Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (360)

Search Parameters:
Keywords = liquid confines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12162 KB  
Article
Adjustable Capillary Forces Through Wetting State Changes in Liquid Bridges: Regulation via Trapezoidal Microstructures
by Yanlian Liu, Xueli Chen, Yu Wang, Guannan Lei, Junsheng Zhao, Taiyang Li, Liyang Huang and Bo Zhang
Surfaces 2025, 8(4), 73; https://doi.org/10.3390/surfaces8040073 (registering DOI) - 12 Oct 2025
Abstract
A detailed understanding of the mechanistic role of solid surface microstructures in modulating capillary forces and liquid transport in liquid bridge systems is crucial, for liquid bridges between rough surfaces are omnipresent in nature and various industries. In this work, Gibbs free energy [...] Read more.
A detailed understanding of the mechanistic role of solid surface microstructures in modulating capillary forces and liquid transport in liquid bridge systems is crucial, for liquid bridges between rough surfaces are omnipresent in nature and various industries. In this work, Gibbs free energy expression was derived for a liquid bridge system confined between a smooth surface and a microstructured surface, based on the principle of minimum thermodynamic potential. Furthermore, by analyzing the energy conversion during spacing variation between the two solid surfaces, an analytical expression for the capillary force of the liquid bridge was derived that incorporates the geometric parameters of the microstructures and the contact angle. Finally, numerical simulations were performed using the Fluent UDFs (User-Defined Functions) to validate the proposed capillary force model. The simulation results validated the analytical expression and revealed the influence of the microstructures on the force distribution on the upper and lower surfaces of the liquid bridge, and on the droplet transport performance. Full article
(This article belongs to the Special Issue Superhydrophobic Surfaces: Wetting Phenomena and Preparation Methods)
Show Figures

Figure 1

12 pages, 2841 KB  
Article
Mesoscopic Liquids Emit Thermal Waves Under Shear Strain or Microflow
by Laurence Noirez, Eni Kume and Patrick Baroni
Liquids 2025, 5(4), 27; https://doi.org/10.3390/liquids5040027 - 9 Oct 2025
Viewed by 86
Abstract
Liquids like water are not expected to produce a thermal change under shear strain or flow (away from extreme conditions). In this study, we reveal experimental conditions for which the conventional athermal hydrodynamic assumption is no longer valid. We highlight the establishment of [...] Read more.
Liquids like water are not expected to produce a thermal change under shear strain or flow (away from extreme conditions). In this study, we reveal experimental conditions for which the conventional athermal hydrodynamic assumption is no longer valid. We highlight the establishment of non-equilibrium hot and cold thermal states occurring when a mesoscopic confined liquid is set in motion. Two stress situations are considered: low-frequency shear stress at large strain amplitude and microfluidic transport (pressure gradient). Two liquids are tested: water and glycerol at room temperature. In confined conditions (submillimeter scale), these liquids exhibit stress-induced thermal waves. We interpret the emergence of non-equilibrium temperatures as a consequence of the solicitation of the mesoscopic liquid elasticity. In analogy with elastic deformation, the mesoscopic volume decreases or increases slightly, which leads to a change in temperature (thermo-mechanical energy conversion). The energy acquired or released is converted to heat or cold, respectively. To account for these non-equilibrium temperatures, the mesoscopic flow is no longer considered as a complete dissipative process but as a way of propagating shear and thus compressive waves. This conclusion is consistent with recent theoretical developments showing that liquids propagate shear elastic waves at small scales. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

22 pages, 6989 KB  
Article
Evaluation of Passenger Train Safety in the Event of a Liquid Hydrogen Release from a Freight Train in a Tunnel Along an Italian High-Speed/High-Capacity Rail Line
by Ciro Caliendo, Isidoro Russo and Gianluca Genovese
Appl. Sci. 2025, 15(19), 10660; https://doi.org/10.3390/app151910660 - 2 Oct 2025
Viewed by 203
Abstract
The global shift towards cleaner energy sources is driving the adoption of hydrogen as an environmentally friendly alternative to fossil fuels. Among the forms currently available, Liquid Hydrogen (LH2) offers high energy density and efficient storage, making it suitable for large-scale [...] Read more.
The global shift towards cleaner energy sources is driving the adoption of hydrogen as an environmentally friendly alternative to fossil fuels. Among the forms currently available, Liquid Hydrogen (LH2) offers high energy density and efficient storage, making it suitable for large-scale transport by rail. However, the flammability of hydrogen poses serious safety concerns, especially when transported through confined spaces such as railway tunnels. In case of an accidental LH2 release from a freight train, the rapid accumulation and potential ignition of hydrogen could cause catastrophic consequences, especially if freight and passenger trains are present simultaneously in the same tunnel tube. In this study, a three-dimensional computational fluid dynamics model was developed to simulate the dispersion and explosion of LH2 following an accidental leak from a freight train’s cryo-container in a single-tube double-track railway tunnel, when a passenger train queues behind it on the same track. The overpressure results were analyzed using probit functions to estimate the fatality probabilities for the passenger train’s occupants. The analysis suggests that a significant number of fatalities could be expected among the passengers. However, shorter users’ evacuation times from the passenger train’s wagons and/or longer distances between the two types of trains might reduce the number of potential fatalities. The findings, by providing additional insight into the risks associated with LH2 transport in railway tunnels, indicate the need for risk mitigation measures and/or traffic management strategies. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

16 pages, 10507 KB  
Article
Displacement Mechanism of Sequential Droplets on a Wetting Confinement
by Wenbin Li, Jie Hu and Renxin Liu
Processes 2025, 13(9), 3014; https://doi.org/10.3390/pr13093014 - 21 Sep 2025
Viewed by 194
Abstract
The stability and uniformity of a liquid line formed by the sequential deposition of droplets are essential to the quality of products in many industry applications. In this work, a numerical model based on the front tracking method (FTM) is developed to investigate [...] Read more.
The stability and uniformity of a liquid line formed by the sequential deposition of droplets are essential to the quality of products in many industry applications. In this work, a numerical model based on the front tracking method (FTM) is developed to investigate the displacement dynamics of sequential droplets on wetting confinement. We systematically examine the impact of wetting conditions and confinement width on the spreading length, morphology, and confined angle for a droplet. In addition, an analytical model is derived to predict the droplet displacement spacing for a uniform line. The analytical results align well with the numerical results, and the sequential droplets displaced with the predicted space achieve the minimum cross-section error and exhibit enhanced uniformity. Our numerical and analytical studies of droplet displacement within wetting confinement provide fundamental insights and a predictive framework for enhancing the uniformity and stability of liquid lines in precision manufacturing processes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 12279 KB  
Article
Numerical Study on Self-Pulsation Phenomenon in Liquid-Centered Swirl Coaxial Injector with Recess
by Jiwon Lee, Hadong Jung and Kyubok Ahn
Aerospace 2025, 12(9), 796; https://doi.org/10.3390/aerospace12090796 - 3 Sep 2025
Viewed by 426
Abstract
This study investigates self-pulsation phenomena in a liquid-centered swirl coaxial injector with a recess length of 4 mm, under varying liquid flow conditions, using numerical simulations. The simulations focused on analyzing spray patterns, pressure oscillations, and dominant frequency characteristics, and the results were [...] Read more.
This study investigates self-pulsation phenomena in a liquid-centered swirl coaxial injector with a recess length of 4 mm, under varying liquid flow conditions, using numerical simulations. The simulations focused on analyzing spray patterns, pressure oscillations, and dominant frequency characteristics, and the results were compared with previous experimental data. Self-pulsation, observed at liquid flow rates of 60%, 90%, and 100% of nominal values, generated distinctive periodic oscillations in the spray pattern, forming “neck” and “shoulder” breakup structures that resemble a Christmas tree. Surface waves induced by Kelvin-Helmholtz and Rayleigh-Taylor instabilities were identified at the gas-liquid interface, contributing to enhanced atomization and reduced spray breakup length. FFT analysis of the pressure oscillations highlighted a match in trends between simulation and experimental data, although variations in dominant frequency magnitudes arose due to the absence of manifold space in simulations, confining oscillations and slightly elevating dominant frequencies. Regional analysis revealed that interactions between the high-speed gas and liquid film in the recess region drive self-pulsation, leading to amplified pressure oscillations throughout the injector’s internal regions, including the gas annular passage, tangential hole, and gas core. These findings provide insights into the internal flow dynamics of swirl coaxial injectors and inform design optimizations to control instabilities in liquid rocket engines. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

15 pages, 5326 KB  
Article
Study on the Construction of a Nonlinear Creep Constitutive Model of Salt-Gypsum Rock in the Bayan Deep and the Critical Value of Wellbore Shrinkage Liquid Column Pressure
by Penglin Liu, Aobo Yin, Tairan Liang, Wen Sun, Wei Lian, Bo Zhang, Shanpo Jia and Jinchuan Huang
Processes 2025, 13(9), 2747; https://doi.org/10.3390/pr13092747 - 28 Aug 2025
Viewed by 419
Abstract
Aiming at the problems of borehole shrinkage and pipe sticking caused by creep in salt-gypsum rock formations during deep well drilling, multi-field coupling creep experiments on deep salt-bearing gypsum mudstone were carried out. Furthermore, a nonlinear creep constitutive model was constructed based on [...] Read more.
Aiming at the problems of borehole shrinkage and pipe sticking caused by creep in salt-gypsum rock formations during deep well drilling, multi-field coupling creep experiments on deep salt-bearing gypsum mudstone were carried out. Furthermore, a nonlinear creep constitutive model was constructed based on the Drucker–Prager criterion, and the critical value of liquid column pressure for borehole shrinkage was determined through numerical simulation. Experiments show that at 140 °C, salt-gypsum rock is mainly subjected to brittle failure with single shear fracture, while at 180 °C, multiple sets of cross-cutting shear bands form, shifting to plastic flow-dominated composite failure. The coupling effect of confining pressure and deviatoric stress is temperature-dependent; the critical deviatoric stress is independent of confining pressure at 140 °C, but decreases significantly with increasing confining pressure at 180 °C, revealing that salt-gypsum rock is more prone to plastic flow under high temperatures and confining pressure. The creep constitutive equation was further determined, and fitting parameters show that the stress exponent m = 2–5 and the time exponent n decrease linearly with the increase in deviatoric stress, and the model can accurately describe the characteristics of three-stage creep. The numerical simulation found that there is a nonlinear relationship between the drilling fluid density and borehole shrinkage; the shrinkage rate exceeds 1.47% when the density is ≤2.0 g/cm3, and the expansion amount is >1.0 mm when ≥2.4 g/cm3. The critical safe density range is 2.1–2.3 g/cm3, which is consistent with the field data in the Bayan area. The research results provide an experimental basis and quantitative method for the dynamic regulation of drilling fluid density in deep gypsum rock formations, and have engineering guiding significance for preventing borehole wall instability. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

42 pages, 5516 KB  
Review
Protecting Firefighters from Carcinogenic Exposure: Emerging Tools for PAH Detection and Decontamination
by Morteza Ghafar-Zadeh, Azadeh Amrollahi Biyouki, Negar Heidari, Niloufar Delfan, Parviz Norouzi, Sebastian Magierowski and Ebrahim Ghafar-Zadeh
Biosensors 2025, 15(8), 547; https://doi.org/10.3390/bios15080547 - 20 Aug 2025
Viewed by 901
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are increasingly recognized as a major contributor to the occupational cancer risk among firefighters. In response, the National Fire Protection Association (NFPA) and other regulatory bodies have recommended rigorous decontamination protocols to minimize PAH exposure. Despite these efforts, a [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are increasingly recognized as a major contributor to the occupational cancer risk among firefighters. In response, the National Fire Protection Association (NFPA) and other regulatory bodies have recommended rigorous decontamination protocols to minimize PAH exposure. Despite these efforts, a critical gap persists: the absence of real-time, field-deployable devices capable of detecting these invisible and toxic compounds during firefighting operations or within fire stations. Additionally, the lack of effective and optimized methods for the removal of these hazardous substances from the immediate environments of firefighters continues to pose a serious occupational health challenge. Although numerous studies have investigated PAH detection in environmental contexts, current technologies are still largely confined to laboratory settings and are unsuitable for field use. This review critically examines recent advances in PAH decontamination strategies for firefighting and explores alternative sensing solutions. We evaluate both conventional analytical methods, such as gas chromatography, high-performance liquid chromatography, and mass spectrometry, and emerging portable PAH detection technologies. By highlighting the limitations of existing systems and presenting novel sensing approaches, this paper aims to catalyze innovation in sensor development. Our ultimate goal is to inspire the creation of robust, field-deployable tools that enhance decontamination practices and significantly improve the health and safety of firefighters by reducing their long-term risks of cancer. Full article
Show Figures

Figure 1

12 pages, 3343 KB  
Article
Shape-Stabilized Phase Change Material via In Situ Solid–Liquid Host–Guest Composite Strategy
by Jian Chen and Afang Zhang
Molecules 2025, 30(16), 3376; https://doi.org/10.3390/molecules30163376 - 14 Aug 2025
Viewed by 603
Abstract
Solid–liquid phase change materials (PCMs) have attracted significant attention due to their high enthalpy, which enables superior energy storage density. However, it is difficult to maintain their original shapes in a molten state. Therefore, confining PCMs within porous materials is an important method, [...] Read more.
Solid–liquid phase change materials (PCMs) have attracted significant attention due to their high enthalpy, which enables superior energy storage density. However, it is difficult to maintain their original shapes in a molten state. Therefore, confining PCMs within porous materials is an important method, either through mixing molten polymers and PCMs or confining PCMs in pre-prepared porous materials (e.g., aerogels). The former method is straightforward and easy to execute but its stability is severely limited, and the latter is exactly the opposite. Herein, aerogel-confined functional liquid made via in situ solid–liquid host–guest composite strategy is reported. As a proof of concept, Nylon 66 and 1,6-hexanediol are selected as the solid and liquid phases, respectively. 1,6-hexanediol not only serves as a solvent to dissolve Nylon 66 but also induces sol–gel transition during the cooling process and acts as a PCM to store energy. Unlike aerogel-supported systems requiring multi-step processing, this approach integrates porous host formation and PCM encapsulation in one step. The resulting shape-stabilized PCMs (ss-PCMs) exhibit obscure leakage, high latent heat (160 J/g), mechanical robustness (compressive modulus of 3.6 MPa), and low thermal conductivity (0.081 W/(m·K)) above 75 wt% loading of 1,6-hexanediol. These ss-PCMs enable infrared stealth by delaying thermal detection and passive thermal buffering that suppress temperature fluctuations. The in situ solid–liquid host–guest composite strategy is straightforward, being achievable through a one-pot method involving heating and cooling cycles, with high raw material utilization and minimal waste generation, thus maximizing the conversion rate of raw materials into the final product. By combining the excellent liquid retention capability of aerogels with process simplicity, this methodology opens new avenues for the development of ss-PCMs. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

21 pages, 1559 KB  
Article
Diffusiophoresis of a Conducting Liquid Metal Droplet (LMD) in a Cylindrical Pore
by Sunny Chen, Lily Chuang, Nemo Chang, Jean Chien, Venesa Liao and Eric Lee
Molecules 2025, 30(16), 3372; https://doi.org/10.3390/molecules30163372 - 13 Aug 2025
Viewed by 463
Abstract
Diffusiophoresis of a liquid metal droplet (LMD) in a cylindrical pore is investigated theoretically in this study. A patched pseudo-spectral method based on Chebyshev polynomials combined with a geometric mapping technique is adopted to solve the resulting governing electrokinetic equations in irregular geometries. [...] Read more.
Diffusiophoresis of a liquid metal droplet (LMD) in a cylindrical pore is investigated theoretically in this study. A patched pseudo-spectral method based on Chebyshev polynomials combined with a geometric mapping technique is adopted to solve the resulting governing electrokinetic equations in irregular geometries. Several interesting phenomena are found which provide useful guidelines in practical applications involving liquid metal droplets (LMDs) such as drug delivery. In particular, the severe boundary confinement effect brings about unique features of droplet motion, leading to mobility reversal and a “stagnation phenomenon” where droplets cease to move regardless of their surface charge densities in a narrow cylindrical pore. An overwhelming exterior vortex flow nearly enclosing the entire droplet is found to be responsible for this. This finds various practical applications in droplet microfluidics and drug delivery. For instance, a cylindrical pore or blood vessel may be clogged by a droplet much smaller than its radius. In addition, the “solidification phenomenon”, where all droplets move with identical speed regardless of their viscosities like rigid particles with no interior recirculating vortex flows, is also discovered. The electrokinetic mechanism behind it and its potential applications are discussed. Overall, the geometric configuration considered here is a classic one, with many other possible applications yet to be found by experimental researchers and engineers in the field of colloid industry and operations. Full article
Show Figures

Figure 1

16 pages, 472 KB  
Review
Beyond the Tissue: Unlocking NSCLC Treatment Potential Through Liquid Biopsy
by Milica Kontic, Mihailo Stjepanovic and Filip Markovic
Genes 2025, 16(8), 954; https://doi.org/10.3390/genes16080954 - 13 Aug 2025
Viewed by 1154
Abstract
Lung cancer (LC), with non-small-cell lung cancer (NSCLC) as its predominant subtype, remains the leading cause of cancer-related mortality worldwide. While immune checkpoint inhibitors (ICIs) have redefined the therapeutic paradigm in advanced NSCLC, durable responses are confined to a limited subset of patients. [...] Read more.
Lung cancer (LC), with non-small-cell lung cancer (NSCLC) as its predominant subtype, remains the leading cause of cancer-related mortality worldwide. While immune checkpoint inhibitors (ICIs) have redefined the therapeutic paradigm in advanced NSCLC, durable responses are confined to a limited subset of patients. A major clinical challenge persists: the inability to accurately predict which patients will derive meaningful benefit, which will exhibit primary resistance, and which are at risk for severe immune-related toxicities. The imperative to individualize ICI therapy necessitates robust, dynamic, and accessible biomarkers. Liquid biopsy has emerged as a transformative, minimally invasive tool that enables real-time molecular and immunologic profiling. Through analysis of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes, and peripheral blood immune components, liquid biopsy offers a window into both tumor intrinsic and host-related determinants of ICI response. These biomarkers not only hold promise for identifying predictive signatures—such as tumor mutational burden, neoantigen landscape, or immune activation states—but also for uncovering mechanisms of acquired resistance and guiding treatment adaptation. Beyond immunotherapy, liquid biopsy plays an increasingly central role in the landscape of targeted therapies, allowing early detection of actionable driver mutations and resistance mechanisms (e.g., EGFR T790M, MET amplification, and ALK fusion variants). Importantly, serial sampling via liquid biopsy facilitates longitudinal disease monitoring and timely therapeutic intervention without the need for repeated tissue biopsies. By guiding therapy selection, monitoring response, and detecting resistance early, liquid biopsy has the potential to significantly improve outcomes in NSCLC. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 1939 KB  
Article
Liquid-Mediated Si-OH Healing of ZSM-22 Zeolites for Improved Performance in N-Decane Hydroisomerization
by Tong Chang, Renhui Deng, Jiaxin Xie, Jianyu Tang, Wenyao Gu, Zimin Peng and Suyao Liu
Molecules 2025, 30(16), 3319; https://doi.org/10.3390/molecules30163319 - 8 Aug 2025
Viewed by 552
Abstract
The abundant Si-OH groups serving as the defect sites in the ZSM-22 zeolite framework are not only closely associated with physicochemical properties and catalytic performance but are also the primary sites for attack by water molecules, thereby restricting applications involving or producing water. [...] Read more.
The abundant Si-OH groups serving as the defect sites in the ZSM-22 zeolite framework are not only closely associated with physicochemical properties and catalytic performance but are also the primary sites for attack by water molecules, thereby restricting applications involving or producing water. In the present study, a liquid-mediated healing process was used to convert the Si-OH groups in ZSM-22 zeolite into Si-O-Si bonds. The systematic investigation of the treatment solution’s composition and the hydrothermal conditions revealed that the crystallinity of ZSM-22 zeolite can be effectively enhanced following optimal healing treatment. Furthermore, the healed ZSM-22 zeolite exhibited enhanced ordering degree and pore connectivity without significant changes to the Si/Al and morphology. Moreover, the decline in Si-OH groups reduced the Lewis acid sites without altering the Brønsted acidity, which led to a slight decrease in the dispersion of Pt particles. In n-decane hydroisomerization, compared to the parent ZSM-22 zeolite catalyst, the healed catalyst demonstrates higher reactant conversion and increased isomer yield, attributing to its enhanced confinement within the micropore voids, which leads to a reduced yield of multi-branched isomers susceptible to cracking. This study presents a potential application of ZSM-22 zeolite in hydroisomerization for complex and challenging feedstocks. Full article
(This article belongs to the Special Issue New Insights into Porous Materials in Adsorption and Catalysis)
Show Figures

Figure 1

17 pages, 7080 KB  
Article
Impact of Food Exposome on Atherosclerotic Plaque Stability: Metabolomic Insights from Human Carotid Endarterectomy Specimen
by Emilie Doche, Barbara Leclercq, Constance Sulowski, Ellen Magoncia, Catherine Tardivel, Ljubica Svilar, Gabrielle Sarlon-Bartoli, Jean-Charles Martin, Michel Bartoli, Alexandre Rossillon and Laurent Suissa
Int. J. Mol. Sci. 2025, 26(14), 7018; https://doi.org/10.3390/ijms26147018 - 21 Jul 2025
Viewed by 836
Abstract
Carotid atherosclerotic stenosis (CAS) is a leading cause of ischemic stroke. Current understanding of plaque vulnerability remains largely confined to histopathological characterization. Consequently, identifying molecular determinants of plaque stability represents a major challenge to advance prevention strategies. Untargeted metabolomic analysis was performed using [...] Read more.
Carotid atherosclerotic stenosis (CAS) is a leading cause of ischemic stroke. Current understanding of plaque vulnerability remains largely confined to histopathological characterization. Consequently, identifying molecular determinants of plaque stability represents a major challenge to advance prevention strategies. Untargeted metabolomic analysis was performed using mass spectrometry coupled to liquid chromatography on carotid plaques removed from patients with CAS undergoing endarterectomy. To identify factors influencing plaque stability, we compared 42 asymptomatic with 30 symptomatic CAS patients. Associations between each annotated metabolite in plaques and asymptomatic CAS status were assessed using logistic regression models. Asymptomatic patients exhibited lower plasmatic levels of C-reactive protein (CRP) and higher HDL-cholesterol. Within the plaques, caffeine and its catabolites, paraxanthine and methylxanthine, were associated with plaque stability and were correlated with HDL-cholesterol. Additional plant-based diet biomarkers including N5-acetylornithine, gentisic acid, proline betaine, and homostachydrine were also associated with plaque stability. In contrast, N-methylpyridone carboxamides, reflecting niacin excess, involved in vascular inflammatory processes, were both associated with plaque vulnerability and also correlated with higher CRP. Our findings provide molecular evidence that plant-based diets, including coffee, promote carotid plaque stability, while excessive niacin intake, linked to processed foods, may be detrimental. Metabolomics offers new insights into food exposome-related vascular risk. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods Against Diseases)
Show Figures

Graphical abstract

22 pages, 15362 KB  
Article
The Influence of Different Concentrations of Methane in Ditches on the Propagation Characteristics of Explosions
by Xingxing Liang, Junjie Cheng, Yibo Zhang and Zhongqi Wang
Fire 2025, 8(7), 275; https://doi.org/10.3390/fire8070275 - 11 Jul 2025
Viewed by 710
Abstract
As the urban underground natural gas pipeline network expands, the explosion risk arising from methane accumulation in drainage ditches due to pipeline leakage has increased severely. A two-dimensional numerical model—9.7 m in length (including a 1-m obstacle section), 0.1 m in diameter, and [...] Read more.
As the urban underground natural gas pipeline network expands, the explosion risk arising from methane accumulation in drainage ditches due to pipeline leakage has increased severely. A two-dimensional numerical model—9.7 m in length (including a 1-m obstacle section), 0.1 m in diameter, and with a water volume fraction of 0.2—was developed to address the flexible boundary characteristics of urban underground ditches. The investigation examined the influence of methane concentration on explosion propagation characteristics. Results indicated that, at a methane concentration of 11%, the peak pressure attained 157.9 kPa, and the peak temperature exceeded 3100 K—all of which were significantly higher than the corresponding values at 10%, 13%, and 16% concentrations. Explosion-induced water motion exerted a cooling effect that inhibited heat and pressure transfer, while obstacles imposed partial restrictions on flame propagation. Temporal profiles of temperature and pressure exhibited three distinct stages: “initial stability–rapid rise–attenuation”. Notably, at a methane concentration of 16%, the water column formed by fluid vibration demonstrated a pronounced cooling effect, causing faster decreases in measured temperatures and pressures compared to other concentrations. Full article
Show Figures

Figure 1

46 pages, 3177 KB  
Review
Recent Advancements in Lateral Flow Assays for Food Mycotoxin Detection: A Review of Nanoparticle-Based Methods and Innovations
by Gayathree Thenuwara, Perveen Akhtar, Bilal Javed, Baljit Singh, Hugh J. Byrne and Furong Tian
Toxins 2025, 17(7), 348; https://doi.org/10.3390/toxins17070348 - 11 Jul 2025
Viewed by 2372
Abstract
Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, [...] Read more.
Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, but they are generally confined to laboratory settings. Consequently, there is a growing demand for point-of-care testing (POCT) solutions that are rapid, sensitive, portable, and cost-effective. Lateral flow assays (LFAs) are a pivotal technology in POCT due to their simplicity, rapidity, and ease of use. This review synthesizes data from 78 peer-reviewed studies published between 2015 and 2024, evaluating advances in nanoparticle-based LFAs for detection of singular or multiplex mycotoxin types. Gold nanoparticles (AuNPs) remain the most widely used, due to their favorable optical and surface chemistry; however, significant progress has also been made with silver nanoparticles (AgNPs), magnetic nanoparticles, quantum dots (QDs), nanozymes, and hybrid nanostructures. The integration of multifunctional nanomaterials has enhanced assay sensitivity, specificity, and operational usability, with innovations including smartphone-based readers, signal amplification strategies, and supplementary technologies such as surface-enhanced Raman spectroscopy (SERS). While most singular LFAs achieved moderate sensitivity (0.001–1 ng/mL), only 6% reached ultra-sensitive detection (<0.001 ng/mL), and no significant improvement was evident over time (ρ = −0.162, p = 0.261). In contrast, multiplex assays demonstrated clear performance gains post-2022 (ρ = −0.357, p = 0.0008), largely driven by system-level optimization and advanced nanomaterials. Importantly, the type of sample matrix (e.g., cereals, dairy, feed) did not significantly influence the analytical sensitivity of singular or multiplex lateral LFAs (Kruskal–Wallis p > 0.05), confirming the matrix-independence of these optimized platforms. While analytical challenges remain for complex targets like fumonisins and deoxynivalenol (DON), ongoing innovations in signal amplification, biorecognition chemistry, and assay standardization are driving LFAs toward becoming reliable, ultra-sensitive, and field-deployable platforms for high-throughput mycotoxin screening in global food safety surveillance. Full article
Show Figures

Graphical abstract

15 pages, 3286 KB  
Article
Enhanced Sensitivity Microfluidic Microwave Sensor for Liquid Characterization
by Kim Ho Yeap, Kai Bor Tan, Foo Wei Lee, Han Kee Lee, Nuraidayani Effendy, Wei Chun Chin and Pek Lan Toh
Processes 2025, 13(7), 2183; https://doi.org/10.3390/pr13072183 - 8 Jul 2025
Viewed by 647
Abstract
This paper presents the development and analysis of a planar microfluidic microwave sensor featuring three circular complementary split-ring resonators (CSRRs) fabricated on an RO3035 substrate. The sensor demonstrates enhanced sensitivity in characterizing liquids contained in a fine glass capillary tube by leveraging a [...] Read more.
This paper presents the development and analysis of a planar microfluidic microwave sensor featuring three circular complementary split-ring resonators (CSRRs) fabricated on an RO3035 substrate. The sensor demonstrates enhanced sensitivity in characterizing liquids contained in a fine glass capillary tube by leveraging a novel configuration: a central 5-split-ring CSRR with a drilled hole to suspend the capillary, flanked by two 2-split-ring CSRRs to improve the band-stop filtering effect. The sensor’s performance is benchmarked against another CSRR-based microwave sensor with a similar configuration. High linearity is observed (R2 > 0.99), confirming its capability for precise ethanol concentration prediction. Compared to the replicated square CSRR design from the literature, the proposed sensor achieves a 35.22% improvement in sensitivity, with a frequency shift sensitivity of 567.41 kHz/% ethanol concentration versus 419.62 kHz/% for the reference sensor. The enhanced sensitivity is attributed to several key design strategies: increasing the intrinsic capacitance by enlarging the effective area and radial slot width to amplify edge capacitive effects, adding more split rings to intensify the resonance dip, placing additional CSRRs to improve energy extraction at resonance, and adopting circular CSRRs for superior electric field confinement. Additionally, the proposed design operates at a lower resonant frequency (2.234 GHz), which not only reduces dielectric and radiation losses but also enables the use of more cost-effective and power-efficient RF components. This advantage makes the sensor highly suitable for integration into portable and standalone sensing platforms. Full article
(This article belongs to the Special Issue Development of Smart Materials for Chemical Sensing)
Show Figures

Figure 1

Back to TopTop