Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (230)

Search Parameters:
Keywords = liquefied petroleum gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1683 KB  
Article
Optimization of a 100% Product Utilization Process for LPG Separation Based on Distillation-Membrane Technology
by Peigen Zhou, Tong Jing, Jianlong Dai, Jinzhi Li, Zhuan Yi, Wentao Yan and Yong Zhou
Membranes 2026, 16(1), 40; https://doi.org/10.3390/membranes16010040 - 10 Jan 2026
Viewed by 154
Abstract
This study presents the techno-economic optimization of a hybrid distillation-membrane process for the complete fractionation of liquefied petroleum gas (LPG), targeting high-purity propane, n-butane, and isobutane recovery. The process employs an initial distillation column to separate propane (99% purity) from a propane-enriched stream, [...] Read more.
This study presents the techno-economic optimization of a hybrid distillation-membrane process for the complete fractionation of liquefied petroleum gas (LPG), targeting high-purity propane, n-butane, and isobutane recovery. The process employs an initial distillation column to separate propane (99% purity) from a propane-enriched stream, which is subsequently fed to a two-stage membrane system using an MFI zeolite hollow-fiber membrane for n-butane/isobutane separation. Through systematic simulation and sensitivity analysis, different membrane configurations were evaluated. The two-stage process with a partial residue-side reflux configuration demonstrated superior economic performance, achieving a total operating cost of 31.58 USD/h. Key membrane parameters—area, permeance, and separation factor—were optimized to balance separation efficiency with energy consumption and cost. The analysis identified an optimal configuration: a membrane area of 800 m2, an n-butane permeance of 0.9 kg·m−2·h−1, and a separation factor of 40. This setup ensured high n-alkane recovery while effectively minimizing energy use and capital investment. The study concludes that the optimized distillation-membrane hybrid process offers a highly efficient and economically viable strategy for the full utilization of LPG components. Full article
Show Figures

Figure 1

9 pages, 1301 KB  
Proceeding Paper
IoT-Based System for Detecting and Monitoring LPG Leaks in Residential Settings
by E. Freddy Robalino P., Andrés Llerena, Luis Antonio Flores, Fabricio Trujillo, Luigi O. Freire and Fernando Lara
Eng. Proc. 2025, 115(1), 9; https://doi.org/10.3390/engproc2025115009 - 15 Nov 2025
Viewed by 1249
Abstract
This project presents the design and implementation of an IoT-based system for early detection of Liquefied Petroleum Gas (LPG) leaks in residential environments. Three functional prototypes were developed, integrating gas sensors, microcontrollers, actuators, and wireless modules. The system achieved 89.48% service availability and [...] Read more.
This project presents the design and implementation of an IoT-based system for early detection of Liquefied Petroleum Gas (LPG) leaks in residential environments. Three functional prototypes were developed, integrating gas sensors, microcontrollers, actuators, and wireless modules. The system achieved 89.48% service availability and response times under 2 s from leak detection to data storage and visualization. Operating under a distributed architecture, it enables continuous monitoring, automatic shut-off, and real-time alerts. The novelty lies in the applied integration of electronics, embedded systems, and automation into an affordable, replicable solution, that enhances household safety, promotes preventive behavior, and supports the adoption of affordable, replicable technologies in vulnerable domestic settings. Full article
(This article belongs to the Proceedings of The XXXIII Conference on Electrical and Electronic Engineering)
Show Figures

Figure 1

24 pages, 5518 KB  
Article
PropNet-R: A Custom CNN Architecture for Quantitative Estimation of Propane Gas Concentration Based on Thermal Images for Sustainable Safety Monitoring
by Luis Alberto Holgado-Apaza, Jaime Cesar Prieto-Luna, Edgar E. Carpio-Vargas, Nelly Jacqueline Ulloa-Gallardo, Yban Vilchez-Navarro, José Miguel Barrón-Adame, José Alfredo Aguirre-Puente, Dalmiro Ramos Enciso, Danger David Castellon-Apaza and Danny Jesus Saman-Pacamia
Sustainability 2025, 17(21), 9801; https://doi.org/10.3390/su17219801 - 3 Nov 2025
Viewed by 842
Abstract
Liquefied petroleum gas (LPG), composed mainly of propane and butane, is widely used as an energy source in residential, commercial, and industrial sectors; however, its high flammability poses a critical risk in the event of accidental leaks. In Peru, where LPG constitutes the [...] Read more.
Liquefied petroleum gas (LPG), composed mainly of propane and butane, is widely used as an energy source in residential, commercial, and industrial sectors; however, its high flammability poses a critical risk in the event of accidental leaks. In Peru, where LPG constitutes the main domestic energy source, leakage emergencies affect thousands of households each year. This pattern is replicated in developing countries with limited energy infrastructure. Early quantitative detection of propane, the predominant component of Peruvian LPG (~60%), is essential to prevent explosions, poisoning, and greenhouse gas emissions that hinder climate change mitigation strategies. This study presents PropNet-R, a convolutional neural network (CNN) designed to estimate propane concentrations (ppm) from thermal images. A dataset of 3574 thermal images synchronized with concentration measurements was collected under controlled conditions. PropNet-R, composed of four progressive convolutional blocks, was compared with SqueezeNet, VGG19, and ResNet50, all fine-tuned for regression tasks. On the test set, PropNet-R achieved MSE = 0.240, R2 = 0.614, MAE = 0.333, and Pearson’s r = 0.786, outperforming SqueezeNet (MSE = 0.374, R2 = 0.397), VGG19 (MSE = 0.447, R2 = 0.280), and ResNet50 (MSE = 0.474, R2 = 0.236). These findings provide empirical evidence that task-specific CNN architectures outperform generic transfer learning models in thermal image-based regression. By enabling continuous and quantitative monitoring of gas leaks, PropNet-R enhances safety in industrial and urban environments, complementing conventional chemical sensors. The proposed model contributes to the development of sustainable infrastructure by reducing gas-related risks, promoting energy security, and strengthening resilient, safe, and environmentally responsible urban systems. Full article
Show Figures

Figure 1

22 pages, 3030 KB  
Article
Energy and Environmental Impacts of Replacing Gasoline with LPG Under Real Driving Conditions
by Edward Kozłowski, Alfredas Rimkus, Magdalena Zimakowska-Laskowska, Jonas Matijošius, Piotr Wiśniowski, Mateusz Traczyński, Piotr Laskowski and Radovan Madlenak
Energies 2025, 18(20), 5522; https://doi.org/10.3390/en18205522 - 20 Oct 2025
Cited by 2 | Viewed by 2564
Abstract
This study investigates the energy and environmental implications of replacing E10 gasoline with Liquefied Petroleum Gas (LPG) in a Euro 4 passenger car under real-world urban driving conditions. A comparative methodology robust to operating-state distribution was applied, combining portable exhaust gas analysis with [...] Read more.
This study investigates the energy and environmental implications of replacing E10 gasoline with Liquefied Petroleum Gas (LPG) in a Euro 4 passenger car under real-world urban driving conditions. A comparative methodology robust to operating-state distribution was applied, combining portable exhaust gas analysis with on-board diagnostic data to calculate energy-specific emissions per crankshaft revolution and to reconstruct emission surfaces in the load–RPM domain using bilinear interpolation. The study revealed that LPG reduces carbon dioxide emissions by 8.35%, demonstrating a clear climate and energy benefit due to its lower carbon intensity. In comparison, carbon monoxide (+9.5%) and hydrocarbons (+8.3%) increased under low-load and idle conditions. Nitrogen oxides showed only minor differences between the fuels (+1.3%). LPG exhibited a more stable CO2 emission profile, reflecting improved combustion efficiency from an energy perspective, although its performance in terms of incomplete combustion products requires further optimisation. The methodology highlights how linking energy efficiency with pollutant formation provides a comprehensive framework for evaluating alternative fuels in Real Driving Emissions (RDE) tests. The results confirm LPG’s potential to reduce greenhouse gas emissions in transport systems and identify calibration strategies needed to mitigate trade-offs in local pollutant emissions. Full article
(This article belongs to the Special Issue Performance and Emissions of Vehicles and Internal Combustion Engines)
Show Figures

Figure 1

20 pages, 5925 KB  
Article
Functional and Evolutionary Role of Reproductive Hormonal Dysregulation Following Dietary Exposure to Singed Meat
by Prosper Manu Abdulai, Orish Ebere Orisakwe, Costantino Parisi, Rubina Vangone, Corrado Pane, Emidio M. Sivieri, Domenico Pirozzi and Giulia Guerriero
Int. J. Mol. Sci. 2025, 26(19), 9774; https://doi.org/10.3390/ijms26199774 - 8 Oct 2025
Viewed by 1077
Abstract
Consumption of meat singed with non-standard fuels is a common practice in many low- and middle-income settings, yet it may introduce combustion-derived toxicants with serious health consequences. While the toxicological effects of pollutants such as polycyclic aromatic hydrocarbons and heavy metals are well [...] Read more.
Consumption of meat singed with non-standard fuels is a common practice in many low- and middle-income settings, yet it may introduce combustion-derived toxicants with serious health consequences. While the toxicological effects of pollutants such as polycyclic aromatic hydrocarbons and heavy metals are well documented, the specific impact of singed meat consumption on endocrine regulation remains poorly understood. Of particular concern is the reproductive hormonal network, which not only serves as a sensitive biomarker of systemic disruption but also represents an evolutionary safeguard of fertility and generational continuity. Our study addresses this knowledge gap using male Wistar rats fed for 90 days (week 0 to week 12) on diets containing increasing proportions (25%, 50%, 75%) of meat singed with firewood, liquefied petroleum gas (LPG), or tyres. Firewood- and tyre-singed meat induced dose- and source-dependent toxicity, including hepatocellular injury, impaired protein metabolism, elevated blood urea nitrogen and creatinine, organ hypertrophy, and pronounced oxidative stress. Hormonal analysis revealed reduced testosterone alongside increased FSH, LH, and prolactin, indicating hypothalamic–pituitary–gonadal axis disruption and reproductive risk. In contrast, LPG-singed meat caused only minor alterations. These findings highlight reproductive hormones as sensitive biomarkers, underscoring the health risks of singeing practices and their evolutionary implications for fertility and population fitness. Full article
(This article belongs to the Special Issue Hormones: Evolutionary and Functional Role)
Show Figures

Figure 1

18 pages, 5991 KB  
Article
Sustainability Assessment of Rural Biogas Production and Use Through a Multi-Criteria Approach: A Case Study in Colombia
by Franco Hernan Gomez, Nelson Javier Vasquez, Kelly Cristina Torres, Carlos Mauricio Meza and Mentore Vaccari
Sustainability 2025, 17(15), 6806; https://doi.org/10.3390/su17156806 - 26 Jul 2025
Viewed by 3337
Abstract
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels [...] Read more.
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels for cooking and heating in domestic and productive activities poses significant health and environmental risks. This study validated, in three different phases, the sustainability of a model for the production and use of biogas from the treatment of swine-rearing wastewater (WWs) on a community farm: (i) A Multi-Criteria Analysis (MCA), incorporating environmental, social/health, technical, and economic criteria, identified the main weighted criterion to C8 (use of small-scale technologies and low-cost access), with a score of 0.44 points, as well as the Tubular biodigester (Tb) as the most suitable option for the study area, scoring 8.1 points. (ii) Monitoring of the Tb over 90 days showed an average biogas production of 2.6 m3 d−1, with average correlation 0.21 m3 Biogas kg Biomass−1. Using the experimental biogas production rate (k = 0.0512 d−1), the process was simulated with the BgMod model, achieving an average deviation of only 10.4% during the final production phase. (iii) The quantification of benefits demonstrated significant reductions in firewood use: in Scenario S1 (kitchen energy needs), biogas replaced 83.1% of firewood, while in Scenario S2 (citronella essential oil production), the substitution rate was 24.1%. In both cases, the avoided emissions amounted to 0.52 tons of CO2eq per month. Finally, this study proposes a synthesised, community-based rural biogas framework designed for replication in regions with similar socio-environmental, technical, and economic conditions. Full article
Show Figures

Figure 1

11 pages, 1486 KB  
Proceeding Paper
Analysis of Natural Vaporization in LPG Tanks
by Filip Pokorny, Paolo Blecich and Igor Bonefačić
Eng. Proc. 2025, 87(1), 98; https://doi.org/10.3390/engproc2025087098 - 23 Jul 2025
Viewed by 2224
Abstract
Natural vaporization in LPG (liquefied petroleum gas) tanks refers to the process where liquid LPG is converted to vapor naturally due to ambient heat. This natural vaporization process relies on ambient heat from the surroundings, which is transferred through the walls of the [...] Read more.
Natural vaporization in LPG (liquefied petroleum gas) tanks refers to the process where liquid LPG is converted to vapor naturally due to ambient heat. This natural vaporization process relies on ambient heat from the surroundings, which is transferred through the walls of the LPG tank. The natural vaporization rate depends on several factors, such as the ambient temperature, the surface area of the tank in contact with the liquid (i.e., the filling fraction), the exact composition of LPG, and the design and positioning of the LPG tank. When natural vaporization rates cannot meet the gas demand, as in the case of colder climates and large commercial applications, an additional LPG vaporizer will be necessary. The obtained results revealed that pure propane at an operating pressure of 1.75 bar achieves specific vaporization rates per unit of tank surface area of 0.7 kg/h/m2, which decreases to 0.4 and 0.25 kg/h/m2 for LPG mixtures with 20% and 40% butane, respectively. For a lower operating pressure of 1.10 bar, the specific vaporization rate per unit of tank surface area is 1.0 kg/h/m2 for pure propane, 0.85 kg/h/m2 for 20% butane, and 0.70 kg/h/m2 for 40% butane. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

21 pages, 10456 KB  
Article
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
by Gustavo Teodoro Bustamante, Jamil Haddad, Bruno Pinto Braga Guimaraes, Ronny Francis Ribeiro Junior, Frederico de Oliveira Assuncao, Erik Leandro Bonaldi, Luiz Eduardo Borges-da-Silva, Fabio Monteiro Steiner, Jaime Jose de Oliveira Junior and Claudio Inacio de Almeida Costa
Energies 2025, 18(15), 3910; https://doi.org/10.3390/en18153910 - 22 Jul 2025
Cited by 1 | Viewed by 920
Abstract
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered [...] Read more.
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered on a six-compartment skid, it integrates photovoltaic generation, battery storage, and a liquefied petroleum gas generator to emulate typical cogeneration conditions, together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management, following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen, enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility, demonstrating stable hydrogen production, efficient energy management, and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization, including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts. Full article
Show Figures

Figure 1

15 pages, 3070 KB  
Article
Characteristics and Sources of VOCs During a Period of High Ozone Levels in Kunming, China
by Chuantao Huang, Yufei Ling, Yunbo Chen, Lei Tong, Yuan Xue, Chunli Liu, Hang Xiao and Cenyan Huang
Atmosphere 2025, 16(7), 874; https://doi.org/10.3390/atmos16070874 - 17 Jul 2025
Viewed by 1316
Abstract
The increasing levels of ozone pollution have become a significant environmental issue in urban areas worldwide. Previous studies have confirmed that the urban ozone pollution in China is mainly controlled by volatile organic compounds (VOCs) rather than nitrogen oxides. Therefore, a study on [...] Read more.
The increasing levels of ozone pollution have become a significant environmental issue in urban areas worldwide. Previous studies have confirmed that the urban ozone pollution in China is mainly controlled by volatile organic compounds (VOCs) rather than nitrogen oxides. Therefore, a study on the emission characteristics and source analysis of VOCs is important for controlling urban ozone pollution. In this study, hourly concentrations of 57 VOC species in four groups were obtained in April 2022, a period of high ozone pollution in Kunming, China. The ozone formation potential analysis showed that the accumulated reactive VOCs significantly contributed to the subsequent ozone formation, particularly aromatics (44.16%) and alkanes (32.46%). In addition, the ozone production rate in Kunming is mainly controlled by VOCs based on the results of the empirical kinetic modeling approach (KNOx/KVOCs = 0.25). The hybrid single-particle Lagrangian integrated trajectory model and polar coordinate diagram showed high VOC and ozone concentrations from the southwest outside the province (50.28%) and the south in local areas (12.78%). Six factors were obtained from the positive matrix factorization model: vehicle exhaust (31.80%), liquefied petroleum gas usage (24.16%), the petrochemical industry (17.81%), fuel evaporation (11.79%), coal burning (7.47%), and solvent usage (6.97%). These findings underscore that reducing anthropogenic VOC emissions and strengthening controls on the related sources could provide a scientifically robust strategy for mitigating ozone pollution in Kunming. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

21 pages, 2580 KB  
Article
Ultimate Buckling Limit State Assessments of Perforated Panels in Medium-Range Merchant Ships Based on Updated Classification Rules and Nonlinear Finite Element Analysis
by Gitae Kim, Inhwan Cha, Gökhan Tansel Tayyar and Joonmo Choung
J. Mar. Sci. Eng. 2025, 13(7), 1265; https://doi.org/10.3390/jmse13071265 - 29 Jun 2025
Viewed by 736
Abstract
Merchant vessels often feature numerous perforations in their web frames. To enhance the buckling resistance of these perforated panels, it is customary to install local reinforcements around the openings. This research introduces a novel approach that segments perforated panels into separated unstiffened panels [...] Read more.
Merchant vessels often feature numerous perforations in their web frames. To enhance the buckling resistance of these perforated panels, it is customary to install local reinforcements around the openings. This research introduces a novel approach that segments perforated panels into separated unstiffened panels (SUPs) and applies recently updated classification rules for buckling strength assessment, supplemented by inelastic FEA. This research aims to show a case study on how to reduce shipbuilding expenses by conducting a quantitative analysis of the buckling strength of such panels. The study treated perforated panels as separated unstiffened panels (SUPs) in accordance with Common Structural Rules (CSR). The authors examined web frames from various types of carriers, including those for liquefied petroleum gas, containers, products, and crude oil. They gathered data on dimensions, materials, and applied loads for 96 SUPs in total. To assess the buckling strength of these SUPs, IACS rules, eigenvalue finite element analysis (FEA), and inelastic FEA were employed. We performed element size convergence analyses on a square unstiffened panel with simple support on all four edges, ultimately deciding on a 10 mm element size for both eigenvalue and inelastic FEAs. Additionally, inelastic FEAs were performed on the rectangular, unstiffened panels with various aspect ratios, and it was decided to use the average level of initial imperfection for the inelastic FEAs. The SUPs under investigation were classified into Method A and Method B based on CSR recommendations. The ultimate buckling strengths of the categorized SUPs were evaluated by CSR and inelastic FEA. CSR rules provided more conservative ultimate buckling strengths for SUPs corresponding to Method A, while inelastic FEA did for SUPs that were classified into Method B. On the other hand, the inelastic FEAs and CSR rules provided similar ultimate buckling strengths for SUPs requiring Method B. The eigenvalue FEA confirmed that Method B can be an alternative method to inelastic FEA and CSR rules. Significant cost savings were demonstrated by selectively applying CSR and inelastic FEAs for SUPs requiring Method A. The originality of this work lies in its application of the latest classification rule logic, detailed finite element validation using real ship data, and a cost-benefit analysis of reinforcement strategies. Full article
(This article belongs to the Special Issue Data-Driven Methods for Marine Structures)
Show Figures

Figure 1

31 pages, 1775 KB  
Review
Consequence Analysis of LPG-Related Hazards: Ensuring Safe Transitions to Cleaner Energy
by Carolina Ardila-Suarez, Jean-Paul Lacoursière, Gervais Soucy and Bruna Rego de Vasconcelos
Fuels 2025, 6(2), 45; https://doi.org/10.3390/fuels6020045 - 5 Jun 2025
Cited by 2 | Viewed by 8658
Abstract
Countries worldwide are focused on the objective of zero emissions by 2050. However, the accelerated implementation of clean technologies has had some drawbacks, remarkably those related to safety issues. Liquefied petroleum gas (LPG) emerges as a transition fuel in this context, considering the [...] Read more.
Countries worldwide are focused on the objective of zero emissions by 2050. However, the accelerated implementation of clean technologies has had some drawbacks, remarkably those related to safety issues. Liquefied petroleum gas (LPG) emerges as a transition fuel in this context, considering the following two aspects. First, LPG is a fuel that has environmental advantages compared to other fossil fuels, so the extension of coverage as a replacement fuel is a key factor. Second, LPG has a well-developed storage and transportation infrastructure that can be used, sometimes without modifications, for clean fuels, helping their implementation. Therefore, the safety analysis and the study of the consequences related to the hazards of LPG is a current subject that contributes, through all the tools reviewed in this article, to not only reduce the risks of this fuel but also to connect with the safety issues of clean fuels. This review article provides a comprehensive overview through consequence modeling tools, highlighting computational fluid dynamics (CFD) and machine learning to pave the way for the full implementation of clean fuels that will power the future of humanity. Full article
Show Figures

Figure 1

18 pages, 1232 KB  
Article
An EG-Tree Model Incorporating Spatial Heterogeneity for Analyzing Multifactorial Coupling Effects on Carbon Emissions Across Industries and Regions in China
by Jinrui Zang, Xin Hu, Kun Qie, Zian Zhang and Shi Zhang
Atmosphere 2025, 16(6), 663; https://doi.org/10.3390/atmos16060663 - 31 May 2025
Viewed by 649
Abstract
With the proposal of the dual carbon goals, it is of great significance to identify the causes of carbon emissions and reduce carbon emissions directly. There is a lack of analysis on the causes of carbon emissions considering the coupling effect of multiple [...] Read more.
With the proposal of the dual carbon goals, it is of great significance to identify the causes of carbon emissions and reduce carbon emissions directly. There is a lack of analysis on the causes of carbon emissions considering the coupling effect of multiple factors and regional heterogeneity. The causes of carbon emissions are examined from multiple perspectives utilizing the panel data spanning from 1997 to 2022, encompassing 30 provinces in China. To further analyze the causes of carbon emissions, an enhanced feature and regularized gradient boosting tree (EG-Tree) model is constructed, and a scoring method for the tree structure is proposed. The coupling effect of multiple factors are analyzed such as coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, liquefied petroleum gas, natural gas, etc., on the carbon emission intensity of various industries and their regional heterogeneity. The results show that: (1) The EG-Tree model constructed in this study could accurately analyze the causes of carbon emissions under the coupling of multiple factors based on the cumulative iterative feature branching contribution values (impact factors), with an average model fitting precision of 0.30. This means the carbon emission intensity values were predicted by various industries in different regions based on different energy consumption levels and industry-specific carbon emissions, compared with the carbon emission intensity values calculated using the carbon emission measurement dataset. (2) The consumption of coal and coke has a significant impact on the average carbon emission factors of various industries, with values of 7139.95 and 7217.05, respectively. The consumption of natural gas and liquefied petroleum gas has a smaller impact on the average carbon emission intensity of various industries under the EG-Tree model with corresponding carbon emission intensity impact factors of 5057.90 and 2789.57, respectively. (3) The Northeast region is a low-carbon area, while the East region is a high-carbon area, with total carbon emissions of 2,238,646.60 million tons and 5,566,314.00 million tons of CO2, respectively. The Northeast region has the lowest pollution intensity for heating and cooling, with carbon emissions of 155,661.73 million tons of CO2; the industrial carbon emissions in the East region are relatively high at 1,623,835.62 million tons of CO2. The research findings of this study are beneficial for relevant departments to focus on the main impact factors of carbon emissions in different regions and industries, and to develop targeted emission reduction policies. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

13 pages, 2916 KB  
Proceeding Paper
Biogas Production Using Flexible Biodigester to Foster Sustainable Livelihood Improvement in Rural Households
by Charles David, Venkata Krishna Kishore Kolli and Karpagaraj Anbalagan
Eng. Proc. 2025, 95(1), 3; https://doi.org/10.3390/engproc2025095003 - 28 May 2025
Viewed by 1349
Abstract
With the global emphasis on sustainable growth and development, the depletion of natural energy reserves due to reliance on fossil fuels and non-renewable sources remains a critical concern. Despite strides in transitioning to electrical mobility, rural and agricultural communities depend heavily on liquefied [...] Read more.
With the global emphasis on sustainable growth and development, the depletion of natural energy reserves due to reliance on fossil fuels and non-renewable sources remains a critical concern. Despite strides in transitioning to electrical mobility, rural and agricultural communities depend heavily on liquefied petroleum gas and firewood for cooking, lacking viable, sustainable alternatives. This study focuses on community-led efforts to advance biogas adoption, providing an eco-friendly and reliable energy alternative for rural and farming households. By designing and developing balloon-type anaerobic biodigesters, this initiative provides a robust, cost-effective, and scalable method to convert farm waste into biogas for household cooking. This approach reduces reliance on traditional fuels, mitigating deforestation and improving air quality, and generates organic biofertilizer as a byproduct, enhancing agricultural productivity through organic farming. The study focuses on optimizing critical parameters, including the input feed rate, gas production patterns, holding time, biodigester health, gas quality, and liquid manure yield. Statistical tools, such as descriptive analysis, regression analysis, and ANOVA, were employed to validate and predict biogas output data based on experimental and industrial-scale data. Artificial neural networks (ANNs) were also utilized to model and predict outputs, inspired by the information processing mechanisms of biological neural systems. A comprehensive database was developed from experimental and literary data to enhance model accuracy. The results demonstrate significant improvements in cooking practices, health outcomes, economic stability, and solid waste management among beneficiaries. The integration of statistical analysis and ANN modeling validated the biodigester system’s effectiveness and scalability. This research highlights the potential to harness renewable energy to address socio-economic challenges in rural areas, paving the way for a sustainable, equitable future by fostering environmentally conscious practices, clean energy access, and enhanced agricultural productivity. Full article
Show Figures

Figure 1

18 pages, 11801 KB  
Article
The Influence of Ventilation Conditions on LPG Leak Dispersion in a Commercial Kitchen
by Xiongjun Yuan, Xue Li, Yanxia Zhang, Ning Zhou, Bing Chen, Yiting Liang, Chunhai Yang, Weiqiu Huang and Chengye Sun
Energies 2025, 18(11), 2678; https://doi.org/10.3390/en18112678 - 22 May 2025
Viewed by 1037
Abstract
With the extensive use of liquefied petroleum gas (LPG) in the catering industry, leakage explosions have become frequent. This study employs numerical simulations to investigate the diffusion patterns of LPG leakage under various ventilation conditions. The results show that there is a logarithmic [...] Read more.
With the extensive use of liquefied petroleum gas (LPG) in the catering industry, leakage explosions have become frequent. This study employs numerical simulations to investigate the diffusion patterns of LPG leakage under various ventilation conditions. The results show that there is a logarithmic relationship between the wind speed and the volume of a propane gas cloud under natural ventilation. In the wind speed ranges of 1.5 to 3.3 m/s and 7.9 to 10.7 m/s, a small increase in wind speed leads to a significant reduction in gas cloud volume (97.2% and 95.05%, respectively). Under forced ventilation, the volume of the gas cloud decreases by 90.6%, from 6.67 m3 at higher air exchange rates (22.1 and 24.3 times/h), reducing explosion risks. When leakage occurs at the stove, the optimal combination for dispersing the propane combustible gas cloud is window opening at position 1 and fan at position a. The volume of the gas cloud at window position 1 increases exponentially with the distance between the fan and the leak source. The fan is installed within 2.786 m from the leak source to ensure that the gas cloud volume remains below 0.5 m3. These findings provide valuable insights for the design and the optimization of ventilation systems and layouts in commercial kitchens. Full article
Show Figures

Figure 1

27 pages, 3006 KB  
Article
Designing and Modeling Value-Added Production Sharing Contracts (VAPSC): From Offshore Gas to LNG in Lebanon
by Evgenii Marin, Tatiana Ponomarenko and Fatima Dirani
Resources 2025, 14(5), 79; https://doi.org/10.3390/resources14050079 - 16 May 2025
Viewed by 7823
Abstract
This article presents the value-added production-sharing contract (VAPSC), an extension of traditional production-sharing contracts (PSCs), which encompasses raw materials production, subsequent processing, and the final ‘sharing’ of goods. Developing countries often face challenges in oil and gas exploration, production, and sector development, necessitating [...] Read more.
This article presents the value-added production-sharing contract (VAPSC), an extension of traditional production-sharing contracts (PSCs), which encompasses raw materials production, subsequent processing, and the final ‘sharing’ of goods. Developing countries often face challenges in oil and gas exploration, production, and sector development, necessitating new collaborative frameworks between governments, industries, and international companies. The study justifies the economic terms of VAPSC that align with Lebanon’s national regulations, focusing on offshore gas production and the subsequent production and sale of liquefied natural gas (LNG). The research evaluates VAPSC application in Lebanon through a case study involving offshore gas field development, LNG plant construction, and consequent LNG-sharing. Results demonstrate the VAPSC potential to promote petroleum sector development by generating added value for both the state and society, as well as economic efficiency for the contractor. The research contributes to contract theory by introducing VAPSC as a novel framework for integrating hydrocarbon extraction, subsequent processing, and value-added product distribution, offering a replicable model for other resource-rich developing nations. The main findings include the design of a new type of contract—VAPSC—along with an economic-mathematical model for optimizing government-investor partnerships and the definition of key contractual terms. Full article
Show Figures

Figure 1

Back to TopTop