Advances in Separation and Leaching for Metal Recovery

A special issue of Separations (ISSN 2297-8739). This special issue belongs to the section "Separation Engineering".

Deadline for manuscript submissions: 20 June 2026 | Viewed by 456

Special Issue Editors


E-Mail Website
Guest Editor
School of Metallurgy and Environment, Central South University, Changsha, China
Interests: non-ferrous metallurgy
School of Metallurgy and Environment, Central South University, Changsha 410083, China
Interests: environmental engineering

Special Issue Information

Dear Colleagues,

The sustainable recovery of metals from primary ores, secondary resources, and industrial wastes is critical to address global resource scarcity and advance circular economy goals. This Special Issue on "Advances in Separation and Leaching for Metal Recovery" aims to focus on cutting-edge innovations in separation and leaching technologies to enhance the efficiency, selectivity, and environmental compatibility of metal recovery processes.

With growing demand for critical metals in clean energy technologies and the urgency of reducing the environmental pollution during the processes of metal recycling, this Special Issue seeks to cover the latest developments that combine fundamental research with industrial applications. Topics of interest include, but are not limited to, the following:

  • Development of novel solvents, adsorbents, or membrane materials for selective metal separation;
  • Advanced hydrometallurgical and bioleaching techniques for recovering metals from complex materials (e.g., electronic waste, tailings, and spent catalysts);
  • Hybrid processes integrating leaching, solvent extraction, ion exchange, or precipitation;
  • Innovations in electrochemical and photocatalytic recovery systems;
  • Lifecycle analysis and techno-economic optimization of recovery processes;
  • Mechanistic studies and computational modeling of separation/leaching dynamics.

Dr. Yun Li
Dr. Hui Xu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Separations is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal recovery
  • separation
  • leaching
  • efficiency
  • selectivity
  • sustainable recovery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 2824 KB  
Article
Vanadium, Titanium, and Iron Extraction from Titanomagnetite Ore by Salt Roasting and 21st-Century Solvents
by Emmanuel Anuoluwapo Oke, Johannes Hermanus Potgieter, David Nkhoesa and Lizelle Doreen van Dyk
Separations 2025, 12(10), 285; https://doi.org/10.3390/separations12100285 - 15 Oct 2025
Viewed by 320
Abstract
Vanadium is a strategic metal with critical applications in steel alloys, aerospace, chemical catalysis, and energy storage. However, conventional extraction methods such as high-temperature salt roasting are energy-intensive and environmentally challenging. This study investigated the extraction of V, Ti, and Fe from titanomagnetite [...] Read more.
Vanadium is a strategic metal with critical applications in steel alloys, aerospace, chemical catalysis, and energy storage. However, conventional extraction methods such as high-temperature salt roasting are energy-intensive and environmentally challenging. This study investigated the extraction of V, Ti, and Fe from titanomagnetite ore using aqueous solutions of two ionic liquids (IL), 1-butyl-3-imidazolium hydrogen sulphate ([Bmim][HSO4], and 1-butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF6]) as well as two deep eutectic solvents (DESs) (choline chloride:oxalic acid and choline chloride:succinic acid). Na2CO3 and Na2SO4 roasting were used as benchmarks for comparison purposes. Leaching was performed across a range of concentrations and temperatures, and metal recoveries were quantified by atomic absorption spectroscopy (AAS). Among all methods, ChCl:OA DES achieved the best leaching efficiencies of 97.6% for V, 76.1% for Ti, and 68.8% for Fe at 50% (v/v) and 100 °C, outperforming [Bmim][HSO4] and conventional roasting. Kinetic analysis using the shrinking core model indicated that leaching is predominantly diffusion-controlled, with apparent activation energies of 35.1 kJ/mol for V, 28.3 kJ/mol for Ti, and 29.8 kJ/mol for Fe. The results demonstrate that ChCl:OA DES provides a low-temperature, biodegradable, and cost-effective approach for V, Ti and Fe extraction, offering a sustainable alternative to conventional salt roasting methods. Full article
(This article belongs to the Special Issue Advances in Separation and Leaching for Metal Recovery)
Show Figures

Graphical abstract

Back to TopTop