Magnetic Field Control of Liquid Crystal-Enabled Colloid Electrophoresis
Abstract
1. Introduction
2. Materials and Methods
2.1. Liquid Crystal Cells
2.2. Particles–Liquid Crystal Mixture
2.3. Particle Propulsion and Control
2.3.1. Unidirectional Control of Particles
2.3.2. Generation of Particle Clusters
2.4. Observation, Image Acquisition, and Data Analysis
3. Results and Discussion
3.1. Magnetic Field Control of Individual Particles
3.2. Collective Control of Particles
3.2.1. Particle Assembly Using a Magnetic Field
3.2.2. Magnetic Control of Particle Swarms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATP | Adenosine triphosphate |
AC | Alternate current |
DC | Direct current |
DI-LCEEP | Directron-induced liquid crystal-enabled electrophoresis |
LC | Liquid crystal |
LCEEP | Liquid crystal-enabled electrophoresis |
UV | Ultraviolet |
References
- Ignés-Mullol, J.; Sagués, F. Experiments with active and driven synthetic colloids in complex fluids. Curr. Opin. Colloid Interface Sci. 2022, 62, 101636. [Google Scholar] [CrossRef]
- Sharan, P.; Nsamela, A.; Lesher-Pérez, S.C.; Simmchen, J. Microfluidics for Microswimmers: Engineering Novel Swimmers and Constructing Swimming Lanes on the Microscale, a Tutorial Review. Small 2021, 17, 2007403. [Google Scholar] [CrossRef] [PubMed]
- Bunea, A.I.; Taboryski, R. Recent advances in microswimmers for biomedical applications. Micromachines 2020, 11, 1048. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Solovev, A.A.; Huang, G.; Cui, J.; Mei, Y. Soft microswimmers: Material capabilities and biomedical applications. Curr. Opin. Colloid Interface Sci. 2022, 61, 101609. [Google Scholar] [CrossRef]
- Doostmohammadi, A.; Ignés-Mullol, J.; Yeomans, J.M.; Sagués, F. Active nematics. Nat. Commun. 2018, 9, 3246. [Google Scholar] [CrossRef]
- Friedrich, B.M.; Jü, F. Chemotaxis of sperm cells. Proc. Natl. Acad. Sci. USA 2007, 104, 13256–13261. [Google Scholar] [CrossRef]
- Tottori, S.; Zhang, L.; Peyer, K.E.; Nelson, B.J. Assembly, disassembly, and anomalous propulsion of microscopic helices. Nano Lett. 2013, 13, 4263–4268. [Google Scholar] [CrossRef]
- Gao, W.; Sattayasamitsathit, S.; Manesh, K.M.; Weihs, D.; Wang, J. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 2010, 132, 14403–14405. [Google Scholar] [CrossRef]
- Bricard, A.; Caussin, J.B.; Desreumaux, N.; Dauchot, O.; Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 2013, 503, 95–98. [Google Scholar] [CrossRef]
- Piazza, R.; Parola, A. Thermophoresis in colloidal suspensions. J. Phys. Condens. Matter. 2008, 20, 153102. [Google Scholar] [CrossRef]
- Dogishi, Y.; Sakai, Y.; Sohn, W.Y.; Katayama, K. Optically induced motion of liquid crystalline droplets. Soft Matter 2018, 14, 8085–8089. [Google Scholar] [CrossRef] [PubMed]
- Arya, P.; Feldmann, D.; Kopyshev, A.; Lomadze, N.; Santer, S. Light driven guided and self-organized motion of mesoporous colloidal particles. Soft Matter 2020, 16, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Katuri, J.; Ma, X.; Stanton, M.M.; Sánchez, S. Designing micro-and nanoswimmers for specific applications. Accounts Chem. Res. 2017, 50, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Wei, F.; Yin, C.; Yao, L.; Wang, Y. Biomimetic soft micro-swimmers: From actuation mechanisms to applications. Biomed. Microdevices 2021, 23, 6. [Google Scholar] [CrossRef]
- Kleman, M.; Lavrentovich, O.D. Soft Matter Physics: An Introduction, 1st ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Oswald, P.; Pieranski, P. The Liquid Crystals Book Series Nematic and Cholesteric Liquid Crystals the Liquid Crystals Book Series, 1st ed.; CRC Press Taylor & Francis Group: Abingdon, Oxfordshire, UK, 2005. [Google Scholar] [CrossRef]
- Lazo, I.; Peng, C.; Xiang, J.; Shiyanovskii, S.V.; Lavrentovich, O.D. Liquid crystal-enabled electro-osmosis through spatial charge separation in distorted regions as a novel mechanism of electrokinetics. Nat. Commun. 2014, 5, 5033. [Google Scholar] [CrossRef]
- Peng, C.; Lavrentovich, O.D. Liquid crystals-enabled AC electrokinetics. Micromachines 2019, 10, 45. [Google Scholar] [CrossRef]
- Lavrentovich, O.D. Active colloids in liquid crystals. Curr. Opin. Colloid Interface Sci. 2016, 21, 97–109. [Google Scholar] [CrossRef]
- Li, B.X.; Xiao, R.L.; Shiyanovskii, S.V.; Lavrentovich, O.D. Soliton-induced liquid crystal enabled electrophoresis. Phys. Rev. Res. 2020, 2, 013178. [Google Scholar] [CrossRef]
- Ma, L.L.; Li, C.Y.; Pan, J.T.; Ji, Y.E.; Jiang, C.; Zheng, R.; Wang, Z.Y.; Wang, Y.; Li, B.X.; Lu, Y.Q. Self-assembled liquid crystal architectures for soft matter photonics. Light. Sci. Appl. 2022, 11, 270. [Google Scholar] [CrossRef]
- Yin, K.; Xiong, J.; He, Z.; Wu, S.T. Patterning Liquid-Crystal Alignment for Ultrathin Flat Optics. ACS Omega 2020, 5, 31485–31489. [Google Scholar] [CrossRef]
- Prakash, J.; Kumar, A.; Chauhan, S. Aligning Liquid Crystal Materials through Nanoparticles: A Review of Recent Progress. Liquids 2022, 2, 50–71. [Google Scholar] [CrossRef]
- Sohn, H.R.O.; Liu, C.D.; Voinescu, R.; Chen, Z.; Smalyukh, I.I. Optically enriched and guided dynamics of active skyrmions. Opt. Express 2020, 28, 6306. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.W.; Kim, H.R.; Lee, Y.J.; Kim, J.H. Micro-contact printing method for patterning liquid crystal alignment layers. J. Inf. Disp. 2006, 7, 12–15. [Google Scholar] [CrossRef]
- Jagodič, U.; Vellaichamy, M.; Škarabot, M.; Muševič, I. Surface alignment of nematic liquid crystals by direct laser writing of photopolymer alignment layers. Liq. Cryst. 2023, 50, 1999–2009. [Google Scholar] [CrossRef]
- Guillamat, P.; Ignés-Mullol, J.; Sagués, F. Control of active liquid crystals with a magnetic field. Proc. Natl. Acad. Sci. USA 2016, 113, 5498–5502. [Google Scholar] [CrossRef]
- Blümler, P.; Soltner, H. Practical Concepts for Design, Construction and Application of Halbach Magnets in Magnetic Resonance. Appl. Magn. Reson. 2023, 54, 1701–1739. [Google Scholar] [CrossRef]
- Brasselet, E. Tunable High-Resolution Macroscopic Self-Engineered Geometric Phase Optical Elements. Phys. Rev. Lett. 2018, 121, 033901. [Google Scholar] [CrossRef]
- Martínez-Prat, B.; Arteaga, O.; Sagués, F.; Ignés-Mullol, J. Multimodal fluorescence microscope with fast adaptive polarimetry. HardwareX 2023, 16, e00480. [Google Scholar] [CrossRef]
- Padmini, H.N.; Rajabi, M.; Shiyanovskii, S.V.; Lavrentovich, O.D. Azimuthal anchoring strength in photopatterned alignment of a nematic. Crystals 2021, 11, 675. [Google Scholar] [CrossRef]
- Lin, T.C.; Liu, S.F.; Chao, C.Y. Eliminating optical bounce of homeotropic liquid crystal cells with sputtered silicon dioxide alignment films by rubbing treatment. Displays 2011, 32, 244–248. [Google Scholar] [CrossRef]
- Hernàndez-Navarro, S.; Tierno, P.; Ignés-Mullol, J.; Sagués, F. AC electrophoresis of microdroplets in anisotropic liquids: Transport, assembling and reaction. Soft Matter 2013, 9, 7999–8004. [Google Scholar] [CrossRef]
- Hernàndez-Navarro, S.; Tierno, P.; Ignés-Mullol, J.; Sagués, F. Nematic colloidal swarms assembled and transported on photosensitive surfaces. IEEE Trans. Nanobioscience 2015, 14, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Lavrentovich, O.D.; Lazo, I.; Pishnyak, O.P. Nonlinear electrophoresis of dielectric and metal spheres in a nematic liquid crystal. Nature 2010, 467, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Hernàndez-Navarro, S.; Tierno, P.; Farrera, J.A.; Ignés-Mullol, J.; Sagués, F. Reconfigurable swarms of nematic colloids controlled by photoactivated surface patterns. Angew. Chem.-Int. Ed. 2014, 53, 10696–10700. [Google Scholar] [CrossRef]
- Straube, A.V.; Pagès, J.M.; Tierno, P.; Ignés-Mullol, J.; Sagués, F. Collective dynamics and conformal ordering in electrophoretically driven nematic colloids. Phys. Rev. Res. 2019, 1, 022008. [Google Scholar] [CrossRef]
- Pagès, J.M.; Straube, A.V.; Tierno, P.; Ignés-Mullol, J.; Sagués, F. Inhomogeneous assembly of driven nematic colloids. Soft Matter 2019, 15, 312–320. [Google Scholar] [CrossRef]
- Sandford O’Neill, J.J.; Salter, P.S.; Booth, M.J.; Elston, S.J.; Morris, S.M. Electrically-tunable positioning of topological defects in liquid crystals. Nat. Commun. 2020, 11, 2203. [Google Scholar] [CrossRef]
- Barboza, R.; Bortolozzo, U.; Assanto, G.; Vidal-Henriquez, E.; Clerc, M.G.; Residori, S. Harnessing optical vortex lattices in nematic liquid crystals. Phys. Rev. Lett. 2013, 111, 093902. [Google Scholar] [CrossRef]
- Pawale, T.; Swain, J.; Hashemi, M.R.; Tierra, G.; Li, X. Dynamic Motions of Topological Defects in Nematic Liquid Crystals under Spatial Confinement. Adv. Mater. Interfaces 2023, 10, 2300136. [Google Scholar] [CrossRef]
- Dierking, I.; Marshall, O.; Wright, J.; Bulleid, N. Annihilation dynamics of umbilical defects in nematic liquid crystals under applied electric fields. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2005, 71, 061709. [Google Scholar] [CrossRef]
- Tierno, P.; Johansen, T.H.; Fischer, T.M. Magnetically driven colloidal microstirrer. J. Phys. Chem. B 2007, 111, 3077–3080. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Andrés, J.; Cassinello, G.; Sagués, F.; Ignés-Mullol, J. Magnetic Field Control of Liquid Crystal-Enabled Colloid Electrophoresis. Colloids Interfaces 2025, 9, 27. https://doi.org/10.3390/colloids9030027
Torres-Andrés J, Cassinello G, Sagués F, Ignés-Mullol J. Magnetic Field Control of Liquid Crystal-Enabled Colloid Electrophoresis. Colloids and Interfaces. 2025; 9(3):27. https://doi.org/10.3390/colloids9030027
Chicago/Turabian StyleTorres-Andrés, Joel, Guillermo Cassinello, Francesc Sagués, and Jordi Ignés-Mullol. 2025. "Magnetic Field Control of Liquid Crystal-Enabled Colloid Electrophoresis" Colloids and Interfaces 9, no. 3: 27. https://doi.org/10.3390/colloids9030027
APA StyleTorres-Andrés, J., Cassinello, G., Sagués, F., & Ignés-Mullol, J. (2025). Magnetic Field Control of Liquid Crystal-Enabled Colloid Electrophoresis. Colloids and Interfaces, 9(3), 27. https://doi.org/10.3390/colloids9030027