Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (466)

Search Parameters:
Keywords = liquid crystals (LCs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6958 KiB  
Article
A pH-Responsive Liquid Crystal-Based Sensing Platform for the Detection of Biothiols
by Xianghao Meng, Ronghua Zhang, Xinfeng Dong, Zhongxing Wang and Li Yu
Chemosensors 2025, 13(8), 291; https://doi.org/10.3390/chemosensors13080291 - 6 Aug 2025
Abstract
Biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), are crucial for physiological regulation and their imbalance poses severe health risks. Herein, we developed a pH-responsive liquid crystal (LC)-based sensing platform for detection of biothiols by doping 4-n-pentylbiphenyl-4-carboxylic acid (PBA) into [...] Read more.
Biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), are crucial for physiological regulation and their imbalance poses severe health risks. Herein, we developed a pH-responsive liquid crystal (LC)-based sensing platform for detection of biothiols by doping 4-n-pentylbiphenyl-4-carboxylic acid (PBA) into 4-n-pentyl-4-cyanobiphenyl (5CB). Urease catalyzed urea hydrolysis to produce OH, triggering the deprotonation of PBA, thereby inducing a vertical alignment of LC molecules at the interface corresponding to dark optical appearances. Heavy metal ions (e.g., Hg2+) could inhibit urease activity, under which condition LC presents bright optical images and LC molecules maintain a state of tilted arrangement. However, biothiols competitively bind to Hg2+, the activity of urease is maintained which enables the occurrence of urea hydrolysis. This case triggers LC molecules to align in a vertical orientation, resulting in bright optical images. This pH-driven reorientation of LCs provides a visual readout (bright-to-dark transition) correlated with biothiol concentration. The detection limits of Cys/Hcy and GSH for the PBA-doped LC platform are 0.1 μM and 0.5 μM, respectively. Overall, this study provides a simple, label-free and low-cost strategy that has a broad application prospect for the detection of biothiols. Full article
(This article belongs to the Special Issue Feature Papers on Luminescent Sensing (Second Edition))
Show Figures

Figure 1

14 pages, 2314 KiB  
Article
The Effect of Nematic Liquid Crystal on the Performance of Dye-Sensitized Solar Cells
by Paweł Szubert and Stanisław A. Różański
Crystals 2025, 15(8), 705; https://doi.org/10.3390/cryst15080705 - 31 Jul 2025
Viewed by 128
Abstract
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect [...] Read more.
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect of modifying the iodide electrolyte with liquid crystals (LCs) known for the self-organization of molecules into specific mesophases. The current–voltage (I-V) and power–voltage (P-V) characteristics were determined for the ruthenium-based dyes N3, Z907, and N719 to investigate the influence of their structure and concentration on the efficiency of DSSCs. The addition of a nematic LC of 4-n-pentyl-4-cyanobiphenyl (5CB) to the iodide electrolyte influences the I-V and P-V characteristics. A modification of the I-V characteristics was found, especially a change in the values of short circuit current (ISC) and open circuit voltage (VOC). The conversion efficiency for cells with modified electrolyte shows a complex dependence that first increases and then decreases with increasing LC concentration. It may be caused by the orientational interaction of LC molecules with the titanium dioxide (TiO2) layer on the photoanode. A too high concentration of LC may lead to a reduction in total ionic conductivity due to the insulating effect of the elongated polar molecules. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Figure 1

16 pages, 3616 KiB  
Article
A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications
by Xinju Wang, Lihan Tong, Peng Chen, Lu Liu, Yutong Yin and Haowei Zhang
Appl. Sci. 2025, 15(15), 8499; https://doi.org/10.3390/app15158499 - 31 Jul 2025
Viewed by 136
Abstract
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current [...] Read more.
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current (DC) bias circuit is designed to minimize the interaction between the radio frequency (RF) signal and the DC source, allowing control of the LC dielectric constant via bias voltage. This enables multi-band operation to improve communication capacity and quality for x-band devices. The polarization conversion (PC) structure employs an orthogonal anisotropic design, utilizing logarithmic functions to create two pairs of bowtie microstrip patches for linear-to-circular polarization conversion (LCPC). Simulation results show that for x-polarized incident waves, with an LC dielectric constant of εr = 2.8, left- and right-handed circularly polarized (LHCP and RHCP) waves are achieved in the frequency ranges of 8.15–8.46 GHz and 9.84–12.52 GHz, respectively. For εr = 3.9, LHCP and RHCP are achieved in 9–9.11 GHz and 9.86–11.81 GHz, respectively, and for εr = 4.6, they are in 8.96–9.11 GHz and 9.95–11.51 GHz. In the case of y-polarized incident waves, the MS reflects the reverse CP waves within the same frequency ranges. Measured results show that at εr = 2.8, the axial ratio (AR) is below 3 dB in the frequency ranges 8.16–8.46 GHz and 9.86–12.48 GHz, with 3 dB AR relative bandwidth (ARBW) of 3.61% and 23.46%, respectively. For εr = 4.6, the AR < 3 dB in the frequency range of 9.78–11.34 GHz, with a 3 dB ARBW of 14.77%. Finally, the measured and simulated results are compared to validate the proposed design, which can be applied to various applications within the corresponding operating frequency band. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

15 pages, 1917 KiB  
Article
Temperature-Dependent Polarization Characterization and Birefringence Inversion in Super-Twisted Nematic Liquid Crystals
by Houtong Liu, Bin Wang, Minjuan Mao, Yuanyuan Qian and Dan Wang
Photonics 2025, 12(7), 683; https://doi.org/10.3390/photonics12070683 - 7 Jul 2025
Viewed by 248
Abstract
The temperature-dependent polarization performance of super-twisted nematic liquid crystals (STN-LCs) when used as polarizers has garnered considerable scholarly attention. In this study, the transmittance of an STN-LC cell was measured under incident light wavelengths of 650 nm, 532 nm, and 405 nm over [...] Read more.
The temperature-dependent polarization performance of super-twisted nematic liquid crystals (STN-LCs) when used as polarizers has garnered considerable scholarly attention. In this study, the transmittance of an STN-LC cell was measured under incident light wavelengths of 650 nm, 532 nm, and 405 nm over the temperature range of 30 °C to 100 °C. The STN-LC cell was employed both as the sample under test and as an analyzer in a rotational measurement setup to investigate how its polarization properties vary with temperature. The results indicate that the LC cell exhibits the characteristics of a linear polarizer under red light (650 nm) and violet laser (405 nm) across the full temperature range. However, under green laser (532 nm), when the temperature exceeds 60 °C, its extinction ratio is poor, suggesting its unsuitability for polarization applications under such conditions. A birefringence inversion formula was derived using the transmittance difference method, which effectively eliminates the influence of the glass substrates on the measured transmittance of the LC layer. Utilizing this method, a simple optical setup consisting of a polarizer and photodetector was constructed to accurately extract the birefringence of the LC. The birefringence of super-twisted nematic liquid crystal can be obtained by the transmittance difference method, which is low-cost, has a simple optical path, and is convenient for temperature-controlled experimental measurements of the liquid crystal cell. The findings of this study provide methodological support for the precise determination of birefringence in LCs exhibiting linear polarization characteristics. Full article
Show Figures

Figure 1

14 pages, 1591 KiB  
Article
Synergistic Control of Liquid Crystallinity and Phosphorescence in Gold(I) Complexes via Strategic Alkyl Chain Design
by Arushi Rawat, Kohsuke Matsumoto, Ganesan Prabusankar and Osamu Tsutsumi
Crystals 2025, 15(6), 554; https://doi.org/10.3390/cryst15060554 - 10 Jun 2025
Viewed by 1227
Abstract
Liquid crystals exhibit unique properties that can be tailored in response to external stimuli. Significant research is directed toward the development of luminescent materials exhibiting liquid crystallinity for various applications. The present work reports Au(I) complexes featuring N-heterocyclic carbene and phenyl acetylide ligands. [...] Read more.
Liquid crystals exhibit unique properties that can be tailored in response to external stimuli. Significant research is directed toward the development of luminescent materials exhibiting liquid crystallinity for various applications. The present work reports Au(I) complexes featuring N-heterocyclic carbene and phenyl acetylide ligands. Metal complexes enable the utilization of the triplet excitons through their inherent spin–orbit coupling, promoting intersystem crossing from singlet (Sn) to triplet (Tn) states to observe room-temperature phosphorescence (RTP). The strong bonds between carbene and Au enhance the thermal stability, and the substituted benzimidazole ring alters the thermodynamic and photophysical properties of the complexes. Incorporating the acetylide ligands with long alkoxy chains led to the formation of liquid crystalline (LC) phases, which exhibited stability over a wide temperature range. Additionally, the luminescence behavior was affected by the ethynyl ligands, and high quantum yields of RTP were observed. This study establishes the development of LC Au(I) complexes with a thermodynamically stable LC mesophase over a wide temperature range for applications in the field of light-emitting functional materials. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan (2nd Edition))
Show Figures

Figure 1

19 pages, 3523 KiB  
Article
Reconfigurable Wideband Bandpass Filter Using Stepped Impedance Resonator Based on Liquid Crystals
by Jin-Young Choi, Jun-Seok Ma and Wook-Sung Kim
Electronics 2025, 14(12), 2325; https://doi.org/10.3390/electronics14122325 - 6 Jun 2025
Viewed by 330
Abstract
In this paper, a capacitively coupled-fed reconfigurable wideband bandpass filter (BPF) is proposed based on liquid crystal (LC) technology, which achieved three transmission poles across varying bias voltages (VB). An open-ended stepped impedance resonator configuration enables multi-mode resonance, offering significantly [...] Read more.
In this paper, a capacitively coupled-fed reconfigurable wideband bandpass filter (BPF) is proposed based on liquid crystal (LC) technology, which achieved three transmission poles across varying bias voltages (VB). An open-ended stepped impedance resonator configuration enables multi-mode resonance, offering significantly wider bandwidth compared to uniform-impedance resonators. The fractional bandwidth (FBW) and transmission pole positions are determined by the impedance ratio of the two resonators, allowing the filter to meet specific design requirements. An analytical methodology employing multilayer transmission line formulations and resonant frequency ratios was used to predict the modal stability of transmission poles under dielectric constant variation, which was subsequently validated through simulation. Experimental results show that the center frequency can be adjusted from 10.76 to 9.47 GHz with a maximum VB of 30 V, achieving a tuning range of 12.71%. The normalized 3 dB FBW exceeds 64.66%, and the return loss remains above 10 dB from 0 to 30 V, offering the widest FBW among the reported LC BPFs without pole merging or mode collapse. The frequency response of the fabricated filter shows good agreement with the simulation results. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

18 pages, 2433 KiB  
Article
Development of 2,1,3-Benzothiadiazole-Based Room-Temperature Fluorescent Nematic Liquid Crystals
by Muhammad Suhail bin Uzair, Yoshimichi Shimomura, Takuya Tanaka, Takashi Kajitani and Gen-ichi Konishi
Molecules 2025, 30(11), 2438; https://doi.org/10.3390/molecules30112438 - 2 Jun 2025
Viewed by 1325
Abstract
Fluorescent liquid crystals (LCs) have attracted considerable interest owing to their unique combination of fluidity, anisotropy, and intrinsic emission. However, most reported fluorescent LCs exhibit high phase transition temperatures and/or smectic phases, limiting their practical applications. To address this, we designed and synthesized [...] Read more.
Fluorescent liquid crystals (LCs) have attracted considerable interest owing to their unique combination of fluidity, anisotropy, and intrinsic emission. However, most reported fluorescent LCs exhibit high phase transition temperatures and/or smectic phases, limiting their practical applications. To address this, we designed and synthesized a series of 2,1,3-benzothiadiazole (BTD)-based fluorescent nematic liquid crystals incorporating donor (D) or acceptor (A) groups to form D–A–D or D–A–A structures. Most of the synthesized derivatives exhibited supercooled nematic phases at room temperature. They composed various functional groups, such as secondary alkylamine, branched alkyl chain, and trifluoroacetyl groups, which are rarely used in calamitic nematic LCs. Notably, dimethylamine- and carbonyl-substituted derivatives exhibited relatively high fluorescence quantum yields (Φfl) in both solid and mesophase states, demonstrating their potential as efficient fluorescent materials. Our findings underscore the versatility of BTD-based mesogenic skeletons for designing room-temperature fluorescent nematic LCs with various functional groups. These materials offer promising opportunities for next-generation display technologies, optical sensors, and photonic applications. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Figure 1

21 pages, 7266 KiB  
Article
High-Performance NIR Laser-Beam Shaping and Materials Processing at 350 W with a Spatial Light Modulator
by Shuchen Zuo, Shuai Wang, Cameron Pulham, Yin Tang, Walter Perrie, Olivier J. Allegre, Yue Tang, Martin Sharp, Jim Leach, David J. Whitehead, Matthew Bilton, Wajira Mirihanage, Paul Mativenga, Stuart P. Edwardson and Geoff Dearden
Photonics 2025, 12(6), 544; https://doi.org/10.3390/photonics12060544 - 28 May 2025
Viewed by 1198
Abstract
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power [...] Read more.
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power with a Gaussian profile, restricting potential applications due to the non-linear (NL) phase response of the liquid crystal above this threshold. In this study, we present experimental tests of a new SLM device, demonstrating high first-order diffraction efficiency of η = 0.98 ± 0.01 at 300 W average power and a phase range Δφ > 2π at P = 383 W, an exceptional performance. The numerically calculated device temperature response with power closely matches that measured, supporting the higher power-handling capability. Surface modification of mild steel and molybdenum up to P = 350 W exposure is demonstrated when employing a single-mode (SM) fibre laser source. Exposure on mild steel with a vortex beam (m = +6) displays numerous ringed regions with varying micro-structures and clear elemental separation created by the radial heat flow. On molybdenum, with multi-spot Gaussian exposure, both MoO3 films and recrystallisation rings were observed, exposure-dependent. The step change in device capability will accelerate new applications for this LC-SLM in both subtractive and additive manufacturing. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Vortex Beams)
Show Figures

Figure 1

16 pages, 4079 KiB  
Article
Synthesis and Applications of Encapsulated Glycol-Stabilized Lyotropic Cholesteric Liquid Crystal Hydrogels
by Yan-Ting Lin, Chung-Yu Kuo, Yi Shen, Alexander V. Emelyanenko and Chun-Yen Liu
Gels 2025, 11(6), 388; https://doi.org/10.3390/gels11060388 - 25 May 2025
Viewed by 485
Abstract
The micro-phase segregation of two incompatible components on a nanometer scale results in a unique solvent-induced extended anisotropic arrangement. With the addition of a chiral dopant, lyotropic liquid crystals can be induced to adopt a helical structure, forming lyotropic cholesteric liquid crystals capable [...] Read more.
The micro-phase segregation of two incompatible components on a nanometer scale results in a unique solvent-induced extended anisotropic arrangement. With the addition of a chiral dopant, lyotropic liquid crystals can be induced to adopt a helical structure, forming lyotropic cholesteric liquid crystals capable of reflecting incident light. In this study, to prevent fluid leakage in lyotropic materials, we encapsulated a series of hydrogel-stabilized lyotropic liquid crystals, presenting tunable structural colors visible in all directions, mimicking the color-changing characteristics of living organisms. Hydrogel scaffolds with controllable swelling behaviors were engineered by incorporating crosslinking monomers. To ensure stable integration of lyotropic liquid crystals, high-boiling-point ethylene glycol was employed as a fluid during the fabrication process. This study extensively explores the relationship between tensile force, temperature, and pressure and the color changes in lyotropic liquid crystals (LC). The results indicate that lyotropic LC membranes, stabilized by ethylene glycol and PDMS encapsulation, exhibit long-term stability, rendering them suitable for applications in temperature and pressure sensing. This approach ensures the continuous presence and stability of lyotropic liquid crystals within the hydrogel matrix. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

13 pages, 3492 KiB  
Article
Magnetic Field Control of Liquid Crystal-Enabled Colloid Electrophoresis
by Joel Torres-Andrés, Guillermo Cassinello, Francesc Sagués and Jordi Ignés-Mullol
Colloids Interfaces 2025, 9(3), 27; https://doi.org/10.3390/colloids9030027 - 6 May 2025
Viewed by 769
Abstract
Microswimmers are key for unveiling new physical phenomena underlying their propulsion, especially when driven inside complex fluids. Liquid crystals are anisotropic complex fluids that feature long-range orientational order. The propulsion of non-charged dielectric particles can be accomplished in these systems by breaking the [...] Read more.
Microswimmers are key for unveiling new physical phenomena underlying their propulsion, especially when driven inside complex fluids. Liquid crystals are anisotropic complex fluids that feature long-range orientational order. The propulsion of non-charged dielectric particles can be accomplished in these systems by breaking the particles’ fore-aft symmetry thanks to anisotropies in the conductivity and dielectric permittivity parameters of the liquid crystal. Under the application of an AC electric field, asymmetric osmotic flows are generated to propel non-spherical particles, whose direction of motion depends on the orientational order of the liquid crystal molecules around the inclusions. This means that, by controlling the LC orientation, one will be able to steer driven colloidal inclusions. In this experimental work, we show that a homogeneous magnetic field that is able to control the orientation of the liquid crystal molecules also allows us to determine the direction of motion of driven particles without significant changes in the propulsion mechanism. Additionally, we show that a radial configuration of the magnetic field lines can be used to generate topological defects in the liquid crystal orientational field that attract colloidal particles, leading to their clustering as rotating mills. The generated clusters were tested to study the collective motion of particles, suggesting the presence of particle–particle interactions. Full article
Show Figures

Graphical abstract

18 pages, 5455 KiB  
Article
Three-Dimensional Focusing Measurement Method for Confocal Microscopy Based on Liquid Crystal Spatial Light Modulator
by Yupeng Li and Yifan Li
Sensors 2025, 25(8), 2620; https://doi.org/10.3390/s25082620 - 21 Apr 2025
Viewed by 495
Abstract
Micro-nano measurement represents a critical engineering focus in the advancement of micro-nano fabrication technologies. Exploring advanced micro-nano measurement methods is a key direction for driving progress in micro-nano manufacturing. This study proposes a confocal measurement method utilizing a liquid crystal spatial light modulator [...] Read more.
Micro-nano measurement represents a critical engineering focus in the advancement of micro-nano fabrication technologies. Exploring advanced micro-nano measurement methods is a key direction for driving progress in micro-nano manufacturing. This study proposes a confocal measurement method utilizing a liquid crystal spatial light modulator (LC-SLM) to simulate a binary Fresnel lens for 3D focusing, enabling the non-mechanical measurement of spatial positions on sample surfaces. Specifically, it introduces a 3D focusing method based on LC-SLM, constructs a confocal microscopy 3D focusing system, and conducts lateral focusing experiments and axial focusing experiments. Experimental results demonstrate that the system can freely adjust lateral focusing positions. Within an axial focusing range of 900 μm, it achieves axial measurement accuracy exceeding 1 μm, with a maximum resolution capability of approximately 16.667 nm. Compared to similar confocal microscopy systems, this method allows rapid adjustment of lateral focusing positions without regenerating phase grayscale maps, achieves comparable axial measurement accuracy, and enhances measurement speed. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

14 pages, 2588 KiB  
Article
Accelerated Electro-Optic Switching in Liquid Crystal Devices via Ion Trapping by Dispersed Helical Carbon Nanotubes
by Rajratan Basu and Christian C. Kehr
Micromachines 2025, 16(4), 457; https://doi.org/10.3390/mi16040457 - 12 Apr 2025
Cited by 1 | Viewed by 767
Abstract
Free ion impurities in liquid crystals significantly impact the dynamic electro-optic performance of liquid crystal displays, leading to slow switching times, short-term flickering, and long-term image sticking. These ionic contaminants originate from various sources, including LC cell fabrication, electrode degradation, and organic alignment [...] Read more.
Free ion impurities in liquid crystals significantly impact the dynamic electro-optic performance of liquid crystal displays, leading to slow switching times, short-term flickering, and long-term image sticking. These ionic contaminants originate from various sources, including LC cell fabrication, electrode degradation, and organic alignment layers. This study demonstrates that doping LCs with a small concentration of helical carbon nanotubes effectively reduces free ion concentrations by approximately 70%. The resulting reduction in ionic impurities lowers the rotational viscosity of the LC, facilitating faster electro-optic switching. Additionally, the purified LC exhibits enhanced dielectric anisotropy, further improving its performance in display applications. These findings suggest that helical carbon nanotubes doping offers a promising approach for mitigating ion-related issues in liquid crystals without the need for additional chemical treatments, paving the way for an efficient liquid crystal display technology. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

6 pages, 189 KiB  
Editorial
Liquid Crystal Research and Novel Applications in the 21st Century
by Ingo Dierking
Crystals 2025, 15(4), 321; https://doi.org/10.3390/cryst15040321 - 28 Mar 2025
Viewed by 1419
Abstract
Liquid crystals (LCs) are largely known as the materials used in flat panel displays, from simple pocket calculator displays to laptop screens, all the way to large TVs [...] Full article
(This article belongs to the Special Issue Liquid Crystal Research and Novel Applications in the 21st Century)
11 pages, 3461 KiB  
Article
Effects of Multi-Fluorinated Liquid Crystals with High Refractive Index on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystals
by Yunxiao Ren and Wei Hu
Materials 2025, 18(7), 1406; https://doi.org/10.3390/ma18071406 - 21 Mar 2025
Viewed by 530
Abstract
Polymer-dispersed liquid crystals (PDLCs) are composite materials, in which LCs are dispersed in the form of microdroplets in a polymer matrix. As a composite material, its electro-optical properties are affected by many factors such as molecular structure, composition, and the microstructure of the [...] Read more.
Polymer-dispersed liquid crystals (PDLCs) are composite materials, in which LCs are dispersed in the form of microdroplets in a polymer matrix. As a composite material, its electro-optical properties are affected by many factors such as molecular structure, composition, and the microstructure of the LCs and polymers. In this work, PDLC films were prepared based on the thiol-ene click reaction, and effects of refractive indexes of polymers and LCs on their electro-optical properties were studied. The refractive indexes of the polymer matrix are adjusted by controlling the content of sulfur element, and those of the LCs are adjusted by adding multi-fluorinated LCs with high refractive index. By regulating the refractive indexes of the polymer matrix and LCs, the maximum transmittance of the film is raised and the viewing angle of the film is also extended. This work could afford some ideas for the directional regulation of the viewing angles and the electro-optical properties of the PDLC film. Full article
(This article belongs to the Special Issue Advanced and Smart Materials in Photoelectric Applications)
Show Figures

Figure 1

9 pages, 5541 KiB  
Article
Uniform Molecular Alignment on Ag-Doped Nickel Oxide Films
by Dong Wook Lee, Tae-Hyun Kim, Young Kwon Kim and Dae-Shik Seo
Nanomaterials 2025, 15(6), 449; https://doi.org/10.3390/nano15060449 - 15 Mar 2025
Viewed by 644
Abstract
This study presents the uniform alignment of liquid crystal (LC) molecules on silver (Ag)-doped nickel oxide (NiO) films. The films were fabricated using a solution brush coating process, with Ag doping concentrations of 0, 10, and 20 wt%. X-ray photoelectron spectroscopy confirmed the [...] Read more.
This study presents the uniform alignment of liquid crystal (LC) molecules on silver (Ag)-doped nickel oxide (NiO) films. The films were fabricated using a solution brush coating process, with Ag doping concentrations of 0, 10, and 20 wt%. X-ray photoelectron spectroscopy confirmed the successful formation of the films, while atomic force microscopy revealed nano/microgroove anisotropic structures, attributed to brush hair movement during coating. X-ray diffraction analysis indicated the films’ amorphous nature. Optical transmittance measurements demonstrated their suitability for electronic display applications. Polarized optical microscopy verified uniform LC molecular alignment and effective optical control. The fabricated LC cells exhibited increased LC polar anchoring energy, improving device stability. The polar anchoring energy increased by 1159.02% after Ag doping. Additionally, reduced residual charge was observed, suggesting minimized image sticking. These findings indicate that Ag-doped NiO films are a promising alternative for LC alignment layers in functional LC systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

Back to TopTop