Efficiency of Advanced Oxidation Processes for Treating Wastewater from Lithium-Ion Battery Recycling
Abstract
1. Introduction
- (i)
- Discharge of the treated process water into the sewer system to be further treated in a municipal wastewater treatment plant with a COD limit value of 800 mg/L [31].
- (ii)
- Direct discharge of industrial wastewater into a water body. According to the German legal framework, the COD needs to be reduced to at least 200 mg/L to comply with the limit values defined in Annex 27, “treatment of waste by chemical-physical plants” [32].
- (i)
- Investigate whether the recovery of organic carbonates is an option for wastewater treatment.
- (ii)
- Evaluate the treatment performance of three AOPs: UV/H2O2 oxidation, the Fenton process and electrochemical oxidation.
- (iii)
- Compare the AOPs in terms of energy demand, chemical requirements and discharge compliance, considering two scenarios: discharge into the sewer system and direct discharge into a water body according to German wastewater ordinance limits.
- (iv)
- Provide the levelized treatment costs per m3 for the three AOPs.
- (v)
- Derive recommendations for the most suitable treatment option for LIB recycling process water and for potential regulatory parameters in future wastewater legislation.
2. Materials and Methods
2.1. Analytical Methods
2.2. LIB Recycling Route
2.3. Advanced Oxidation Processes
2.4. Economic Analysis
3. Results and Discussion
3.1. Process Water Composition
3.2. UV/H2O2 Oxidation
3.3. Fenton Process
3.4. Electrochemical Oxidation
4. Conclusions
5. Outlook
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AOPs | Advanced Oxidation Processes |
| BDD | Boron-Doped Diamond |
| BOD5 | Biological Oxygen Demand (5 days) |
| CAPEX | Capital Expenditures |
| CIC | Combustion Ion Chromatography |
| COD | Chemical Oxygen Demand |
| DEC | Diethyl Carbonate |
| DMC | Dimethyl Carbonate |
| EC | Ethylene Carbonate |
| EDX | Energy-Dispersive X-Ray Spectroscopy |
| EHF | Electrohydraulic Fragmentation |
| EMC | Ethyl Methyl Carbonate |
| EU | European Union |
| Fe2+ | Ferrous Ion |
| HF | Hydrofluoric Acid |
| HPLC | High-Performance Liquid Chromatography |
| ICP-OES | Inductively Coupled Plasma Optical Emission Spectroscopy |
| ICSD | Inorganic Crystal Structure Database |
| IE | Ion Exchange |
| KPF6 | Potassium Hexafluorophosphate |
| LIB | Lithium-Ion Battery |
| LTC | Levelized Treatment Cost |
| MBR | Membrane Bioreactor |
| NMC | Nickel Manganese Cobalt Oxide |
| NPOC | Non-Purgeable Organic Carbon |
| OPEX | Operational Expenditures |
| PC | Propylene Carbonate |
| PF6− | Hexafluorophosphate |
| PXRD | Powder X-Ray Diffraction |
| SI | Supporting Information |
| SuSi | Skimming and Sieving |
| TOC | Total Organic Carbon |
| UV | Ultraviolet |
Appendix A
| Parameters | Tab Water | Process Water | |
|---|---|---|---|
| Volume [L] | [L] | - | 30–42 |
| pH value | [-] | 6.8 | 7.1–7.4 |
| Conductivity | [µS/cm] | 400 | 1280–2280 |
| Chemical oxygen demand (COD) | [mg/L] | - | 916–1570 |
| Biological oxygen demand (BOD5) | [mg/L] | - | 235–340 |
| COD/BOD5 ratio | [-] | - | 3.9–4.6 |
| Al | [mg/L] | 0.03 | 0.31–0.56 |
| Ca | [mg/L] | 67.3 | 26.2–35 |
| Co | [mg/L] | - | 0.08–0.12 |
| Cu | [mg/L] | 0.17 | 0.12–0.59 |
| Li | [mg/L] | 0.19 | 127–157 |
| Mg | [mg/L] | 13.2 | 6.0–7.3 |
| Mn | [mg/L] | - | 0.08–0.20 |
| Na | [mg/L] | 1.76 | 2.8–40.5 |
| Ni | [mg/L] | - | 0.36–0.60 |
| P | [mg/L] | 0.94 | 61.2–84.6 |
| S | [mg/L] | 13.7 | 165–200 |
| Ftotal | [mg/L] | - | 123–468 |
| F− | [mg/L] | - | 29.6–38.3 |
| Cl− | [mg/L] | 40.7 | 46.4–51.2 |
| SO42− | [mg/L] | 42.5 | 39.1–45.2 |
| PO43− | [mg/L] | - | - |


| Fixed Assets | Service Life | Primary Investment Demand | Reinvestment Demand | Costs Per Item |
|---|---|---|---|---|
| Wastewater treatment plant | 20 years | 1 | 0 | - |
| Housing | 33 years | 0.6 | 0 | EUR 2827/m2 in Hanau, Germany |
| Pumps | 7 years | 3 | 5.6 | EUR 6477 acid-resistant centrifugal pump |
| EUR 3450 centrifugal pump | ||||
| EUR 6900 screw pump | ||||
| Tank | 20 years | 2 | 0 | EUR 3500 |
| UV oxidation plant | 7 Years | 1 | 1.9 | EUR 49,950 |
| Anodes | 6.3 years | 1.9 m2 | 4.1 m2 | EUR 19,993/m2 |
| Cathodes | 10 years | 1.9 m2 | 3.8 m2 | EUR 994/m2 |
| Mixer | 14 years | 1 | 0.43 | EUR 168 |

| UV/H2O2 Oxidation | COD [mg/L] | CODremoved [%] | H2O2/COD [kg/kg] | E/COD [kWh/kg] | Treated Volume [mL] | Source |
|---|---|---|---|---|---|---|
| Battery wastewater | 1632 | 51 | 7.8 | 56.3 | 500 | this work |
| Hospital laundry wastewater | 6364 | 31.4 | - | 38.6 | 250 | [9] |
| Textile wastewater | 397 | 86.7 | 0.0025 | - | 300 | [10] |
| Oil recovery | 21,000 | 39 | 2 | - | - | [11] |
| Wastewater from the production of pharmaceuticals | 1580 | 84.6 | 0.32 | - | 300 | [12] |
| Petrochemical wastewater | 950 | 52.6 | 0.6 | 131.1 | 250 | [13] |
| Fenton process | COD [mg/L] | CODremoved [%] | H2O2/CODremoved [kg/kg] | H2O2/Fe2+ [kg/kg] | Treated volume [mL] | Source |
| Battery wastewater | 1632 | 51 | 8.06 | 2.52 | 50 | this work |
| Pulp production | 3756 | 32 | 1.19 | 0.32 | 250 | [15] |
| Petro chemistry | 436 | 55 | 0.96 | 2.22 | 500 | [16] |
| - | 61 | 2.00 | 3.51 | 500 | ||
| 11,500 | 97.5 | - | 50 | 150 | [17] | |
| Carpet dyeing | 2576 | Up to 95 | 95–290 | 100 | [18] | |
| Olive oil wastewater | 60,500 | 70 | 1.75 | 15 | 500 | [19] |
| Livestock | 5000–5700 | 88 | 1.05 | 5 | 100 | [20] |
| Cork-cooking | 5000 | 87.3 | 5 | 750 | [21] | |
| Anodic Oxidation | COD mg/L | CODremoved [%] | E/COD [kWh/kg] | Current density [mA/cm2] | Treated volume [mL] | Source |
| Battery wastewater | 1632 | 51 | 32.8 | 25 | 200 mL | this work |
| 1632 | 91.7 | 95.3 | 50 | 200 mL | ||
| Textile wastewater | 729 | 100 | 11.12 | 60 | 10,000 | [23] |
| Landfill water | 1050 | 83.1 (TOC removal) | 22.1 | - | 100 | [24] |
| Wastewater containing phenol | 633 | 77.1 | 31 | 20 | 4501 | [25] |
| Vinasse | - | 43 | 17 | 6.6 | 150 | [26] |
| Wastewater from wine production | 3490 | 100 | 27.5 | 60 | 200 | [27] |
| Wastewater containing phenol | 540 | 75.9 | 84.8 | - | 4501 | [25] |
| Hydrothermal carbonization process | 28,050 (PW-AD) | 95 | 20.2 | 66 | - | [28] |
| Hydrothermal carbonization process Post-hydrothermal liquefaction | 11,233 (MBR 1-1) | - | 22.1 | 66 30 | 60 | [29] |
| 11,233 (MBR 1-1) 675 (MBR 1-10) | - | 46.6 | ||||
| 41 | 241 | |||||
| 675 (MBR 1-10) 36,000 | 99 | 534 | ||||
| 99 | 28 | |||||
| Aqueous phase of thermo-catalytic reforming of sewage sludge | - | 95 | 39–58.3 | 50 | 30 | [30] |

References
- Kampker, A.; Heimes, H.H.; Offermanns, C.; Frank, M.; Klohs, D.; Nguyen, K. Prediction of Battery Return Volumes for 3R: Remanufacturing, Reuse, and Recycling. Energies 2023, 16, 6873. [Google Scholar] [CrossRef]
- Wagner-Wenz, R.; van Zuilichem, A.-J.; Göllner-Völker, L.; Berberich, K.; Weidenkaff, A.; Schebek, L. Recycling routes of lithium-ion batteries: A critical review of the development status, the process performance, and life-cycle environmental impacts. MRS Energy Sustain. 2023, 10, 1–34. [Google Scholar] [CrossRef]
- Öhl, J.; Horn, D.; Zimmermann, J.; Stauber, R.; Gutfleisch, O. Efficient Process for Li-Ion Battery Recycling via Electrohydraulic Fragmentation. MSF 2019, 959, 74–78. [Google Scholar] [CrossRef]
- Horn, D.; Zimmermann, J.; Stauber, R.; Gutfleisch, O. New efficient Recycling Process for Li-ion Batteries. Environ. Sci. Mater. Sci. Eng. 2018. [Google Scholar]
- Holzer, A.; Zimmermann, J.; Wiszniewski, L.; Necke, T.; Gatschlhofer, C.; Öfner, W.; Raupenstrauch, H. A Combined Hydro-Mechanical and Pyrometallurgical Recycling Approach to Recover Valuable Metals from Lithium-Ion Batteries Avoiding Lithium Slagging. Batteries 2023, 9, 15. [Google Scholar] [CrossRef]
- Coha, M.; Farinelli, G.; Tiraferri, A.; Minella, M.; Vione, D. Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs. Chem. Eng. J. 2021, 414, 128668. [Google Scholar] [CrossRef]
- Wagner-Wenz, R.; Teppala, D.T.; Necke, T.; Brückner, F.; Fabian, A.; Horn, D.; Woth, J.; Zimmermann, J.; Balke-Grünewald, B.; Weidenkaff, A.; et al. Removal and recovery of phosphorus and fluorine in process water from water based direct physical lithium-ion battery recycling. Water Res. 2025, 268, 122476. [Google Scholar] [CrossRef]
- Oppenländer, T. Photochemical Purification of Water and Air; Wiley-VCH: Weinheim, Germany, 2003; ISBN 352761088X. [Google Scholar]
- Schwaickhardt, O.; de Machado, R.; Leandro, E.; Lutterbeck, C.A. Combined use of VUV and UVC photoreactors for the treatment of hospital laundry wastewaters: Reduction of load parameters, detoxification and life cycle assessment of different configurations. Sci. Total Environ. 2017, 590–591, 233–241. [Google Scholar] [CrossRef]
- Tuncer, N.; Sönmez, G. Removal of COD and Color from Textile Wastewater by the Fenton and UV/H2O2 Oxidation Processes and Optimization. Water Air Soil Pollut. 2023, 234, 70. [Google Scholar] [CrossRef]
- Dincer, A.R.; Karakaya, N.; Gunes, E.; Gunes, Y. Removal of COD from oil recovery industry wastewater by the advanced oxidation processes (AOP) based on H2O2. Glob. NEST J. 2008, 10, 31–38. [Google Scholar]
- Azizi, E.; Fazlzadeh, M.; Ghayebzadeh, M.; Hemati, L.; Beikmohammadi, M.; Ghaffari, H.R.; Zakeri, H.R.; Sharafi, K. Application of advanced oxidation process (H2O2/UV) for removal of organic materials from pharmaceutical industry effluent. Environ. Protect. Eng. 2017, 43, 183–191. [Google Scholar] [CrossRef]
- Babaei, A.A.; Ghanbari, F. COD removal from petrochemical wastewater by UV/hydrogen peroxide, UV/persulfate and UV/percarbonate: Biodegradability improvement and cost evaluation. J. Water Reuse Desalination 2016, 6, 484–494. [Google Scholar] [CrossRef]
- Andreozzi, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Brink, A.; Sheridan, C.; Harding, K.G. The Fenton oxidation of biologically treated paper and pulp mill effluents: A performance and kinetic study. Process Saf. Environ. Prot. 2017, 107, 206–215. [Google Scholar] [CrossRef]
- Grötzner, M.; Melchiors, E.; Schroeder, L.H.; dos Santos, A.R.; Moscon, K.G.; de Andrade, M.A.; Martinelli, S.H.S.; Xavier, C.R. Pulp and Paper Mill Effluent Treated by Combining Coagulation-Flocculation-Sedimentation and Fenton Processes. Water Air Soil Pollut. 2018, 229, 364. [Google Scholar] [CrossRef]
- Ghosh, P.; Samanta, A.N.; Ray, S. COD reduction of petrochemical industry wastewater using Fenton’s oxidation. Can. J. Chem. Eng. 2010, 88, 1021–1026. [Google Scholar] [CrossRef]
- Gulkaya, I.; Surucu, G.A.; Dilek, F.B. Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. J. Hazard. Mater. 2006, 136, 763–769. [Google Scholar] [CrossRef]
- Lucas, M.S.; Peres, J.A. Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study. J. Hazard. Mater. 2009, 168, 1253–1259. [Google Scholar] [CrossRef]
- Lee, H.; Shoda, M. Removal of COD and color from livestock wastewater by the Fenton method. J. Hazard. Mater. 2008, 153, 1314–1319. [Google Scholar] [CrossRef]
- Guedes, A.M.; Madeira, L.M.; Boaventura, R.A.; Costa, C.A. Fenton oxidation of cork cooking wastewater—Overall kinetic analysis. Water Res. 2003, 37, 3061–3069. [Google Scholar] [CrossRef]
- Karim, A.V.; Nidheesh, P.V.; Oturan, M.A. Boron-doped diamond electrodes for the mineralization of organic pollutants in the real wastewater. Curr. Opin. Electrochem. 2021, 30, 100855. [Google Scholar] [CrossRef]
- Zou, J.; Peng, X.; Li, M.; Xiong, Y.; Wang, B.; Dong, F.; Wang, B. Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption. Chemosphere 2017, 171, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Pang, Y.; Liu, L.; Gao, J.; Lv, B. Highly efficient and energy-saving sectional treatment of landfill leachate with a synergistic system of biochemical treatment and electrochemical oxidation on a boron-doped diamond electrode. J. Hazard. Mater. 2010, 179, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ni, J.; Wei, J.; Chen, P. Scale-up of B-doped diamond anode system for electrochemical oxidation of phenol simulated wastewater in batch mode. Electrochim. Acta 2011, 56, 9439–9447. [Google Scholar] [CrossRef]
- Martinez, E.J.; Rosas, J.G.; Gonzalez, R.; Garcia, D.; Gomez, X. Treatment of vinasse by electrochemical oxidation: Evaluating the performance of boron-doped diamond (BDD)-based and dimensionally stable anodes (DSAs). Int. J. Environ. Sci. Technol. 2018, 15, 1159–1168. [Google Scholar] [CrossRef]
- Candia-Onfray, C.; Espinoza, N.; Da Sabino Silva, E.B.; Toledo-Neira, C.; Espinoza, L.C.; Santander, R.; García, V.; Salazar, R. Treatment of winery wastewater by anodic oxidation using BDD electrode. Chemosphere 2018, 206, 709–717. [Google Scholar] [CrossRef]
- Blach, T.; Engelhart, M. Electrochemical oxidation of refractory compounds from hydrothermal carbonization process waters. Chemosphere 2024, 352, 141310. [Google Scholar] [CrossRef]
- Ciarlini, J.; Alves, L.; Rajarathnam, G.P.; Haynes, B.S.; Montoya, A. Electrochemical oxidation of nitrogen-rich post-hydrothermal liquefaction wastewater. Algal Res. 2020, 48, 101919. [Google Scholar] [CrossRef]
- Kick, C.; Uchaikina, A.; Apfelbacher, A.; Daschner, R.; Helmreich, B.; Hornung, A. Aqueous phase of thermo-catalytic reforming of sewage sludge—Quantity, quality, and its electrooxidative treatment by a boron-doped diamond electrode. Sep. Purif. Technol. 2022, 286, 120392. [Google Scholar] [CrossRef]
- Stadtrecht Abwassersatzung. 2020. Available online: https://www.hanau.de/mam/abwassersatzung_.pdf (accessed on 3 January 2026).
- Federal Ministry of Justice. Verordnung über Anforderungen an das Einleiten von Abwasser in Gewässer: AbwV. Available online: https://www.gesetze-im-internet.de/abwv/AbwV.pdf (accessed on 3 January 2026).
- Schultz, C.; Kraft, V.; Pyschik, M.; Weber, S.; Schappacher, F.; Winter, M.; Nowak, S. Separation and Quantification of Organic Electrolyte Components in Lithium-Ion Batteries via a Developed HPLC Method. J. Electrochem. Soc. 2015, 162, A629–A634. [Google Scholar] [CrossRef]
- Bhalkikar, A.; Marin, C.M.; Cheung, C.L. Method development for separating organic carbonates by ion-moderated high-performance liquid chromatography. J. Sep. Sci. 2016, 39, 4484–4491. [Google Scholar] [CrossRef] [PubMed]
- Wolke, M.; Schröder, K.; Arnold, K.; Mozumder, P.; Beuerle, T.; Jasch, K.; Scholl, S. Analyzing Organic Electrolyte Solvents from Spent Lithium-Ion Batteries as a Basis for Distillative Value Component Recovery. Recycling 2025, 10, 19. [Google Scholar] [CrossRef]
- Herdegen, J.; Benner, W.; Bokelmann, K.; Hartfeil, T.; Gellermann, C. Separationsmethoden zur Aufarbeitung von Metallhaltigen Verbundwerkstoffen. Recycling Rohstoffe 2016, 601–609. [Google Scholar]
- Weyand, S.; Kawajiri, K.; Mortan, C.; Schebek, L. Scheme for generating upscaling scenarios of emerging functional materials based energy technologies in prospective LCA (UpFunMatLCA). J. Ind. Ecol. 2023, 27, 676–692. [Google Scholar] [CrossRef]
- Gachot, G.; Grugeon, S.; Armand, M.; Pilard, S.; Guenot, P.; Tarascon, J.-M.; Laruelle, S. Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J. Power Sources 2008, 178, 409–421. [Google Scholar] [CrossRef]
- Wu, T.; Englehardt, J.D. A New Method for Removal of Hydrogen Peroxide Interference in the Analysis of Chemical Oxygen Demand. Environ. Sci. Technol. 2012, 46, 2291–2298. [Google Scholar] [CrossRef]
- Kang, Y.W.; Cho, M.-J.; Hwang, K.-Y. Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res. 1999, 33, 1247–1251. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Berner, R.A. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim. Cosmochim. Acta 1975, 39, 489–504. [Google Scholar] [CrossRef]
- Zhang, R.; Panesar, D.K. Investigation on Mg content in calcite when magnesium calcite and nesquehonite co-precipitate in hardened cement paste. Thermochim. Acta 2017, 654, 203–215. [Google Scholar] [CrossRef]
- Muschket, M.; Reemtsma, T.; Zahn, D.; Neuwald, I.; Knepper, T.P.; Schumann, P. Persistente Mobile Organische Chemikalien in der Aquatischen Umwelt: Quellen, Vorkommen und Technische Möglichkeiten zu ihrer Entfernung in der Trinkwasseraufbereitung (PROTECT): Project Report. 2022. Available online: https://edocs.tib.eu/files/e01fb23/1877065498.pdf (accessed on 3 January 2026).
- der Finanzen, B. AfA-Tabelle für den Wirtschaftszweig “Molkereien und Sonstige Milchverwertung”; Juris, 1992. Available online: https://www.bundesfinanzministerium.de/Content/DE/Standardartikel/Themen/Steuern/Weitere_Steuerthemen/Betriebspruefung/AfA-Tabellen/AfA-Tabelle_Molkereien-und-sonstige-Milchverwertung.pdf?__blob=publicationFile&v=5 (accessed on 12 August 2025).
- der Finanzen, B. AfA-Tabelle für den Wirtschaftszweig “Ölmühlen und Margarineindustrie”; Juris, 1995. Available online: https://www.bundesfinanzministerium.de/Content/DE/Standardartikel/Themen/Steuern/Weitere_Steuerthemen/Betriebspruefung/AfA-Tabellen/AfA-Tabelle_Oelmuehlen-und-Margarineindustrie.pdf?__blob=publicationFile&v=5 (accessed on 24 July 2025).
- der Finanzen, B. AfA-Tabelle für den Wirtschaftszweig “Eisen-, Stahl- und Tempergießereien”; Juris, 1996. Available online: https://www.bundesfinanzministerium.de/Content/DE/Standardartikel/Themen/Steuern/Weitere_Steuerthemen/Betriebspruefung/AfA-Tabellen/AfA-Tabelle_Eisen-Stahl-und-Tempergiessereien.html (accessed on 12 August 2025).
- der Finanzen, B. AfA-Tabelle für die Allgemein Verwendbaren Anlagegüter (AfA-Tabelle “AV”); Juris, 2000. Available online: https://www.bundesfinanzministerium.de/Content/DE/Standardartikel/Themen/Steuern/Weitere_Steuerthemen/Betriebspruefung/AfA-Tabellen/Ergaenzende-AfA-Tabellen/AfA-Tabelle_AV.pdf?__blob=publicationFile&v=5 (accessed on 24 July 2025).







| Organic Carbonate | Ethylene Carbonate (EC) | Propylene Carbonate (PC) | Dimethyl Carbonate (DMC) | Ethyl Methyl Carbonate (EMC) | Total |
|---|---|---|---|---|---|
| Concentration [mg/L] | 3760 | 4670 | 23,990 | 5920 | - |
| CODcal [mg/L] | 4099 | 5855 | 25,567 | 7279 | 42,800 |
| Concentration FeSO4 ∙ 7 H2O [g/L] | 1 | 3 | 6 | 9 | 12 |
|---|---|---|---|---|---|
| COD removal [%] | 38.9 | 42.7 | 58.1 | 58.3 | 57.9 |
| Al (wt%) | Ca (wt%) | Mg (wt%) | P (wt%) | S (wt%) | Si (wt%) |
|---|---|---|---|---|---|
| 0.27 | 32.79 | 1.93 | 1.48 | 0.33 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wagner-Wenz, R.; Funk, F.; Peter, R.; Necke, T.; Brückner, F.; Philipp, M.; Engelhart, M.; Weidenkaff, A.; Ionescu, E. Efficiency of Advanced Oxidation Processes for Treating Wastewater from Lithium-Ion Battery Recycling. Clean Technol. 2026, 8, 13. https://doi.org/10.3390/cleantechnol8010013
Wagner-Wenz R, Funk F, Peter R, Necke T, Brückner F, Philipp M, Engelhart M, Weidenkaff A, Ionescu E. Efficiency of Advanced Oxidation Processes for Treating Wastewater from Lithium-Ion Battery Recycling. Clean Technologies. 2026; 8(1):13. https://doi.org/10.3390/cleantechnol8010013
Chicago/Turabian StyleWagner-Wenz, Ronja, Frederik Funk, Regine Peter, Tobias Necke, Fabian Brückner, Maximilian Philipp, Markus Engelhart, Anke Weidenkaff, and Emanuel Ionescu. 2026. "Efficiency of Advanced Oxidation Processes for Treating Wastewater from Lithium-Ion Battery Recycling" Clean Technologies 8, no. 1: 13. https://doi.org/10.3390/cleantechnol8010013
APA StyleWagner-Wenz, R., Funk, F., Peter, R., Necke, T., Brückner, F., Philipp, M., Engelhart, M., Weidenkaff, A., & Ionescu, E. (2026). Efficiency of Advanced Oxidation Processes for Treating Wastewater from Lithium-Ion Battery Recycling. Clean Technologies, 8(1), 13. https://doi.org/10.3390/cleantechnol8010013

