Liquid Crystal Research and Novel Applications in the 21st Century
Conflicts of Interest
References
- Uchida, T. 40 years research and development on liquid crystal displays. Jpn. J. Appl. Phys. 2014, 53, 03CA02. [Google Scholar]
- Kim, K.-H.; Song, J.-K. Technical evolution of liquid crystal displays. NPG Asia Mat. 2009, 1, 29. [Google Scholar]
- Yin, K.; Hsiang, E.-L.; Zou, J.; Li, Y.; Yang, Z.; Yang, Q.; Lai, P.-C.; Lin, C.-L.; Wu, S.-T. Advanced liquid crystal devices for augmented reality and virtual reality displays: Principles and applications. Light Sci. Appl. 2022, 11, 161. [Google Scholar]
- Guo, Q.; Yan, K.; Chigrinov, V.; Zhao, H.; Tribelsky, M. Ferroelectric Liquid Crystals: Physics and Applications. Crystals 2019, 9, 470. [Google Scholar] [CrossRef]
- Yoshizawa, A. Ferroelectric Smectic Liquid Crystals. Crystals 2024, 14, 350. [Google Scholar] [CrossRef]
- Hird, M. Ferroelectricity in liquid crystals—Materials, properties and applications. Liq. Cryst. 2011, 38, 1467. [Google Scholar]
- Lagerwall, S.T. Ferroelectric and Antiferroelectric Liquid Crystals; Wiley-VCH: Weinheim, Germany, 1999. [Google Scholar]
- Goodby, J.W. Twist grain boundary and frustrated liquid crystal phases. Curr. Opin. Colloid Interface Sci. 2002, 7, 326. [Google Scholar] [CrossRef]
- Dhar, R. Twisted-grain-boundary (TGB) phases: Nanostructured liquid-crystal analogue of Abrikosov vortex lattices. Phase Transit. 2006, 79, 175. [Google Scholar]
- Selinger, J.V. Director Deformations, Geometric Frustration, and Modulated Phases in Liquid Crystals. Annu. Rev. Condens. Matter Phys. 2022, 13, 49. [Google Scholar]
- Takezoe, H.; Takanishi, Y. Bent-Core Liquid Crystals: Their Mysterious and Attractive World. Jpn. J. Appl. Phys. 2006, 45, 597. [Google Scholar]
- Reddy, R.A.; Tschierske, C. Bent-core liquid crystals: Polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J. Mater. Chem. 2006, 16, 907. [Google Scholar] [CrossRef]
- Eremin, A.; Jákli, A. Polar bent-shape liquid crystals—From molecular bend to layer splay and chirality. Soft Matter 2013, 9, 615. [Google Scholar] [CrossRef]
- Jesus Etxebarria, M. Blanca Ros, Bent-core liquid crystals in the route to functional materials. J. Mater. Chem. 2008, 18, 2919. [Google Scholar] [CrossRef]
- Mandle, R.J. Designing Liquid-Crystalline Oligomers to Exhibit Twist-Bend Modulated Nematic Phases. Chem. Rec. 2018, 18, 1341. [Google Scholar] [CrossRef]
- Mandle, R.J. A Ten-Year Perspective on Twist-Bend Nematic Materials. Molecules 2022, 27, 2689. [Google Scholar] [CrossRef]
- Szmigielski, M. Theoretical models of modulated nematic phases. Soft Matter 2023, 19, 2675. [Google Scholar] [CrossRef]
- Cruickshank, E. The Emergence of a Polar Nematic Phase: A Chemist’s Insight into the Ferroelectric Nematic Phase. ChemPlusChem 2024, 89, e202300726. [Google Scholar] [CrossRef] [PubMed]
- Osipov, M.A. On the origin of the ferroelectric ordering in nematic liquid crystals and the electrostatic properties of ferroelectric nematic materials. Liq. Cryst. Rev. 2024, 12, 14. [Google Scholar] [CrossRef]
- Herbert, K.M.; Fowler, H.E.; McCracken, J.M.; Schlafmann, K.R.; Koch, J.A.; White, T.J. Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 2022, 7, 25. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Yang, S. Multi-functional liquid crystal elastomer composites. Appl. Phys. Rev. 2022, 9, 011301. [Google Scholar] [CrossRef]
- Apsite, I.; Salehi, S.; Ionov, L. Materials for Smart Soft Actuator Systems. Chem. Rev. 2022, 122, 1349. [Google Scholar] [PubMed]
- Hines, L.; Petersen, K.H.; Lum, G.Z.; Sitti, M. Soft Actuators for Small-Scale Robotics. Adv. Mater. 2017, 29, 1603483. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, C. Graphene in Macroscopic Order: Liquid Crystals and Wet-Spun Fibers. Acc. Chem. Res. 2014, 47, 1267. [Google Scholar] [CrossRef]
- Yin, F.; Hu, J.; Hong, Z.; Wang, H.; Liu, G.; Shen, J.; Wang, H.-L.; Zhang, K.-Q. A review on strategies for the fabrication of graphene fibres with graphene oxide. RSC Adv. 2020, 10, 5722. [Google Scholar] [CrossRef]
- Usman, K.A.; Qin, S.; Henderson, L.C.; Zhang, J.; Hegh, D.Y.; Razal, J.M. Ti3C2Tx MXene: From dispersions to multifunctional architectures for diverse applications. Mater. Horiz. 2021, 8, 2886. [Google Scholar] [PubMed]
- Uchida, J.; Soberats, B.; Gupta, M.; Kato, T. Advanced Functional Liquid Crystals. Adv. Mater. 2022, 34, 2109063. [Google Scholar] [CrossRef] [PubMed]
- Musevic, I. Interactions, topology and photonic properties of liquid crystal colloids and dispersions. Eur. Phys. J. Spec. Top. 2019, 227, 2455. [Google Scholar]
- Smalyukh, I.I. Liquid Crystal Colloids. Annu. Rev. Condens. Matter Phys. 2018, 9, 207. [Google Scholar] [CrossRef]
- Muševic, I. Nematic Liquid-Crystal Colloids. Materials 2018, 11, 24. [Google Scholar]
- Draude, A.P.; Dierking, I. Thermotropic liquid crystals with low-dimensional carbon allotropes. Nano Express 2021, 2, 012002. [Google Scholar]
- Dierking, I.; Al-Zangana, S. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials. Nanomaterials 2017, 7, 305. [Google Scholar] [CrossRef]
- Shen, Y.; Dierking, I. Perspectives in Liquid-Crystal-Aided Nanotechnology and Nanoscience. Appl. Sci. 2019, 9, 2512. [Google Scholar] [CrossRef]
- Zhang, R.; Mozaffari, A.; de Pablo, J.J. Autonomous materials systems from active liquid crystals. Nat. Rev. Mater. 2021, 6, 437. [Google Scholar]
- Zhao, J.; Gulan, U.; Horie, T.; Ohmura, N.; Han, J.; Yang, C.; Kong, J.; Wang, S.; Bin Xu, B. Advances in Biological Liquid Crystals. Small 2019, 15, 1900019. [Google Scholar]
- Dogic, Z. Filamentous Phages as a Model System in Soft Matter Physics. Front. Microbiol. 2016, 7, 1013. [Google Scholar]
- Wang, L.; Urbas, A.M.; Li, Q. Nature-Inspired Emerging Chiral Liquid Crystal Nanostructures: From Molecular Self-Assembly to DNA Mesophase and Nanocolloids. Adv. Mater. 2020, 32, 1801335. [Google Scholar]
- Ilami, M.; Bagheri, H.; Ahmed, R.; Skowronek, E.O.; Marvi, H. Materials, Actuators, and Sensors for Soft Bioinspired Robots. Adv. Mater. 2021, 33, 2003139. [Google Scholar]
- Shang, Y.; Wang, J.; Ikeda, T.; Jiang, L. Bio-inspired liquid crystal actuator materials. J. Mater. Chem. C 2019, 7, 3413. [Google Scholar]
- Ahmed, F.; Waqas, M.; Jawed, B.; Soomro, A.M.; Kumar, S.; Hina, A.; Khan, U.; Kim, K.H.; Choi, K.H. Decade of bio-inspired soft robots: A review. Smart Mater. Struct. 2022, 31, 073002. [Google Scholar]
- Casado, U.; Mucci, V.L.; Aranguren, M.I. Aranguren, Cellulose nanocrystals suspensions: Liquid crystal anisotropy, rheology and films iridescence. Carbohydr. Polym. 2021, 261, 117848. [Google Scholar]
- Zhang, Z.; Yang, X.; Zhao, Y.; Ye, F.; Shang, L. Liquid Crystal Materials for Biomedical Applications. Adv. Mater. 2023, 35, 2300220. [Google Scholar] [CrossRef]
- Barriga, H.M.G.; Holme, M.N.; Stevens, M.M. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew. Chem. Int. Ed. 2019, 58, 2958. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today 2016, 21, 1359. [Google Scholar] [CrossRef] [PubMed]
- Yaghmur, A.; Mu, H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm. Sin. B 2021, 11, 871. [Google Scholar] [CrossRef]
- Tubiana, L.; Alexander, G.P.; Barbensi, A.; Buck, D.; Cartwright, J.H.; Chwastyk, M.; Cieplak, M.; Coluzza, I.; Čopar, S.; Craik, D.J.; et al. Topology in soft and biological matter. Phys. Rep. 2024, 1075, 1. [Google Scholar]
- Smalyukh, I.I. Review: Knots and other new topological effects in liquid crystals and colloids. Rep. Prog. Phys. 2020, 83, 106601. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Smalyukh, I.I. Chiral, Topological, and Knotted Colloids in Liquid Crystals. Crystals 2024, 14, 885. [Google Scholar] [CrossRef]
- Tai, J.-S.B. Topological solitons in chiral liquid crystals. Liq. Cryst. Today 2023, 32, 45. [Google Scholar] [CrossRef]
- Shen, Y.; Dierking, I. Recent Progresses on Experimental Investigations of Topological and Dissipative Solitons in Liquid Crystals. Crystals 2022, 12, 94. [Google Scholar] [CrossRef]
- Kudreyko, A.; Chigrinov, V.; Hegde, G.; Chausov, D. Photoaligned Liquid Crystalline Structures for Photonic Applications. Crystals 2023, 13, 965. [Google Scholar] [CrossRef]
- Su, B.; Tian, Y.; Jiang, L. Bioinspired Interfaces with Superwettability: From Materials to Chemistry. J. Am. Chem. Soc. 2016, 138, 1727. [Google Scholar]
- Guardià, J.; Reina, J.A.; Giamberini, M.; Montané, X. An Up-to-Date Overview of Liquid Crystals and Liquid Crystal Polymers for Different Applications: A Review. Polymers 2024, 16, 2293. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-L.; Li, C.-Y.; Pan, J.-T.; Ji, Y.-E.; Jiang, C.; Zheng, R.; Wang, Z.-Y.; Wang, Y.; Li, B.-X.; Lu, Y.-Q. Self-assembled liquid crystal architectures for soft matter photonics. Light Sci. Appl. 2022, 11, 270. [Google Scholar]
- Bisoyi, H.K.; Li, Q. Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications. Chem. Rev. 2016, 116, 15089. [Google Scholar] [PubMed]
- Mysliwiec, J.; Szukalska, A.; Szukalski, A.; Sznitko, L. Liquid crystal lasers: The last decade and the future. Nanophotonics 2021, 10, 2309. [Google Scholar]
- Aljohani, O.; Dierking, I. Modern developments in lasing with liquid crystals. Front. Mater. 2024, 11, 1453744. [Google Scholar]
- Muševič, I. Liquid-crystal micro-photonics. Liq. Cryst. Rev. 2016, 4, 1. [Google Scholar]
- Tang, J.; Li, Z.; Xie, M.; Luo, Y.; Yu, J.; Chen, G.; Chen, Z. Liquid Crystal Based Label-Free Optical Sensors for Biochemical Application. Photonic Sens. 2024, 14, 240203. [Google Scholar]
- Zhan, X.; Liu, Y.; Yang, K.-L.; Luo, D. State-of-the-Art Development in Liquid Crystal Biochemical Sensors. Biosensors 2022, 12, 577. [Google Scholar] [CrossRef]
- Luan, C.; Luan, H.; Luo, D. Application and Technique of Liquid Crystal-Based Biosensors. Micromachines 2020, 11, 176. [Google Scholar] [CrossRef]
- Oladepo, S.A. Development and Application of Liquid Crystals as Stimuli-Responsive Sensors. Molecules 2022, 27, 1453. [Google Scholar] [CrossRef] [PubMed]
- Carlton, R.J.; Hunter, J.T.; Miller, D.S.; Abbasi, R.; Mushenheim, P.C.; Tan, L.N.; Abbott, N.L. Chemical and biological sensing using liquid crystals. Liq. Cryst. Rev. 2013, 1, 29. [Google Scholar] [PubMed]
- Wilson, M.R.; Yu, G.; Potter, T.D.; Walker, M.; Gray, S.J.; Li, J.; Boyd, N.J. Molecular Simulation Approaches to the Study of Thermotropic and Lyotropic Liquid Crystals. Crystals 2022, 12, 685. [Google Scholar] [CrossRef]
- Shiralipour, F.; Akhtar, Y.N.; Gilmor, A.; Pegorin, G.; Valerio-Aguilar, A.; Hegmann, E. The Role of Liquid Crystal Elastomers in Pioneering Biological Applications. Crystals 2024, 14, 859. [Google Scholar] [CrossRef]
- Zeng, X.; Zhou, T.; Li, L.; Song, J.; Duan, R.; Xiao, X.; Xu, B.; Wu, G.; Guo, Y. Reconfigurable Liquid Crystal Elastomer Director Patterns for Multi-Mode Shape Morphing. Crystals 2024, 14, 357. [Google Scholar] [CrossRef]
- Reshetnyak, V.Y.; Pinkevych, I.P.; McConney, M.E.; Bunning, T.J.; Evans, D.R. Tamm Plasmons: Properties, Applications, and Tuning with Help of Liquid Crystals. Crystals 2025, 15, 138. [Google Scholar] [CrossRef]
- Deptuch, A.; Górska, N.; Murzyniec, M.; Srebro-Hooper, M.; Hooper, J.; Dziurka, M.; Urbańska, M. Density Functional Theory Calculations for Interpretation of Infra-Red Spectra of Liquid Crystalline Chiral Compound. Crystals 2024, 14, 645. [Google Scholar] [CrossRef]
- Hobbs, J.; Mattsson, J.; Nagaraj, M. Analysing the Photo-Physical Properties of Liquid Crystals. Crystals 2024, 14, 362. [Google Scholar] [CrossRef]
- Dierking, I.; Moyle, A.; Cepparulo, G.M.; Skingle, K.; Hernández, L.; Raidal, J. Machine Learning Analysis of Umbilic Defect Annihilation in Nematic Liquid Crystals in the Presence of Nanoparticles. Crystals 2025, 15, 214. [Google Scholar] [CrossRef]
- Marni, S.; Barboza, R.; Oluwajoba, A.S.; Zamboni, R.; Lucchetti, L. Polarization Coupling between Ferroelectric Liquids and Ferroelectric Solids: Effects of the Fringing Field Profile. Crystals 2024, 14, 425. [Google Scholar] [CrossRef]
- Simdyankin, I.V.; Geivandov, A.R.; Kasyanova, I.V.; Palto, S.P. Local Orientation Transitions to a Lying Helix State in Negative Dielectric Anisotropy Cholesteric Liquid Crystal. Crystals 2024, 14, 891. [Google Scholar] [CrossRef]
- Haputhanthrige, N.P.; Rajabi, M.; Lavrentovich, O.D. Effects of Photopatterning Conditions on Azimuthal Surface Anchoring Strength. Crystals 2024, 14, 1058. [Google Scholar] [CrossRef]
- Deptuch, A.; Sęk, B.; Lalik, S.; Zając, W.; Ossowska-Chruściel, M.D.; Chruściel, J.; Marzec, M. Structural Study of Nematogenic Compound 5OS5. Crystals 2024, 14, 367. [Google Scholar] [CrossRef]
- Haputhanthrige, N.P.; Zhou, Y.; Wei, J.; Gao, M.; Liu, T.; Lavrentovich, O.D. Liquid Crystalline Structures Formed by Sphere–Rod Amphiphilic Molecules in Solvents. Crystals 2025, 15, 177. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dierking, I. Liquid Crystal Research and Novel Applications in the 21st Century. Crystals 2025, 15, 321. https://doi.org/10.3390/cryst15040321
Dierking I. Liquid Crystal Research and Novel Applications in the 21st Century. Crystals. 2025; 15(4):321. https://doi.org/10.3390/cryst15040321
Chicago/Turabian StyleDierking, Ingo. 2025. "Liquid Crystal Research and Novel Applications in the 21st Century" Crystals 15, no. 4: 321. https://doi.org/10.3390/cryst15040321
APA StyleDierking, I. (2025). Liquid Crystal Research and Novel Applications in the 21st Century. Crystals, 15(4), 321. https://doi.org/10.3390/cryst15040321