Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,241)

Search Parameters:
Keywords = lithium ion batteries (LIBs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5380 KB  
Article
A Pilot Study on Upcycling of Lithium-Ion Battery Waste in Greener Cementitious Construction Material
by Gaurav Chobe, Ishaan Davariya, Dheeraj Waghmare, Shivam Sharma, Akanshu Sharma, Amit H. Varma and Vilas G. Pol
CivilEng 2026, 7(1), 7; https://doi.org/10.3390/civileng7010007 (registering DOI) - 25 Jan 2026
Abstract
Lithium-ion batteries (LIBs) are essential for electric vehicles, consumer electronics, and grid storage, but their rapidly increasing demand is paralleled by growing waste volumes. Current disposal methods remain costly, complex, energy-intensive, and environmentally unsustainable. This pilot study investigates a scalable, low-impact disposal method [...] Read more.
Lithium-ion batteries (LIBs) are essential for electric vehicles, consumer electronics, and grid storage, but their rapidly increasing demand is paralleled by growing waste volumes. Current disposal methods remain costly, complex, energy-intensive, and environmentally unsustainable. This pilot study investigates a scalable, low-impact disposal method by incorporating LIB waste into concrete, evaluating both the structural and environmental effects of LIB waste on concrete performance. Several cement–mortar cube specimens were cast and tested under compression using the cement–mortar mix with varying battery waste components, such as black mass and varied metals. All mortar mixes maintained an identical water-to-cement ratio. The compressive strength of the cubes was measured at 3, 7, 14, 21, and 28 days after casting and compared. The mix containing black mass exhibited a 35% reduction in compressive strength on day 28, whereas the mix containing varied metals showed a 55% reduction relative to the control mix without LIB waste. A case study was conducted to evaluate the combined structural and environmental performance of a concrete specimen incorporating LIB waste by estimating the embodied carbon (EC) for each mix and comparing the strength-to-net EC ratio. Selective incorporation of LIB waste into concrete provides a practical, low-carbon upcycling pathway, reducing both embodied carbon and landfill burden while enabling greener, non-structural construction materials. This sustainable approach simultaneously mitigates battery waste and lowers cement-related CO2 emissions, delivering usable concrete for non-structural and low-strength structural applications. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

16 pages, 4145 KB  
Article
Improving the Effective Utilization of Liquid Nitrogen for Suppressing Thermal Runaway in Lithium-Ion Battery Packs
by Dunbin Xu, Xing Deng, Lingdong Su, Xiao Zhang and Xin Xu
Batteries 2026, 12(2), 40; https://doi.org/10.3390/batteries12020040 - 23 Jan 2026
Abstract
In recent years, the energy revolution has driven the rapid development of lithium-ion batteries (LIBs). A fire suppression system capable of rapidly and effectively extinguishing LIB fires constitutes the last line of defense for ensuring the safe operation of the LIB industry. In [...] Read more.
In recent years, the energy revolution has driven the rapid development of lithium-ion batteries (LIBs). A fire suppression system capable of rapidly and effectively extinguishing LIB fires constitutes the last line of defense for ensuring the safe operation of the LIB industry. In this study, an experimental platform simulating the storage environment of LIBs in energy-storage stations was constructed, and liquid nitrogen (LN) was employed to conduct fire suppression tests on LIBs. The effective utilization of 17.4 kg of LN during the suppression process inside the battery module was quantified. In addition, fire compartments were established within the battery module, and a strategy for enhancing the LN suppression effectiveness was proposed. The results indicate that, without intervention, the thermal runaway propagation (TRP) rate within the LIB module gradually accelerates. After LN injection, the effective utilization of LN for extinguishing individual LIBs decreases progressively along the sequence of TRP. Creating fire compartments inside the PACK using 6 mm aerogel blankets effectively reduces the transfer of energy from the region undergoing thermal runaway (TR) to other regions, while simultaneously enhancing the extinguishing performance of LN. Under the same LN dosage, the introduction of fire compartments increases the effective utilization from 0.037 to 0.051. However, as the compartment volume decreases, the degree of improvement in LN utilization is reduced. This work is expected to provide guidance for the engineering application of LN-based fire suppression systems to inhibit LIB TR and its propagation. Full article
Show Figures

Figure 1

21 pages, 4803 KB  
Article
Recovery of High-Purity Lithium Hydroxide Monohydrate from Lithium-Rich Leachate by Anti-Solvent Crystallization: Process Optimization and Impurity Incorporation Mechanisms
by Faizan Muneer, Ida Strandkvist, Fredrik Engström and Lena Sundqvist-Öqvist
Batteries 2026, 12(1), 35; https://doi.org/10.3390/batteries12010035 - 21 Jan 2026
Viewed by 62
Abstract
The increasing demand for lithium-ion batteries (LIBs) has intensified the need for efficient lithium (Li) recovery from secondary sources. This study focuses on anti-solvent crystallization for the recovery of high-purity lithium hydroxide monohydrate (LiOH·H2O) from a Li-rich leachate, derived from the [...] Read more.
The increasing demand for lithium-ion batteries (LIBs) has intensified the need for efficient lithium (Li) recovery from secondary sources. This study focuses on anti-solvent crystallization for the recovery of high-purity lithium hydroxide monohydrate (LiOH·H2O) from a Li-rich leachate, derived from the flue dust of a pilot-scale pyrometallurgical process for LIB material recycling. To optimize product yield and purity, a series of experiments were performed, focusing on the influence of parameters such as solvent type, organic-to-aqueous (O/A) volumetric ratio, crystallization time, stirring rate, and anti-solvent addition rate. Acetone was identified as the most effective anti-solvent, producing rectangular cuboid crystals with approximately 90% Li recovery and around 95% purity, under optimized conditions (O/A = 4, 3 h, 150 rpm, and solvent flow rate of 5 mL/min). The flow rate influenced crystal morphology and impurity entrapment, with 5 mL/min favoring nucleation-dominated crystallization regime, producing ~20 μm of well-dispersed crystals with reduced impurity incorporation. SEM-EDS, surface washing, and gradual dissolution of obtained LiOH·H2O crystals revealed that the impurities sodium (Na), potassium (K), aluminum (Al), calcium (Ca) and chromium (Cr) were crystallized as conglomerates. It was found that Na, K, Al, and Ca primarily crystallized as highly soluble conglomerates, while Cr was crystallized as a lowly soluble conglomerate impurity. In contrast Zn was distributed throughout the crystal bulk, suggesting either the entrapment of soluble zincate species within the growing crystals or the formation of mixed Li-Zn phase. Therefore, to achieve battery-grade purity, further purification measures are necessary. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Graphical abstract

44 pages, 18955 KB  
Review
A Review of Gas-Sensitive Materials for Lithium-Ion Battery Thermal Runaway Monitoring
by Jian Zhang, Zhili Li and Lei Huang
Molecules 2026, 31(2), 347; https://doi.org/10.3390/molecules31020347 - 19 Jan 2026
Viewed by 110
Abstract
Lithium-ion batteries (LIBs) face the safety hazard of thermal runaway (TR). Gas-sensing-based monitoring is one of the viable warning approaches for batteries during operation, and TR warning using semiconductor gas sensors has garnered widespread attention. This review presents a comprehensive analysis of the [...] Read more.
Lithium-ion batteries (LIBs) face the safety hazard of thermal runaway (TR). Gas-sensing-based monitoring is one of the viable warning approaches for batteries during operation, and TR warning using semiconductor gas sensors has garnered widespread attention. This review presents a comprehensive analysis of the latest advances in this field. It details the gas release characteristics during the TR failure process and identifies H2, electrolyte vapor, CO, CO2, and CH4 as effective TR warning markers. The core of this review lies in an in-depth critical analysis of gas-sensing materials designed for these target gases, systematically summarizing the design, performance, and application research of semiconductor gas-sensing materials for each aforementioned gas in battery monitoring. We further summarize the current challenges of this technology and provide an outlook on future development directions of gas-sensing materials, including improved selectivity, integration, and intelligent advancement. This review aims to provide a roadmap that directs the rational design of next-generation sensing materials and fast-tracks the implementation of gas-sensing technology for enhanced battery safety. Full article
(This article belongs to the Special Issue Nanochemistry in Asia)
Show Figures

Graphical abstract

15 pages, 2882 KB  
Article
Adopting Data-Driven Safety Management Strategy for Thermal Runaway Risks of Electric Vehicles: Insights from an Experimental Scenario
by Huxiao Shi, Yunli Xu, Jia Qiu, Yang Xu, Cuicui Zheng, Jie Geng, Davide Fissore and Micaela Demichela
Appl. Sci. 2026, 16(2), 996; https://doi.org/10.3390/app16020996 - 19 Jan 2026
Viewed by 88
Abstract
Thermal runaway (TR) of lithium-ion batteries (LIBs) represents a critical safety challenge in EV applications. This study explores the potential of data-driven safety management strategies for mitigating TR risks in EVs. To minimize the impact of external environmental factors on the degradation of [...] Read more.
Thermal runaway (TR) of lithium-ion batteries (LIBs) represents a critical safety challenge in EV applications. This study explores the potential of data-driven safety management strategies for mitigating TR risks in EVs. To minimize the impact of external environmental factors on the degradation of LIBs, experiments were conducted using an accelerating rate calorimeter (ARC). The intrinsic thermal behavior of six nickel–cobalt–manganese (NCM) cells at different states of health (SOH) and operating temperatures has been captured in created adiabatic conditions. Multiple sensors were deployed to monitor the temperature and electrochemical and environmental parameters throughout the degradation process until TR occurred. The results show that both the thermal and electrochemical stability of LIBs have been affected, exhibiting consistent thermal patterns and early electrochemical instability. Furthermore, even under adiabatic conditions, the degradation of LIBs show synergistic effects with environmental parameters such as chamber temperature and pressure. Correlation analysis further revealed the coupling relationships between the monitored parameters. Through calculating their correlation coefficients, the results indicate advantages of combining thermal, electrochemical, and environmental parameters as being to characterize the degradation of LIBs and enhance the identification of TR precursors. These findings stress the importance of considering the battery-environment system as a whole in safety management of EVs. They also provide insights into the development of data-driven safety management strategies, highlighting the potential for achievement and integration of anomaly detection, diagnosis, and prognostics functions in current EV management frameworks. Full article
(This article belongs to the Special Issue Safety and Risk Assessment in Industrial Systems)
Show Figures

Figure 1

17 pages, 1978 KB  
Article
Challenging the Circular Economy: Hidden Hazards of Disposable E-Cigarette Waste
by Iwona Pasiecznik, Kamil Banaszkiewicz, Mateusz Koczkodaj and Aleksandra Ciesielska
Sustainability 2026, 18(2), 961; https://doi.org/10.3390/su18020961 - 17 Jan 2026
Viewed by 212
Abstract
Waste electrical and electronic equipment (WEEE) is one of the fastest-growing waste streams globally. Disposable e-cigarettes are among the products that have gained popularity in recent years. Their complex construction and embedded lithium-ion batteries (LIBs) present environmental, safety, and resource recovery challenges. Despite [...] Read more.
Waste electrical and electronic equipment (WEEE) is one of the fastest-growing waste streams globally. Disposable e-cigarettes are among the products that have gained popularity in recent years. Their complex construction and embedded lithium-ion batteries (LIBs) present environmental, safety, and resource recovery challenges. Despite growing research interest, integrated analyses linking material composition with user disposal behavior remain limited. This study is the first to incorporate device-level mass balance, material contamination assessment, battery residual charge measurements, and user behavior to evaluate the waste management challenges of disposable e-cigarettes. A mass balance of twelve types of devices on the Polish market was performed. Plastics dominated in five devices, while non-ferrous metals prevailed in the others, depending on casing design. Materials contaminated with e-liquid residues accounted for 4.4–10.7% of device mass. Battery voltage measurements revealed that 25.6% of recovered LIBs retained a residual charge (greater than 2.5 V), posing a direct fire hazard during waste handling and treatment. Moreover, it was estimated that 7 to 12 tons of lithium are introduced annually into the Polish market via disposable e-cigarettes, highlighting substantial resource potential. Survey results showed that 46% of users disposed of devices in mixed municipal waste, revealing a knowledge–practice gap largely independent of gender or education. Integrating technical and social findings demonstrates that improper handling is a systemic issue. The findings support the relevance of eco-design requirements, such as modular casings for battery removal, alongside the enforcement of Extended Producer Responsibility (EPR) schemes. Current product fees (0.01–0.03 EUR/unit) remain insufficient to establish an effective collection infrastructure, highlighting a key systemic barrier. Full article
(This article belongs to the Special Issue Resource Management and Circular Economy Sustainability)
Show Figures

Figure 1

23 pages, 5058 KB  
Article
Research on State of Health Assessment of Lithium-Ion Batteries Using Actual Measurement Data Based on Hybrid LSTM–Transformer Model
by Hanyu Zhang and Jifei Wang
Symmetry 2026, 18(1), 169; https://doi.org/10.3390/sym18010169 - 16 Jan 2026
Viewed by 222
Abstract
An accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is crucial for ensuring the safety and reliability of energy storage systems and electric vehicles. However, existing methods face challenges: physics-based models are computationally complex, traditional data-driven methods rely heavily [...] Read more.
An accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is crucial for ensuring the safety and reliability of energy storage systems and electric vehicles. However, existing methods face challenges: physics-based models are computationally complex, traditional data-driven methods rely heavily on manual feature engineering, and single models lack the ability to capture both local and global degradation patterns. To address these issues, this paper proposes a novel hybrid LSTM–Transformer model for LIB SOH estimation using actual measurement data. The model integrates Long Short-Term Memory (LSTM) networks to capture local temporal dependencies with the Trans-former architecture to model global degradation trends through self-attention mechanisms. Experimental validation was conducted using eight 18650 Nickel Cobalt Manganese (NCM) LIBs subjected to 750 charge–discharge cycles under room temperature conditions. Sixteen statistical features were extracted from voltage and current data during constant current–constant voltage (CC-CV) phases, with feature selection based on the Pearson correlation coefficient and maximum information coefficient analysis. The proposed LSTM–Transformer model demonstrated superior performance compared to the standalone LSTM and Transformer models, achieving a mean absolute error (MAE) as low as 0.001775, root mean square error (RMSE) of 0.002147, and mean absolute percentage error (MAPE) of 0.196% for individual batteries. Core features including cumulative charge (CC Q), charging time, and voltage slope during the constant current phase showed a strong correlation with the SOH (absolute PCC > 0.8). The hybrid model exhibited excellent generalization across different battery cells with consistent error distributions and nearly overlapping prediction curves with actual SOH trajectories. The symmetrical LSTM–Transformer hybrid architecture provides an accurate, robust, and generalizable solution for LIB SOH assessment, effectively overcoming the limitations of traditional methods while offering potential for real-time battery management system applications. This approach enables health feature learning without manual feature engineering, representing an advancement in data-driven battery health monitoring. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

19 pages, 12219 KB  
Article
Multilayer Polyethylene Separator with Enhanced Thermal and Electrochemical Performance for Lithium-Ion Batteries
by Jingju Liu, Baohui Chen, Jiarui Liu, Luojia Chen, Jiangfeng Wang, Kuo Chen, Zuosheng Li, Chuanping Wu, Xuanlin Gong, Linjin Xie and Jin Cai
Materials 2026, 19(2), 342; https://doi.org/10.3390/ma19020342 - 15 Jan 2026
Viewed by 250
Abstract
The inherent limitations of conventional polyolefin separators, particularly their poor thermal stability and insufficient mechanical strength, pose significant safety risks for lithium-ion batteries (LIBs) by increasing susceptibility to thermal runaway. In this study, we developed a novel multilayer separator through sequential coating of [...] Read more.
The inherent limitations of conventional polyolefin separators, particularly their poor thermal stability and insufficient mechanical strength, pose significant safety risks for lithium-ion batteries (LIBs) by increasing susceptibility to thermal runaway. In this study, we developed a novel multilayer separator through sequential coating of a commercial polyethylene (PE) substrate with aluminum oxide (Al2O3), para-aramid (PA), and polyethylene wax microspheres (PEWMs) using a scalable micro-gravure process, denoted as SAPEAS, signifying a PE-based asymmetric structure separator with enhanced thermal shutdown and dimensional stability. The SAPEAS separator exhibits an early thermal shutdown capability at 105 °C, maintains structural integrity with negligible shrinkage at 180 °C, and demonstrates comprehensive performance enhancements, including enhanced mechanical strength (tensile strength: 212.3 MPa; puncture strength: 0.64 kgf), excellent electrolyte wettability (contact angle: 12.8°), a high Li+ transference number (0.71), superior ionic conductivity (0.462 mS cm−1), outperforming that of commercial PE separators. In practical LFP|Gr pouch cells with ampere-hour (Ah) level capacity, the SAPEAS separator enables exceptional cycling stability with 97.9% energy retention after 1000 cycles, while significantly improving overcharge tolerance compared to PE. This work provides an effective strategy for simultaneously improving the safety and electrochemical performance of LIBs. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

10 pages, 1592 KB  
Article
Direct Regeneration of Spent LiNi0.5Co0.2Mn0.3O2 Cathodes by Utilizing Eutectic Lithium Salts for High-Performance Lithium-Ion Batteries
by Jian Yan, Yongji Xia, Sheng Lin, Yingpeng Du, Zhidong Zhou, Jintang Li and Guanghui Yue
Coatings 2026, 16(1), 107; https://doi.org/10.3390/coatings16010107 - 13 Jan 2026
Viewed by 232
Abstract
With the wide application of lithium-ion batteries (LIBs), many spent LIBs will face the problem of recycling and treatment in the future. The recycling of valuable substances from battery materials is particularly important. In this paper, the spent LiNi0.5Co0.2Mn [...] Read more.
With the wide application of lithium-ion batteries (LIBs), many spent LIBs will face the problem of recycling and treatment in the future. The recycling of valuable substances from battery materials is particularly important. In this paper, the spent LiNi0.5Co0.2Mn0.3O2 (S-NCM523) cathode material from used LIBs was regenerated by using the eutectic lithium salt of Li2CO3/LiOH. The lithium element lost by S-NCM523 was supplemented through solid–liquid contact with the molten lithium salt, restoring the layered structure at high temperatures. The successful repair of the regenerated material was verified by various characterization methods, including the elimination of the rock salt phase and the lower Li+/Ni2+ disorder. This research shows that the regenerated cathode material still has a high specific discharge capacity of 146.8 mAh/g after 100 cycles, with a capacity retention rate of 96.0%. The excellent electrochemical performance of the regenerated material demonstrates the feasibility of directly regenerating spent NCM using the molten salt method. Full article
Show Figures

Figure 1

22 pages, 1961 KB  
Article
Efficiency of Advanced Oxidation Processes for Treating Wastewater from Lithium-Ion Battery Recycling
by Ronja Wagner-Wenz, Frederik Funk, Regine Peter, Tobias Necke, Fabian Brückner, Maximilian Philipp, Markus Engelhart, Anke Weidenkaff and Emanuel Ionescu
Clean Technol. 2026, 8(1), 13; https://doi.org/10.3390/cleantechnol8010013 - 13 Jan 2026
Cited by 1 | Viewed by 318
Abstract
A treatment process was developed for effluents from direct physical lithium-ion battery (LIB) recycling with a focus on the removal of organic contaminants. The high chemical oxygen demand to biological oxygen demand ratio (COD/BOD5) of 3.9–4.6 indicates that biological treatment is [...] Read more.
A treatment process was developed for effluents from direct physical lithium-ion battery (LIB) recycling with a focus on the removal of organic contaminants. The high chemical oxygen demand to biological oxygen demand ratio (COD/BOD5) of 3.9–4.6 indicates that biological treatment is not feasible. Therefore, three advanced oxidation processes were evaluated: UV/H2O2 oxidation, the Fenton process and electrochemical oxidation. Two target scenarios were considered, namely compliance with the limit for discharge into the sewer system (COD = 800 mg/L) and compliance with the stricter limit for direct discharge into surface waters (COD = 200 mg/L). Under the investigated conditions, UV/H2O2 oxidation and the Fenton process did not meet the required discharge limits and exhibited high chemical consumption. In contrast, electrochemical oxidation achieved both discharge criteria with a lower energy demand, requiring 32.8 kWh/kgCODremoved for sewer discharge and 95.3 kWh/kgCODremoved for direct discharge. An economic assessment further identified electrochemical oxidation as the most cost-effective option, with treatment costs of EUR 6.63/m3, compared to EUR 17.31/m3 for UV/H2O2 oxidation and EUR 28.66/m3 for the Fenton process. Overall, electrochemical oxidation proved to be the most efficient and environmentally favorable technology for treating wastewater from LIB recycling, enabling compliance with strict discharge regulations while minimizing the chemical and energy demand. Full article
(This article belongs to the Topic Wastewater Treatment Based on AOPs, ARPs, and AORPs)
Show Figures

Graphical abstract

19 pages, 10701 KB  
Article
Numerical Simulation and Optimization of a Novel Battery Box Wall and Contour-Finned Structure in Air-Cooled Battery Thermal Management Systems
by Jingfei Chen, Weiguang Zheng and Jianguo Ye
Batteries 2026, 12(1), 27; https://doi.org/10.3390/batteries12010027 - 13 Jan 2026
Viewed by 164
Abstract
Lithium-ion batteries (LIBs) are currently widely used in the electric vehicle sector and have become one of the core components of new energy vehicles. To ensure that the maximum temperature (Tmax) and maximum temperature difference (∆Tmax) remain within acceptable [...] Read more.
Lithium-ion batteries (LIBs) are currently widely used in the electric vehicle sector and have become one of the core components of new energy vehicles. To ensure that the maximum temperature (Tmax) and maximum temperature difference (∆Tmax) remain within acceptable limits after high-rate discharge, this study proposes a novel air-cooled battery thermal management system (BTMS). This BTMS features innovative design elements in its novel battery case walls and contour-following fin structure. Through physical testing of 21,700 LIB discharges and comparative numerical simulations, the accuracy of the simulation model is ensured. Orthogonal experimental analysis is conducted at four distinct levels for each of the four structural factors involved. The final results demonstrate that the novel battery pack wall and contour-shaped fin structure proposed in this paper significantly enhance the heat dissipation capability of air-cooled BTMS. The proposed Model 9 configuration exhibits optimal thermal performance metrics. The Tmax after 3C rate discharge reaches 39.4 °C, with a ∆Tmax of 7.4 °C. This study demonstrates significant application potential in the structural implementation of air-cooled BTMSs. Full article
Show Figures

Figure 1

39 pages, 4037 KB  
Review
Nanostructured Silicon Anodes for Lithium-Ion Batteries: Advances, Challenges, and Future Prospects
by Alexander A. Pavlovskii, Konstantin Pushnitsa, Alexandra Kosenko, Pavel Novikov and Anatoliy A. Popovich
Materials 2026, 19(2), 281; https://doi.org/10.3390/ma19020281 - 9 Jan 2026
Viewed by 312
Abstract
Silicon is considered one of the most promising next-generation anode materials for lithium-ion batteries (LIBs) because of its very high theoretical specific capacity (≈3579 mAh·g−1). However, its practical application is limited by severe volume expansion (>300%), an unstable solid electrolyte interphase [...] Read more.
Silicon is considered one of the most promising next-generation anode materials for lithium-ion batteries (LIBs) because of its very high theoretical specific capacity (≈3579 mAh·g−1). However, its practical application is limited by severe volume expansion (>300%), an unstable solid electrolyte interphase (SEI), and low electronic conductivity. Recent progress in nanostructuring has significantly improved the electrochemical performance and durability of silicon anodes. In particular, nanosilicon particles, porous structures, and Si–carbon composites enhance structural stability, cycling life, and coulombic efficiency. These improvements arise from better mechanical integrity and more stable electrode–electrolyte interfaces. This review summarizes recent advances in nanostructured silicon anodes, focusing on particle size control, pore design, composite architectures, and interfacial engineering. We discuss how these nanoscale strategies reduce mechanical degradation and improve lithiation kinetics while also addressing the remaining challenges. Finally, future research directions and industrial prospects for the practical use of nanostructured silicon anodes in next-generation LIBs are outlined. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

24 pages, 3118 KB  
Article
Mapping Stakeholder Perspectives for Sustainability Transitions: The Case of Lithium-Ion Battery Recycling
by Bettina Rutrecht, Susanne Rosskogler, Astrid Arnberger, Roland Pomberger and Thomas Nigl
Sustainability 2026, 18(2), 654; https://doi.org/10.3390/su18020654 - 8 Jan 2026
Viewed by 205
Abstract
Lithium-ion battery (LIB) recycling has become a key area where sustainability goals and circular economy ambitions meet practical challenges. While research often focuses on regulatory or technological solutions, real progress depends on stakeholder action and alignment. This paper combines a literature review and [...] Read more.
Lithium-ion battery (LIB) recycling has become a key area where sustainability goals and circular economy ambitions meet practical challenges. While research often focuses on regulatory or technological solutions, real progress depends on stakeholder action and alignment. This paper combines a literature review and a stakeholder survey (n = 26) to map risks, opportunities, barriers, and interventions, formulating a roadmap for sustainable LIB recycling from the stakeholder perspective. The literature identified 27 opportunities, 21 risks, 32 barriers, and 23 enablers across strategic, operational, institutional, cultural, and technical domains. The study confirms that an implementation gap persists between ambition and practice. Stakeholders know the opportunities, but structural barriers, limited resources, and insufficient attention to cultural enablers dampen progress. The barrier–intervention mapping and the derived roadmap show that interventions must be sequenced strategically: securing resources first, then building data infrastructures and strengthening know-how to finally reduce complexity. The findings show that sustainability progress depends less on technical capability than on sound resource management, reliable data, and institutional support offering a transferable framework to close implementation gaps, as presented in this study, and supports future research on how stakeholder alignment can accelerate sustainable transitions across industries. Full article
Show Figures

Figure 1

18 pages, 5540 KB  
Article
Numerical and Experimental Study on Jet Flame Behavior and Smoke Pattern Characteristics of 50 Ah NCM Lithium-Ion Battery Thermal Runaway
by Xuehui Wang, Zilin Fan, Zhuo’er Sun, Xin Fu, Mingyu Jin, Yang Shen, Shu Lin and Zhi Wang
Batteries 2026, 12(1), 23; https://doi.org/10.3390/batteries12010023 - 8 Jan 2026
Viewed by 283
Abstract
This paper investigates the flame behavior and smoke pattern characteristics of lithium-ion battery (LIB) fires using an integrated experimental and numerical simulation approach. Based on fire dynamics theory, a jet flame model for LIB thermal runaway (TR) is developed to analyze the flame [...] Read more.
This paper investigates the flame behavior and smoke pattern characteristics of lithium-ion battery (LIB) fires using an integrated experimental and numerical simulation approach. Based on fire dynamics theory, a jet flame model for LIB thermal runaway (TR) is developed to analyze the flame height and dynamic characteristics. The results reveal two distinct regimes in LIB jet flames: momentum-controlled dominance in the early TR stage (lasting approximately 3 s) and buoyancy-controlled dominance in subsequent combustion. The jet flame shifts from a momentum-dominated regime (Fr > 5) to a buoyancy-dominated plume (Fr < 5) as the vent velocity decays below 12 m/s. The simulated flame heights align with experimental measurements and the Delichatsios model, validating the numerical approach. Furthermore, the distribution of flame components (e.g., H2, CO, CO2, CH4, C2H4) is analyzed, highlighting the influence of multi-component gases on combustion heterogeneity. Smoke pattern analysis demonstrates that soot deposition varies significantly between momentum- and buoyancy-controlled stages, with the former producing darker, concentrated deposits and the latter yielding wider, lighter patterns. These findings provide a theoretical basis for forensic fire investigation (accident reconstruction) and targeted suppression strategies for different combustion stages. Full article
(This article belongs to the Special Issue Control, Modelling, and Management of Batteries)
Show Figures

Figure 1

21 pages, 266 KB  
Proceeding Paper
Metal Oxide Nanomaterials for Energy Density Improvement in Lithium-Ion and Solid-State Batteries
by Partha Protim Borthakur, Pranjal Sarmah, Madhurjya Saikia, Tamanna Afruja Hussain and Nayan Medhi
Mater. Proc. 2025, 25(1), 17; https://doi.org/10.3390/materproc2025025017 - 7 Jan 2026
Viewed by 233
Abstract
Metal oxide nanomaterials have emerged as transformative materials in the quest to enhance the energy density and overall performance of lithium-ion batteries (LIBs) and solid-state batteries (SSBs). Their unique properties—including their large surface areas and short ion diffusion pathways—make them ideal for next-generation [...] Read more.
Metal oxide nanomaterials have emerged as transformative materials in the quest to enhance the energy density and overall performance of lithium-ion batteries (LIBs) and solid-state batteries (SSBs). Their unique properties—including their large surface areas and short ion diffusion pathways—make them ideal for next-generation energy storage technologies. In LIBs, the high surface-to-volume ratio of metal oxide nanomaterials significantly enlarges the active interfacial area and shortens the lithium-ion diffusion paths, leading to an improved high-rate performance and enhanced energy density. Transition metal oxides (TMOs) such as nickel oxide (NiO), copper oxide (CuO), and zinc oxide (ZnO) have demonstrated significant theoretical capacities, while binary systems like NiCuO offer further improvements in cycling stability and energy output. Additionally, layered lithium-based TMOs, particularly those incorporating nickel, cobalt, and manganese, have shown remarkable promise in achieving high specific capacities and long-term stability. The synergistic integration of metal oxides with carbon-based nanostructures, such as carbon nanotubes (CNTs), enhances the electrical conductivity and structural durability further, leading to a superior electrochemical performance in LIBs. In SSBs, the use of oxide-based solid electrolytes like garnet-type Li7La3Zr2O12 (LLZO) and sulfide-based electrolytes has facilitated the development of high-energy-density systems with excellent ionic conductivity and chemical stability. However, challenges such as high interfacial resistance at the electrode–electrolyte interface persist. Strategies like the application of lithium niobate (LiNbO3) coatings have been employed to enhance interfacial stability and maintain electrochemical integrity. Furthermore, two-dimensional (2D) metal oxide nanomaterials, owing to their high active surface areas and rapid ion transport, have demonstrated considerable potential to boost the performance of SSBs. Despite these advancements, several challenges remain. Morphological optimization of nanomaterials, improved interface engineering to reduce the interfacial resistance, and solutions to address dendrite formation and mechanical degradation are critical to achieving the full potential of these materials. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Back to TopTop