 0 | 8346 |
1987 | 6139 | 0 | 1154 | 2005 | 43,091 | 504 | 7134 |
1988 | 7332 | 0 | 1378 | 2006 | 46,241 | 3794 | 8883 |
1989 | 7508 | 0 | 1411 | 2007 | 51,292 | 4160 | 10,324 |
1990 | 9082 | 0 | 1707 | 2008 | 48,469 | 4050 | 9823 |
1991 | 8575 | 0 | 1612 | 2009 | 25,154 | 2987 | 5610 |
1992 | 10,823 | 0 | 2036 | 2010 | 44,025 | 5101 | 9724 |
1993 | 10,369 | 0 | 1949 | 2011 | 59,933 | 5800 | 12,853 |
1994 | 10,439 | 0 | 1962 | 2012 | 62,002 | 5447 | 13,229 |
1995 | 12,943 | 0 | 2433 | 2013 | 52,358 | 4197 | 11,201 |
1996 | 14,180 | 0 | 2666 | 2014 | 55,074 | 4194 | 11,531 |
1997 | 24,246 | 0 | 4558 | 2015 | 50,418 | 3888 | 10,456 |
1998 | 28,337 | 0 | 5458 | 2016 | 70,831 | 5576 | 14,525 |
1999 | 30,231 | 0 | 5709 | 2017 | 73,563 | 5279 | 15,113 |
2000 | 35,869 | 0 | 6743 | 2018 | 87,029 | 6468 | 17,000 |
2001 | 31,320 | 0 | 5888 | 2019 | 100,787 | 9934 | 18,000 |
2002 | 35,242 | 0 | 6625 |
Year | Area (km2) | Difference (km2) | Growth Rate | Year | Area (km2) | Difference (km2) | Growth Rate |
---|---|---|---|---|---|---|---|
1985 | 1.037 | - | - | 2003 | 23.072 | 0.623 | 2.77% |
1986 | 1.037 | 0.000 | 0.00% | 2004 | 23.072 | 0.000 | 0.00% |
1987 | 1.037 | 0.000 | 0.00% | 2005 | 24.495 | 1.423 | 6.17% |
1988 | 1.037 | 0.000 | 0.00% | 2006 | 24.930 | 0.436 | 1.78% |
1989 | 1.037 | 0.000 | 0.00% | 2007 | 26.222 | 1.291 | 5.18% |
1990 | 1.371 | 0.334 | 32.23% | 2008 | 28.609 | 2.387 | 9.10% |
1991 | 1.534 | 0.163 | 11.87% | 2009 | 32.124 | 3.514 | 12.28% |
1992 | 1.534 | 0.000 | 0.00% | 2010 | 39.971 | 7.848 | 24.43% |
1993 | 1.754 | 0.220 | 14.36% | 2011 | 47.812 | 7.841 | 19.62% |
1994 | 1.754 | 0.000 | 0.00% | 2012 | 50.221 | 2.409 | 5.04% |
1995 | 5.243 | 3.489 | 198.87% | 2013 | 52.991 | 2.770 | 5.52% |
1996 | 7.683 | 2.440 | 46.54% | 2014 | 57.964 | 4.973 | 9.38% |
1997 | 13.497 | 5.814 | 75.68% | 2015 | 58.004 | 0.040 | 0.07% |
1998 | 18.061 | 4.564 | 33.82% | 2016 | 58.345 | 0.341 | 0.59% |
1999 | 19.279 | 1.218 | 6.74% | 2017 | 59.179 | 0.834 | 1.43% |
2000 | 22.067 | 2.788 | 14.46% | 2018 | 61.543 | 2.363 | 3.99% |
2001 | 22.292 | 0.225 | 1.02% | 2019 | 62.594 | 1.051 | 1.71% |
2002 | 22.449 | 0.157 | 0.70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, J.; Lian, Y.; Li, S.; Zhang, Y.; Wen, P. Satellite-Based Lithium Capacity Monitoring in Salt Lakes: The Atacama Case. Sustainability 2025, 17, 5631. https://doi.org/10.3390/su17125631
Xiang J, Lian Y, Li S, Zhang Y, Wen P. Satellite-Based Lithium Capacity Monitoring in Salt Lakes: The Atacama Case. Sustainability. 2025; 17(12):5631. https://doi.org/10.3390/su17125631
Chicago/Turabian StyleXiang, Jie, Yanbin Lian, Suya Li, Yan Zhang, and Pengfei Wen. 2025. "Satellite-Based Lithium Capacity Monitoring in Salt Lakes: The Atacama Case" Sustainability 17, no. 12: 5631. https://doi.org/10.3390/su17125631
APA StyleXiang, J., Lian, Y., Li, S., Zhang, Y., & Wen, P. (2025). Satellite-Based Lithium Capacity Monitoring in Salt Lakes: The Atacama Case. Sustainability, 17(12), 5631. https://doi.org/10.3390/su17125631