The Basic Properties of Tunnel Slags and Their Heavy Metal Leaching Characteristics
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterization
2.3. Acid Generation Potential of Tunnel Slag
2.4. Heavy Metal Speciation and Leaching in Tunnel Slag
3. Results and Discussion
3.1. XRD and XRF
3.2. Acid Generation Potential
3.3. Speciation of Cr, Cu, and Zn
3.4. Influencing Factors of Leaching Concentration of Cr, Cu, and Zn
3.4.1. Particle Size
3.4.2. Leaching Time
3.4.3. Liquid-to-Solid Ratio
3.4.4. pH Value
3.4.5. Temperature
3.5. Release Kinetics of Cr, Cu, and Zn
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Liu, X.; Fu, J.; Yang, J.; Li, L.; Xie, Y. Evaluating the feasibility of slag from slurry shield tunnels as a growth medium for landscaping. J. Air. Waste. Manag. 2022, 72, 455–462. [Google Scholar] [CrossRef] [PubMed]
 - Alnuaim, A.; Abbas, Y.; Khan, M. Sustainable application of processed TBM excavated rock material as green structural concrete aggregate. Constr. Build. Mater. 2021, 274, 121245. [Google Scholar] [CrossRef]
 - Deng, J.; Yao, Y.; Huang, C. Utilization of tunnel waste slag for cement-stabilized base layers in highway engineering. Materials 2024, 17, 4525. [Google Scholar] [CrossRef]
 - Bao, W.; Yin, Y.; Mi, W.; Chen, R.; Lin, X. Assessing performance, economic costs and environmental benefits of high-performance ecological geopolymer concrete incorporating excavated rock and soil from tunnelling, fly ash and slag as reclaimed raw materials. J. Build. Eng. 2024, 95, 110351. [Google Scholar] [CrossRef]
 - Yan, Z.; Liu, D.; Zhao, D.; Wang, Z. Study on key technologies of green and efficient utilization of huge abandoned slag of railway tunnel. Chin. J. Environ. Eng. 2022, 16, 1649–1656. [Google Scholar]
 - Taqa, A.A.; Al-Ansari, M.; Taha, R.; Senouci, A.; Al-Zubi, G.M.; Mohsen, M.O. Performance of concrete mixes containing TBM slag as partial coarse aggregate replacements. Materials 2021, 14, 6263. [Google Scholar] [CrossRef]
 - Tang, Y.; Qiu, W.; Liu, D.; Zhang, W.; Zhang, R. Experimental study on the properties of mortar and concrete made with tunnel slag machine-made Sand. Materials 2022, 15, 4817. [Google Scholar] [CrossRef] [PubMed]
 - Xie, Z.; Lü, X.; Zhang, Y.; Liu, X.; Ma, Y.; Xu, K. Study on mechanical property and breakage behavior of tunnel slag containing weak rocks as road construction material. Constr. Build. Mater. 2024, 411, 134164. [Google Scholar] [CrossRef]
 - Song, W.; Zhu, Z.; Pu, S.; Wan, Y.; Huo, W.; Peng, Y. Preparation and engineering properties of alkali-activated filling grouts for shield tunnel. Constr. Build. Mater. 2022, 314, 125620. [Google Scholar] [CrossRef]
 - Xiang, Y.; Zhao, H.; Hu, D.; Yang, G.; Chen, J.; Xu, W.; Li, H. Influence law and control mechanism of manufactured sand particles derived from tunnel slag on cement hydration. J. Build. Eng. 2024, 92, 109768. [Google Scholar] [CrossRef]
 - Wang, F.; Meng, F.; Feng, T.; Wang, Y.; Jiang, J.; Shi, J. Effect of stone powder content on the mechanical properties and microstructure of tunnel slag aggregate-based concrete. Constr. Build. Mater. 2023, 388, 131692. [Google Scholar] [CrossRef]
 - Wang, F.; Wang, Y.; Meng, F.; Jiang, J.; Sui, S. Study of hydration and hardening behavior of stone powder-modified concrete made with tunnel slag aggregate. J. Therm. Anal. Calorim. 2025, 150, 4001–4009. [Google Scholar] [CrossRef]
 - Huang, H.; Du, C.; Yi, F.; Chen, D.; Zhang, C. Microstructural and mechanical evolution of recycled fiber-reinforced tunnel slag concrete under wet-dry cycles. Sustain. Chem. Pharm. 2025, 43, 101905. [Google Scholar] [CrossRef]
 - Liu, X.; Li, C.; Guo, P.; Wang, L.; Chen, J.; Ma, G.; Wang, Q. Spray-based 3D printed tunnel slag concrete: Evaluation for printability and mechanical performance. Constr. Build. Mater. 2025, 467, 140392. [Google Scholar] [CrossRef]
 - Jing, C.; Shi, W.; Wang, N.; Xue, Z.; Zhao, Q.; Meng, X. Laboratory investigation of solid wastes combined with tunnel slag in cement stabilized base of asphalt pavement. Constr. Build. Mater. 2023, 392, 131807. [Google Scholar] [CrossRef]
 - Kamila, M.; Anna, K. The importance of time and other determinants in the assessment of heavy metals release during solid waste management. Sci. Rep. 2023, 13, 1651. [Google Scholar] [CrossRef]
 - Zhao, B.; Wang, Q.; Qin, L.; Chen, W.; Han, J. Effects of pressurized pretreatment combined with fly ash stabilization on heavy metal leaching in municipal solid waste incineration fly ash. Fuel 2026, 403, 136126. [Google Scholar] [CrossRef]
 - Allahkarami, E.; Ghasemi, M.; Mohebbi-Poorkani, A. Assessment of kinetic models for oxidative leaching of copper and zinc from converter furnace dust: A sustainable approach to metal recovery. Sep. Purif. Technol. 2025, 378, 134512. [Google Scholar] [CrossRef]
 - Ning, J.; Zha, X.; Dong, L.; Dassekpo, J.-B.M.; Xiao, J. Calcium dissolution-induced porosity increase in cement-solidified MSWIFA: Implications for heavy metal leaching behavior. Process Saf. Environ. 2025, 201, 107493. [Google Scholar] [CrossRef]
 - Wang, P.; Sun, Z.; Hu, Y.; Cheng, H. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Sci. Total Environ. 2019, 695, 133893. [Google Scholar] [CrossRef]
 - Liu, B.; Sun, H.J.; Peng, T.J.; Duan, T. Transport and transformation of uraniumand heavy metals from uranium tailings under simulated rain at different pH. Environ. Chem. Lett. 2020, 18, 495–503. [Google Scholar] [CrossRef]
 - Król, A.; Mizerna, K.; Bożym, M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J. Hazard. Mater. 2020, 384, 121502. [Google Scholar] [CrossRef] [PubMed]
 - Wei, L.; Yu, D.; Hao, W.; Hu, Y.; Cheng, H. Potential risk, leaching behavior and mechanism of heavy metals from mine tailings under acid rain. Chemosphere 2024, 350, 140995. [Google Scholar]
 - Dong, Y.B.; Chen, D.N.; Lin, H. The behavior of heavy metal release from sulfide waste rock under microbial action and different environmental factors. Environ. Sci. Pollut. Res. 2022, 29, 75293–75306. [Google Scholar] [CrossRef] [PubMed]
 - He, M.; Ren, Y.; Qu, G.; Li, J.; Jin, C.; Liu, Y.; Kuang, L. Synergistic mechanism of physical chemistry and acid bacteria: Product evolution of sulphides during tunnel mining. Geol. J. 2024, 59, 2304–2318. [Google Scholar] [CrossRef]
 - Yi, X.; Wu, F.; Zhang, J.; Xue, S.; Zhou, M.; Li, X.; Chen, H. Analysis of heavy metal pollution sources caused by sulfide minerals in tunnel waste under photocatalytic oxidation conditions. Environ. Sci. Pollut. Res. 2025, 32, 11550–11561. [Google Scholar] [CrossRef]
 - Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef]
 - H/T 299; Solid Waste Leaching Toxicity Leaching Method Sulfuric Acid Nitric Acid Method. The State Environmental Protection Administration: Beijng, China, 2007.
 - GB 15618; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment and State Administration for Maket Regulation: Beijng, China, 2018.
 - GB 36600; Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land. Ministry of Ecology and Environment and State Administration for Maket Regulation: Beijng, China, 2018.
 - Guo, Y.-G.; Huang, P.; Zhang, W.-G.; Yuan, X.-W.; Fan, F.-X.; Wang, H.-L.; Liu, J.-S.; Wang, Z.-H. Leaching of heavy metals from Dexing copper mine tailings pond. Trans. Nonferr. Metal. Soc. 2013, 23, 3068–3075. [Google Scholar] [CrossRef]
 










| Samples | SiO2 | Al2O3 | K2O | CaO | Na2O | Fe2O3 | SO3 | TiO2 | MnO | Cr2O3 | 
|---|---|---|---|---|---|---|---|---|---|---|
| D1 | 68.66 | 14.19 | 4.80 | 4.99 | 3.17 | 2.10 | 1.00 | 0.29 | 0.09 | 0.01 | 
| D2 | 45.50 | 12.48 | 2.12 | 17.66 | -- | 13.83 | 0.88 | 1.04 | 1.43 | 0.19 | 
| D3 | 56.17 | 17.45 | 3.04 | 7.99 | -- | 8.96 | 0.89 | 0.81 | 0.53 | 0.08 | 
| Samples | Elements | α | β | R2 | 
|---|---|---|---|---|
| D1 | Cr | 5.2255 | 3.3902 | 0.88 | 
| D2 | 6.7111 | 5.8931 | 0.98 | |
| D3 | 7.2348 | 13.8005 | 0.92 | |
| D1 | Cu | 6.6150 | 6.3703 | 0.92 | 
| D2 | 14.2628 | 11.0533 | 0.94 | |
| D3 | 24.6724 | 22.5436 | 0.91 | |
| D1 | Zn | 52.9317 | 40.9499 | 0.93 | 
| D2 | 68.0935 | 57.0786 | 0.90 | |
| D3 | 94.8579 | 67.8676 | 0.90 | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhang, X.; Wang, Y.; Wang, X.; Zhang, L.; Lu, G.; Yue, C. The Basic Properties of Tunnel Slags and Their Heavy Metal Leaching Characteristics. Appl. Sci. 2025, 15, 10916. https://doi.org/10.3390/app152010916
Wang T, Zhang X, Wang Y, Wang X, Zhang L, Lu G, Yue C. The Basic Properties of Tunnel Slags and Their Heavy Metal Leaching Characteristics. Applied Sciences. 2025; 15(20):10916. https://doi.org/10.3390/app152010916
Chicago/Turabian StyleWang, Tianlei, Xiaoxiao Zhang, Yuanbin Wang, Xueping Wang, Lei Zhang, Guanghua Lu, and Changsheng Yue. 2025. "The Basic Properties of Tunnel Slags and Their Heavy Metal Leaching Characteristics" Applied Sciences 15, no. 20: 10916. https://doi.org/10.3390/app152010916
APA StyleWang, T., Zhang, X., Wang, Y., Wang, X., Zhang, L., Lu, G., & Yue, C. (2025). The Basic Properties of Tunnel Slags and Their Heavy Metal Leaching Characteristics. Applied Sciences, 15(20), 10916. https://doi.org/10.3390/app152010916
        
