Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,709)

Search Parameters:
Keywords = liquid–liquid diffusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 888 KB  
Article
Experimental Study on Laser-Controlled Explosive Welding of Microscale Metallic Foils Driven by Energetic Materials
by Xiaojun Ye, Dongxian Ye, Yanshu Fu, Penglong Zhao, Xianfeng Xiao, Daomin Shi and Rui Zhang
Materials 2026, 19(3), 527; https://doi.org/10.3390/ma19030527 - 28 Jan 2026
Abstract
In response to the challenge of achieving highly reliable interface fabrication in the fields of microelectronics and micro-electromechanical system (MEMS) packaging, this study harnesses the superior characteristics of solid-state bonding inherent in explosive welding (EXW) technology. This study investigates the precise EXW of [...] Read more.
In response to the challenge of achieving highly reliable interface fabrication in the fields of microelectronics and micro-electromechanical system (MEMS) packaging, this study harnesses the superior characteristics of solid-state bonding inherent in explosive welding (EXW) technology. This study investigates the precise EXW of milligram-scale metallic foils by employing focused laser energy to control the explosion behavior of liquid energetic materials, thereby generating shockwaves that induce high-velocity oblique collisions between metallic foils and base plates. Laser-focused energy was utilized to regulate energetic materials for conducting precision EXW experiments on Al/Cu couples. The technical feasibility and interfacial quality of this method for fabricating Al/Cu bonding interfaces were systematically evaluated through in situ observation of the dynamic welding process, comprehensive analysis of interfacial microstructures, and numerical simulations. The results reveal distinct Al/Cu elemental diffusion at the bonding interface, confirming the technical viability of the approach. However, an unloading rebound phenomenon is observed at the interface, which is inherently associated with the dynamic impact process, indicating the need for further optimization in the precise control of impact loading. Full article
(This article belongs to the Section Metals and Alloys)
21 pages, 4553 KB  
Article
Removal Dynamics of Water Droplets in the Orientated Gas Flow Channel of Proton Exchange Membrane Fuel Cells
by Dan Wang, Song Yang, Ping Sun, Xiqing Cheng, Huili Dou, Wei Dong, Zezhou Guo and Xia Sheng
Energies 2026, 19(3), 645; https://doi.org/10.3390/en19030645 - 26 Jan 2026
Abstract
Understanding the dynamic characteristics of droplets in the orientated flow channels of Proton Exchange Membrane Fuel Cells (PEMFCs) is crucial for their effective heat and water management and bipolar plate design. Therefore, the transient transport dynamics of liquid water within orientated gas flow [...] Read more.
Understanding the dynamic characteristics of droplets in the orientated flow channels of Proton Exchange Membrane Fuel Cells (PEMFCs) is crucial for their effective heat and water management and bipolar plate design. Therefore, the transient transport dynamics of liquid water within orientated gas flow channels (OGFCs) of PEMFCs are investigated, and a two-phase model based on the volume of fluid (VOF) method is established in the current study. Moreover, the impacts of the size of droplets and the geometrical parameters of baffles on the removal dynamics of liquid water are examined. The results show that baffles effectively promote droplet breakup and accelerate their detachment from the Gas Diffusion Layer (GDL) surface by increasing flow instability and local shear forces. The morphology of water is altered by the high velocity of gaseous flow, which can break up into several smaller droplets and distribute them on the surface of GDL by the gas flow. The shape of the liquid water film changes from a regular cuboid to a big droplet due to the surface tension of the liquid water droplets and the hydrophobicity of the GDL surfaces. Increasing the baffle height can reduce the time needed for the removal of droplets. With the increase in L1* from 0.25 to 0.75, the drainage time decreases slightly; however, for L1* increasing from 0.75 to 1.25, the drainage time remains almost the same. The impacts of different leeward lengths, L2*, on the water coverage ratio and pressure drop are minor. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

13 pages, 1249 KB  
Article
Optimization of Efficient Tungsten Extraction Process from Wolframite by Na2CO3 Alkaline Melting
by Yang Zheng, Liwen Zhang, Hailong Bai and Xiaoli Xi
Minerals 2026, 16(2), 126; https://doi.org/10.3390/min16020126 - 24 Jan 2026
Viewed by 127
Abstract
Tungsten is a critical metal for advanced industrial applications, yet its supply is challenged by the depletion of high-grade ores. This study presents a comprehensive optimization and mechanistic analysis of the alkaline fusion process for extracting tungsten from wolframite ((Fe,Mn)WO4) using [...] Read more.
Tungsten is a critical metal for advanced industrial applications, yet its supply is challenged by the depletion of high-grade ores. This study presents a comprehensive optimization and mechanistic analysis of the alkaline fusion process for extracting tungsten from wolframite ((Fe,Mn)WO4) using sodium carbonate (Na2CO3). Experimental investigations systematically evaluated the effects of alkali-to-ore ratio, reaction temperature (650–1000 °C), and reaction duration (30–270 min). Optimal conditions were established at a 2:1 Na2CO3-to-ore molar ratio, a reaction temperature of 750 °C, and a holding time of 30 min, achieving a tungsten extraction efficiency exceeding 99.9%. This represents a significant improvement in energy and process efficiency over conventional methods. A novel kinetic analysis reveals a two-stage reaction mechanism, transitioning from a slow, diffusion-controlled solid-state reaction (Ea = 243 kJ/mol) to a rapid, autocatalytic liquid-phase reaction (Ea = 212 kJ/mol) upon the formation of a Na2WO4–Na2CO3 eutectic above approximately 590 °C. The optimal temperature of 750 °C is rationalized as the point that ensures operation within this kinetically favorable liquid-phase regime. Furthermore, a thermochemical analysis of ore impurities indicates that silicon, lead, sulfur, and calcium are effectively sequestered into the slag phase as stable silicates, insoluble lead compounds, and sulfates, highlighting an intrinsic purification benefit. X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses confirmed minimal residual tungsten in the processed slag. This streamlined process, supported by a robust mechanistic understanding, reduces alkaline consumption, shortens reaction times, and maintains high yields, offering a sustainable and efficient pathway for leveraging declining wolframite resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

19 pages, 3198 KB  
Article
Interface-Engineered Zn@TiO2 and Ti@ZnO Nanocomposites for Advanced Photocatalytic Degradation of Levofloxacin
by Ishita Raval, Atindra Shukla, Vimal G. Gandhi, Khoa Dang Dang, Niraj G. Nair and Van-Huy Nguyen
Catalysts 2026, 16(1), 109; https://doi.org/10.3390/catal16010109 - 22 Jan 2026
Viewed by 97
Abstract
The extensive consumption of freshwater resources and the continuous discharge of pharmaceutical residues pose serious risks to aquatic ecosystems and public health. In this study, pristine ZnO, TiO2, Zn@TiO2, and Ti@ZnO nanocomposites were synthesized via a precipitation-assisted solid–liquid interference [...] Read more.
The extensive consumption of freshwater resources and the continuous discharge of pharmaceutical residues pose serious risks to aquatic ecosystems and public health. In this study, pristine ZnO, TiO2, Zn@TiO2, and Ti@ZnO nanocomposites were synthesized via a precipitation-assisted solid–liquid interference method and systematically evaluated for the photocatalytic degradation of the antibiotic levofloxacin under UV and visible light irradiation. The structural, optical, and surface properties of the synthesized materials were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), UV–visible diffuse reflectance spectroscopy (UV–DRS), and X-ray photoelectron spectroscopy (XPS). XRD analysis confirmed the crystalline nature of all samples, while SEM images revealed spherical and agglomerated morphologies. Photocatalytic experiments were conducted using a 50-ppm levofloxacin solution with a catalyst dosage of 1 g L−1. Pristine ZnO exhibited limited visible-light activity (33.81%) but high UV-driven degradation (92.98%), whereas TiO2 showed comparable degradation efficiencies under UV (78.6%) and visible light (78.9%). Notably, Zn@TiO2 nanocomposites demonstrated superior photocatalytic performance, achieving over 90% and near 70% degradation under both UV and visible light, respectively, while Ti@ZnO composites exhibited less than 60% degradation. The enhanced activity of Zn@TiO2 is attributed to improved interfacial charge transfer, suppressed electron–hole recombination, and extended light absorption. These findings highlight Zn@TiO2 nanocomposites as promising photocatalysts for efficient treatment of pharmaceutical wastewater under dual-light irradiation. Full article
Show Figures

Graphical abstract

17 pages, 3399 KB  
Article
A STEM-Based Methodology for Designing and Validating a Cannabinoid Extraction Device: Integrating Drying Kinetics and Quality Function Deployment
by Alfredo Márquez-Herrera, Juan Reséndiz-Muñoz, José Luis Fernández-Muñoz, Mirella Saldaña-Almazán, Blas Cruz-Lagunas, Tania de Jesús Adame-Zambrano, Valentín Álvarez-Hilario, Jorge Estrada-Martínez, María Teresa Zagaceta-Álvarez and Miguel Angel Gruintal-Santos
AgriEngineering 2026, 8(1), 39; https://doi.org/10.3390/agriengineering8010039 - 22 Jan 2026
Viewed by 62
Abstract
Projects integrating Science, Technology, Engineering, and Mathematics (STEM) are essential to interdisciplinary research. This study presents a STEM (Science, Technology, Engineering, and Mathematics) methodology with the primary objective of designing, constructing, and validating a functional cannabinoid extraction device. To inform the device’s drying [...] Read more.
Projects integrating Science, Technology, Engineering, and Mathematics (STEM) are essential to interdisciplinary research. This study presents a STEM (Science, Technology, Engineering, and Mathematics) methodology with the primary objective of designing, constructing, and validating a functional cannabinoid extraction device. To inform the device’s drying parameters, the dehydration kinetics of female hemp buds or flowering buds (FHB) were first analyzed using infrared drying at 100 °C for different durations. The plants were cultivated and harvested in accordance with good agricultural practices using Dinamed CBD Autoflowering seeds. The FHB were harvested and prepared by manually separating them from the stems and leaves. Six 5 g samples were prepared, each with a slab geometry of varying surface area and thickness. Two of these samples were ground: one into a fine powder and the other into a coarse powder. Mathematical fits were obtained for each resulting curve using either an exponential decay model or the logarithmic equation yt=Aekt+y0 calculate the equilibrium moisture (mE). The Moisture Rate (MR) was calculated, and by modelling with the logarithmic equation, the constant k and the effective diffusivity (Deff) were determined with the analytical solution of Fick’s second law. The Deff values (ranging from 10−7 to 10−5) were higher than previously reported. The coarsely ground powder sample yielded the highest k and Deff values and was selected for oil extraction. The device was then designed using Quality Function Deployment (QFD), specifically the House of Quality (HoQ) matrix, to systematically translate user requirements into technical specifications. A 200 g sample of coarsely ground, dehydrated FHB was prepared for ethanol extraction. Chemical results obtained by Liquid Chromatography coupled with Photodiode Array Detection (LC-PDA) revealed the presence of THC, CBN, CBC, and CBG. The extraction device design was validated using previous results showing the presence of CBD and CBDA. The constructed device successfully extracted cannabinoids, including Δ9-THC, CBG, CBC, and CBN, from coarsely ground FHB, validating the integrated STEM approach. This work demonstrates a practical framework for developing accessible agro-technical devices through interdisciplinary collaboration. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

23 pages, 7133 KB  
Article
Energy Transfer Characteristics of Surface Vortex Heat Flow Under Non-Isothermal Conditions Based on the Lattice Boltzmann Method
by Qing Yan, Lin Li and Yunfeng Tan
Processes 2026, 14(2), 378; https://doi.org/10.3390/pr14020378 - 21 Jan 2026
Viewed by 124
Abstract
During liquid drainage from intermediate vessels in various industrial processes such as continuous steel casting, aircraft fuel supply, and chemical separation, free-surface vortices commonly occur. The formation and evolution of these vortices not only entrain surface slag and gas, but also lead to [...] Read more.
During liquid drainage from intermediate vessels in various industrial processes such as continuous steel casting, aircraft fuel supply, and chemical separation, free-surface vortices commonly occur. The formation and evolution of these vortices not only entrain surface slag and gas, but also lead to deterioration of downstream product quality and abnormal equipment operation. The vortex evolution process exhibits notable three-dimensional unsteadiness, multi-scale turbulence, and dynamic gas–liquid interfacial changes, accompanied by strong coupling effects between temperature gradients and flow field structures. Traditional macroscopic numerical models show clear limitations in accurately capturing these complex physical mechanisms. To address these challenges, this study developed a mesoscopic numerical model for gas-liquid two-phase vortex flow based on the lattice Boltzmann method. The model systematically reveals the dynamic behavior during vortex evolution and the multi-field coupling mechanism with the temperature field while providing an in-depth analysis of how initial perturbation velocity regulates vortex intensity and stability. The results indicate that vortex evolution begins near the bottom drain outlet, with the tangential velocity distribution conforming to the theoretical Rankine vortex model. The vortex core velocity during the critical penetration stage is significantly higher than that during the initial depression stage. An increase in the initial perturbation velocity not only enhances vortex intensity and induces low-frequency oscillations of the vortex core but also markedly promotes the global convective heat transfer process. With regard to the temperature field, an increase in fluid temperature reduces the viscosity coefficient, thereby weakening viscous dissipation effects, which accelerates vortex development and prolongs drainage time. Meanwhile, the vortex structure—through the induction of Taylor vortices and a spiral pumping effect—drives shear mixing and radial thermal diffusion between fluid regions at different temperatures, leading to dynamic reconstruction and homogenization of the temperature field. The outcomes of this study not only provide a solid theoretical foundation for understanding the generation, evolution, and heat transfer mechanisms of vortices under industrial thermal conditions, but also offer clear engineering guidance for practical production-enabling optimized operational parameters to suppress vortices and enhance drainage efficiency. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 1467 KB  
Article
Integrated Biomimetic 2D-LC and Permeapad® Assay for Profiling the Transdermal Diffusion of Pharmaceutical Compounds
by Ilaria Neri, Craig Stevens, Giacomo Russo and Lucia Grumetto
Molecules 2026, 31(2), 379; https://doi.org/10.3390/molecules31020379 - 21 Jan 2026
Viewed by 101
Abstract
A comprehensive two-dimensional liquid chromatography platform (LC × LC) was developed and validated for dermal permeability studies. In this implementation, the two separation dimensions were applied to mimic the layered structure of human skin: a ceramide-like stationary phase in the first dimension ( [...] Read more.
A comprehensive two-dimensional liquid chromatography platform (LC × LC) was developed and validated for dermal permeability studies. In this implementation, the two separation dimensions were applied to mimic the layered structure of human skin: a ceramide-like stationary phase in the first dimension (1D) to simulate the lipid-rich epidermis, and an immobilized artificial membrane (IAM) phase in the second (2D) to emulate the dermis. Experimental conditions were optimised to reflect the microenvironment of the in vivo skin. For validation purposes, 43 pharmaceutical and cosmetic compounds whose transdermal permeability coefficients (log Kp) were known from the scientific literature were selected as model solutes. A good degree of separation was achieved across the whole dataset, and affinity profiles correlated with transdermal passage properties, suggesting that retention within specific chromatographic ranges may be predictive of skin permeation. To complement this approach, mass diffusion measurements were also conducted using Permeapad® 96-well plates and LC was performed on a narrow bore column in MS-friendly conditions. These log Kp values were compared against both in vivo and chromatographic retention data. The combined use of these techniques offers a strategic framework for profiling new chemical entities for their dermal absorption in a manner that is both ethically compliant and eco-sustainable. Full article
(This article belongs to the Special Issue Recent Developments in Chromatographic Applications in Medicine)
Show Figures

Figure 1

20 pages, 4673 KB  
Review
Spiral-Grating Tapered Gold Tip Used for Micro-Nanoscale Multi-Functional Sensing
by Rongtao Huang, Yuxin Chen and Zhi-Yuan Li
Sensors 2026, 26(2), 704; https://doi.org/10.3390/s26020704 - 21 Jan 2026
Viewed by 79
Abstract
Optical fiber surface plasmon resonance (SPR) sensing, as a label-free, highly sensitive, rapid-response and in situ detection technology, has demonstrated significant utility in various physical, chemical and biological detection applications. This paper focuses on a fiber-integrated microscale spiral-grating tapered gold tip SPR sensor. [...] Read more.
Optical fiber surface plasmon resonance (SPR) sensing, as a label-free, highly sensitive, rapid-response and in situ detection technology, has demonstrated significant utility in various physical, chemical and biological detection applications. This paper focuses on a fiber-integrated microscale spiral-grating tapered gold tip SPR sensor. We first introduce the working principle and sensing capability with high space–time resolution of this SPR microsensor. Then we provide a comprehensive description of its application in the study on the important fundamental scientific issue of liquid–liquid diffusion. Finally, we demonstrate the application of the spiral-grating tapered gold tip to plasmonic enhanced fluorescence and scanning near-field optical microscopy. By systematically summarizing the excellent multifunctional sensing performance of the microscale spiral-grating tapered gold tip, this paper aims to provide new optical schemes and tools for the study on complex physicochemical processes and light-matter interactions at microscale and nanoscale. Full article
(This article belongs to the Special Issue Nanophotonic Materials and Sensor Devices)
Show Figures

Figure 1

23 pages, 2250 KB  
Article
MHY498 Nanosuspensions for Improved Topical Drug Delivery: Understanding of Its Solubility Behavior in DEGME + Water Mixtures and Preparation of Nanosuspension Using Box–Behnken Design
by Eun-Sol Ha, Ha Nim Lee, Seon-Kwang Lee, Ji-Su Jeong, Jeong-Soo Kim, Hyung Ryong Moon, In-hwan Baek, Heejun Park and Min-Soo Kim
Pharmaceutics 2026, 18(1), 127; https://doi.org/10.3390/pharmaceutics18010127 - 20 Jan 2026
Viewed by 291
Abstract
Background/Objectives: MHY498, a tyrosinase inhibitor, exhibits poor water solubility, which limits its topical delivery. Despite the importance of solubility data in rational formulation design, comprehensive information on its solubility behavior in various solvents and across a range of temperatures remains limited. Thus, [...] Read more.
Background/Objectives: MHY498, a tyrosinase inhibitor, exhibits poor water solubility, which limits its topical delivery. Despite the importance of solubility data in rational formulation design, comprehensive information on its solubility behavior in various solvents and across a range of temperatures remains limited. Thus, this study aimed to systematically evaluate the solubility characteristics of MHY498 and to develop a nanosuspension formulation using an antisolvent precipitation approach to facilitate the development of an optimized topical formulation. Methods: In this study, we measured the solubility of MHY498 in various monosolvents and diethylene glycol monoethyl ether (DEGME) + water solvent mixtures at 293.15–313.15 K using a solid–liquid equilibrium technique. Based on these solubility data, MHY498 nanosuspensions were prepared via antisolvent precipitation guided by a Box–Behnken design matrix. In vitro skin permeability was also assessed using a Franz diffusion cell system to assess the topical delivery potential of the MHY498 nanosuspensions. Results: Among the investigated monosolvents, MHY498 exhibited the highest solubility in dimethylformamide, dimethylacetamide, DEGME, while the lowest solubility was observed in water. The solubility increased with temperature and DEGME content in solvent mixtures, and the experimental data were well described by thermodynamic and semi-empirical models, indicating an endothermic and spontaneous dissolution process. Solvent–solute interaction analysis revealed that hydrogen-bonding and nonspecific polarity interactions played key roles in enhancing MHY498 solubility. All nanosuspensions prepared within the design space exhibited particle sizes below 150 nm, and the optimized formulation achieved an average particle size of 28.1 nm. The optimized nanosuspension demonstrated a 3.3-fold increase in the cumulative permeated amounts compared with the conventional microsuspension. Conclusions: These findings demonstrate that a rational solvent selection strategy based on thermodynamic solubility analysis and antisolvent precipitation enables effective nanosuspension formulation of MHY498. The DEGME–water system was identified as a formulation-relevant solvent environment that supports both adequate drug solubilization and reproducible formation of nanosized particles. The resulting nanosuspension exhibited favorable particle size characteristics and enhanced formulation feasibility for topical applications. Therefore, it was shown that the developed nanosuspension system, established through a solubility-driven systematic approach, represents a promising strategy for improving topical delivery of MHY498. Full article
(This article belongs to the Special Issue Methods of Potentially Improving Drug Permeation and Bioavailability)
Show Figures

Figure 1

26 pages, 3890 KB  
Article
An Integrated Leach–Extract–Strip Process for Yttrium Recovery from Spent Fluorescent Lamps: Kinetic Assessment and Solid–Liquid Extraction with D2EHPA-Impregnated XAD-7
by Pedro Adrián Martínez-Montoya, Mónica Corea-Téllez, Ricardo Gerardo Sánchez-Alvarado, Teresita del Refugio Jiménez-Romero, Jorge Luis Gutiérrez-Estrada, Margarita García-Hernández and Angel de Jesús Morales-Ramírez
Recycling 2026, 11(1), 22; https://doi.org/10.3390/recycling11010022 - 19 Jan 2026
Viewed by 244
Abstract
Growing demand for rare earth elements (REEs) necessitates the development of efficient recycling strategies from secondary sources. This work presents a complete hydrometallurgical process for recovering yttrium (Y) from spent fluorescent lamps, emphasizing the efficient coupling of a conventional acid leaching with a [...] Read more.
Growing demand for rare earth elements (REEs) necessitates the development of efficient recycling strategies from secondary sources. This work presents a complete hydrometallurgical process for recovering yttrium (Y) from spent fluorescent lamps, emphasizing the efficient coupling of a conventional acid leaching with a solid–liquid extraction system. Multi-stage sulfuric acid leaching (2 M, 65 °C, an S/L ratio of 0.25 g/L) achieved a cumulative yttrium dissolution of 71.11% over four stages, with individual stage recoveries (based on initial yttrium content) of 44.2%, 21.56%, 7.19%, and 0.68%. Kinetic and spectroscopic analyses (FTIR, SEM-EDS) revealed that the leaching rate is controlled by diffusion through an in situ formed sulfate-rich layer (CaSO4, Na2SO4), as described by the Z-L-T (Zhuravlev–Leshokin–Templeman) model (Ea = 35.5 kJ mol−1). The resulting leachate was subjected to solid–liquid extraction using Amberlite XAD-7 resin impregnated with D2EHPA. Under optimal conditions, the extraction process was highly efficient, yielding over 99% yttrium recovery at an optimal pH of 0.75 with a low resin dosage of 0.1 g/L. Furthermore, the solvent-impregnated resins exhibited excellent reusability over five consecutive extraction–stripping cycles, maintaining a single-cycle stripping efficiency above 70% and a cumulative recovery exceeding 97%. This study validates the technical feasibility of an integrated leach–extract–strip process based on impregnated resins as an alternative approach for yttrium recycling from electronic waste, potentially supporting the development of a circular economy. Full article
(This article belongs to the Topic Converting and Recycling of Waste Materials)
Show Figures

Graphical abstract

12 pages, 583 KB  
Case Report
Dysphagia After Cosmetic Submandibular Gland Botulinum Neurotoxin Type A Injection: A Case Report
by Seoyon Yang and You Gyoung Yi
Healthcare 2026, 14(2), 235; https://doi.org/10.3390/healthcare14020235 - 17 Jan 2026
Viewed by 151
Abstract
Background: Cosmetic injection of botulinum neurotoxin type A (BoNT/A) into the submandibular glands is increasingly performed to enhance jawline contour. Although generally considered safe, unintended diffusion of the toxin can impair pharyngeal musculature and lead to dysphagia. Severe aspiration-prone dysphagia after esthetic [...] Read more.
Background: Cosmetic injection of botulinum neurotoxin type A (BoNT/A) into the submandibular glands is increasingly performed to enhance jawline contour. Although generally considered safe, unintended diffusion of the toxin can impair pharyngeal musculature and lead to dysphagia. Severe aspiration-prone dysphagia after esthetic submandibular gland injection has rarely been described. Case Presentation: A healthy 37-year-old woman developed acute oropharyngeal dysphagia the day after receiving cosmetic contouring injections with incobotulinumtoxinA (Xeomin®), administered to both submandibular glands (20 units per gland, performed without ultrasound guidance). She presented to our rehabilitation medicine clinic 11 days later with severe difficulty swallowing solids and liquids. Her functional oral intake was severely restricted (Functional Oral Intake Scale [FOIS] score 3), and the Eating Assessment Tool-10 (EAT-10) score was 24. Videofluoroscopic swallowing study (VFSS) demonstrated markedly delayed pharyngeal swallow initiation, reduced palatal elevation, poor airway protection, consistent laryngeal penetration, and silent aspiration of thin liquids (Penetration–Aspiration Scale score 8). She underwent diet modification and structured dysphagia rehabilitation. At three months, repeat VFSS showed substantial improvement, with only occasional penetration of large-volume thin liquids, corresponding to FOIS 5 and EAT-10 score 8. By five months, VFSS confirmed complete resolution of penetration and aspiration with normalization of swallowing physiology, reflected by a FOIS score of 7 and EAT-10 score of 1. Conclusions: This case demonstrates that cosmetic incobotulinumtoxinA injection into the submandibular glands, particularly when performed without ultrasound guidance, can lead to significant oropharyngeal dysphagia. Clinicians performing esthetic lower-face procedures should be aware of this potential complication and ensure timely swallowing evaluation and rehabilitation when symptoms arise. Full article
Show Figures

Figure 1

16 pages, 5511 KB  
Article
Enhancing Lithium Extraction: Effect of Mechanical Activation on the Sulfuric Acid Leaching Behavior of Lepidolite
by Yuik Eom, Laurence Dyer, Aleksandar N. Nikoloski and Richard Diaz Alorro
Minerals 2026, 16(1), 87; https://doi.org/10.3390/min16010087 - 16 Jan 2026
Viewed by 209
Abstract
This study investigated the effect of mechanical activation on the physicochemical properties of lepidolite and the leaching behavior of mechanically activated samples in sulfuric acid (H2SO4). Lepidolite was mechanically activated using a high-energy planetary ball mill (PBM) at 400 [...] Read more.
This study investigated the effect of mechanical activation on the physicochemical properties of lepidolite and the leaching behavior of mechanically activated samples in sulfuric acid (H2SO4). Lepidolite was mechanically activated using a high-energy planetary ball mill (PBM) at 400 RPM with a 20:1 ball-to-feed weight ratio (BFR, g:g) and the samples activated for different durations were characterized for amorphous phase content, particle size, and morphology using various solid analyses. X-ray diffraction (XRD) revealed the progressive amorphization of lepidolite, with the amorphous fraction increased from 34.1% (unactivated) to 81.4% after 60 min of mechanical activation. Scanning electron microscopy (SEM) showed that mechanically activated particles became fluffy and rounded, whereas unactivated particles retained lamellar and angular shapes. The reactivity of minerals after mechanical activation was evaluated through a 2 M H2SO4 leaching test at different leaching temperatures (25–80 °C) and time periods (30–180 min). Although the leaching efficiencies of Li and Al slightly improved at higher leaching temperatures and longer leaching times, the leaching of these metals was primarily governed by the mechanical activation time. The highest Li and Al leaching efficiencies—87.0% for Li and 79.4% for Al—were obtained from lepidolite that was mechanically activated for 60 min under leaching conditions of 80 °C and a 10% (w/v) solid/liquid (S/L) ratio for 30 min. The elemental mapping images of leaching feed and residue produced via energy dispersive spectroscopy (EDS) indicated that unactivated particles in the leaching residue had much higher metal content than mechanically activated particles. Kinetic analysis further suggested that leaching predominantly occurs at mechanically activated sites and the apparent activation energies calculated in this study (<3.1 kJ·mol−1) indicate diffusion-controlled behavior with weak temperature dependence. This result confirmed that mechanical activation significantly improves reactivity and that the residual unleached fraction can be attributed to unactivated particles. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

14 pages, 5336 KB  
Article
Time-Dependent Microstructural Transformation and Interfacial Phase Evolution in TLP Bonding of CM247LC Superalloy
by Jaehui Bang, Hyukjoo Kwon, Taewon Park and Eunkyung Lee
Coatings 2026, 16(1), 121; https://doi.org/10.3390/coatings16010121 - 16 Jan 2026
Viewed by 166
Abstract
The bonding behavior of the Ni-based superalloy CM247LC during transient liquid phase (TLP) bonding is strongly governed by filler metal chemistry, particularly boron activity. In this study, the time-dependent bonding mechanisms of CM247LC joints fabricated using a high-boron MBF-80 filler and a low-boron [...] Read more.
The bonding behavior of the Ni-based superalloy CM247LC during transient liquid phase (TLP) bonding is strongly governed by filler metal chemistry, particularly boron activity. In this study, the time-dependent bonding mechanisms of CM247LC joints fabricated using a high-boron MBF-80 filler and a low-boron MBF-20 filler are systematically compared to clarifying the transition between reaction-dominated brazing and diffusion-assisted TLP bonding. Microstructural analyses reveal that MBF-80 promotes the formation of a persistent, reaction-stabilized interlayer characterized by strong boron localization and the development of boron-rich intermetallic reaction products. These features kinetically suppress diffusion-assisted homogenization and prevent isothermal solidification, resulting in pronounced chemical and mechanical discontinuities across the joint. In contrast, MBF-20 enables progressive boron depletion, suppression of stable intermetallic accumulation, and interfacial smoothing, leading to diffusion-assisted chemical redistribution and partial isothermal solidification. This evolution is accompanied by gradual convergence of hardness profiles toward that of the CM247LC base metal, indicating improved mechanical continuity. These results demonstrate that joint hardness alone is insufficient for evaluating bonding quality in CM247LC. Instead, controlled microstructural evolution governed by low-boron filler chemistry is essential for achieving chemically and mechanically compatible joints. The present work establishes a clear mechanistic link between filler metal composition and bonding behavior, providing guidance for the design of reliable TLP bonding strategies in Ni-based superalloys. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 3923 KB  
Article
Silver-Functionalized Ionic Liquid@MCM-41 Adsorbents for C2H4/C2H6 Separation
by Yelin Yang, Zongxu Wang, Dan Li, Mengyu Ren, Defu Chen and Haifeng Dong
Separations 2026, 13(1), 28; https://doi.org/10.3390/separations13010028 - 13 Jan 2026
Viewed by 189
Abstract
Ionic liquids (ILs) have attracted considerable attention for light olefin separation owing to their negligible vapor pressure, excellent thermal stability, and tunable molecular structures. However, their intrinsically high viscosity severely restricts gas diffusion, leading to poor mass-transfer efficiency and limited separation performance in [...] Read more.
Ionic liquids (ILs) have attracted considerable attention for light olefin separation owing to their negligible vapor pressure, excellent thermal stability, and tunable molecular structures. However, their intrinsically high viscosity severely restricts gas diffusion, leading to poor mass-transfer efficiency and limited separation performance in bulk form. Herein, we report the develop a high-performance adsorbent by immobilizing a silver-functionalized ionic liquid within ordered mesoporous MCM-41 to overcome the diffusion limitations of bulk ILs. The IL@MCM-41 composites were prepared via an impregnation–evaporation strategy, and their mesostructural integrity and textural evolution were confirmed by XRD and N2 sorption analyses. Their C2H4/C2H6 separation performance was subsequently evaluated. The composite with a 70 wt% IL loading achieves a high C2H4 uptake of 25.68 mg/g and a C2H4/C2H6 selectivity of 15.59 in breakthrough experiments (298 K, 100 kPa). X-ray photoelectron spectroscopy results are consistent with the presence of reversible Ag+–π interactions, which governs the selective adsorption of C2H4. Additionally, the composite exhibits excellent thermal stability (up to 570 K) and maintains stable separation performance over 10 adsorption–desorption cycles. These IL@MCM-41 composites have significant potential for designing sorbent materials for efficient olefin/paraffin separation applications. Full article
Show Figures

Figure 1

16 pages, 1958 KB  
Article
Adsorption Laws and Parameters of Composite Pollutants Based on Machine Learning Methods
by Lijuan Wang, Ting Wei, Honglei Ren and Fei Lin
Water 2026, 18(2), 165; https://doi.org/10.3390/w18020165 - 8 Jan 2026
Viewed by 212
Abstract
When considering the adsorption effect, traditional experimental methods have faced significant challenges in obtaining the solute transport parameters for composite pollutants. Based on the adsorption test data of three types of composite pollutants collected from the Web of Science and China National Knowledge [...] Read more.
When considering the adsorption effect, traditional experimental methods have faced significant challenges in obtaining the solute transport parameters for composite pollutants. Based on the adsorption test data of three types of composite pollutants collected from the Web of Science and China National Knowledge Infrastructure databases from 2014 to 2024, this study employed four commonly used machine learning models, that is, Random Forest (RF), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), and Decision Tree (DT) models, to establish adsorption isotherms of pollutants with liquid-phase equilibrium concentration as the horizontal coordinate and solid-phase adsorption capacity as the vertical coordinate, and systematically investigated the adsorption characteristics of combined pollutants in the porous aquifer. Subsequently, the Mean Square Errors (MSEs) and coefficients of determination, two commonly used evaluation metrics for regression models in machine learning, were chosen to estimate the prediction effect of datasets. Combined with the convection–diffusion equation, the adsorption kinetic parameters under the mutual interference of composite pollutants, namely, the retardation factor, were solved. The results show that for the adsorption isotherms of heavy metal composite pollutants, organic composite pollutants, and heavy metal and organic combined composite pollutants, SVM, BPNN, and RF models have the best prediction effect, respectively, and their MSEs are 0.032, 0.001, and 0.018. The adsorption isotherm fitting results indicate that the heavy metal composite pollutants and organic composite pollutants conform to the Freundlich model. The retardation factor of organic composite pollutants is significantly higher than that of heavy metal composite pollutants. Full article
Show Figures

Figure 1

Back to TopTop