Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (945)

Search Parameters:
Keywords = lined tunnels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4883 KiB  
Article
Analytical Solution for Longitudinal Response of Tunnel Structures Under Strike-Slip Fault Dislocation Considering Tangential Soil–Tunnel Contact Effect and Fault Width
by Helin Zhao, Qingzi Wu, Yao Zeng, Liangkun Zhou and Yumin Wen
Buildings 2025, 15(15), 2748; https://doi.org/10.3390/buildings15152748 - 4 Aug 2025
Abstract
The existence of fault zones in high-intensity earthquake areas has a serious impact on engineering structures, and the longitudinal response of tunnels crossing faults needs further in-depth research. To analyze the tangential contact effect between the surrounding rock and the tunnel lining, and [...] Read more.
The existence of fault zones in high-intensity earthquake areas has a serious impact on engineering structures, and the longitudinal response of tunnels crossing faults needs further in-depth research. To analyze the tangential contact effect between the surrounding rock and the tunnel lining, and the axial deformation characteristics of the tunnel structure, tangential foundation springs were introduced and a theoretical model for the longitudinal response of the tunnel under fault dislocation was established. Firstly, the tunnel was simplified as a finite-length beam. The normal and tangential springs were taken to represent the interaction between the soil and the lining. The fault’s free-field displacement was applied at the end of the normal foundation spring to simulate fault dislocation, and the differential equation for the longitudinal response of the tunnel structure was obtained. The analytical solution of the structural response was obtained using the Green’s function method. Then, the three-dimensional finite difference method was used to verify the effectiveness of the analytical model in this paper. The results show that the tangential contact effect between the surrounding rock and the lining has a significant impact on the longitudinal response of the tunnel structure. Ignoring this effect leads to an error of up to 35.33% in the peak value of the structural bending moment. Finally, the influences of the width of the fault zone, the soil stiffness of the fault zone, and the stiffness of the tunnel lining on the longitudinal response of the tunnel were explored. As the fault width increases, the internal force of the tunnel structure decreases. Increasing the lining concrete grade leads to an increase in the internal force of the structure. The increase in the elastic modulus of the surrounding rock in the fault area reduces the bending moment and shear force of the structure and increases the axial force. The research results can provide a theoretical basis for the anti-dislocation design of tunnels crossing faults. Full article
(This article belongs to the Special Issue New Challenges of Underground Structures in Earthquake Engineering)
Show Figures

Figure 1

25 pages, 5914 KiB  
Article
Numerical Simulation of Surrounding Rock Vibration and Damage Characteristics Induced by Blasting Construction in Bifurcated Small-Spacing Tunnels
by Mingshe Sun, Yantao Wang, Guangwei Dai, Kezhi Song, Xuyang Xie and Kejia Yu
Buildings 2025, 15(15), 2737; https://doi.org/10.3390/buildings15152737 - 3 Aug 2025
Abstract
The stability of the intermediate rock wall in the blasting construction of bifurcated small-spacing tunnels directly affects the construction safety of the tunnel structure. Clarifying the damage characteristics of the intermediate rock wall has significant engineering value for ensuring the safe and efficient [...] Read more.
The stability of the intermediate rock wall in the blasting construction of bifurcated small-spacing tunnels directly affects the construction safety of the tunnel structure. Clarifying the damage characteristics of the intermediate rock wall has significant engineering value for ensuring the safe and efficient construction of bifurcated tunnels. Based on the Tashan North Road Expressway Tunnel Project, this paper investigated the damage characteristics of the intermediate rock wall in bifurcated tunnels under different blasting construction schemes, using numerical simulation methods to account for the combined effects of in situ stress and blasting loads. The results were validated using comparisons with the measured damage depth of the surrounding rock in the ramp tunnels. The results indicate that the closer the location is to the starting point of the bifurcated tunnel, the thinner the intermediate rock wall and the more severe the damage to the surrounding rock. When the thickness of the intermediate rock wall exceeds 4.2 m, the damage zone does not penetrate through the wall. The damage to the intermediate rock wall exhibits an asymmetric “U”-shaped distribution, with greater damage on the side of the trailing tunnel at the section of the haunch and sidewall, while the opposite is true at the section of the springing. During each excavation step of the ramp and main-line tunnels, the damage to the intermediate rock wall is primarily induced by blasting loads. As construction progresses, the damage to the rock wall increases progressively under the combined effects of blasting loads and the excavation space effect. In the construction of bifurcated tunnels, the greater the distance between the headings of the leading and trailing tunnels is, the less damage will be inflicted on the intermediate rock wall. Constructing the tunnel with a larger cross-sectional area first will cause more damage to the intermediate rock wall. When the bench method is employed, an increase in the bench length leads to a reduction in the damage to the intermediate rock wall. The findings provide valuable insights for the selection of construction schemes and the protection of the intermediate rock wall when applying the bench method in the construction of bifurcated small-spacing tunnels. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

17 pages, 3061 KiB  
Article
Model-Agnostic Meta-Learning in Predicting Tunneling-Induced Surface Ground Deformation
by Wei He, Guan-Bin Chen, Wenlian Qian, Wen-Li Chen, Liang Tang and Xiangxun Kong
Symmetry 2025, 17(8), 1220; https://doi.org/10.3390/sym17081220 - 2 Aug 2025
Viewed by 126
Abstract
The present investigation presents the field measurement and prediction of tunneling-induced surface ground settlement in Tianjin Metro Line 7, China. The cross-section of a metro tunnel exhibits circular symmetry, thereby making it suitable for tunneling with a circular shield machine. The ground surface [...] Read more.
The present investigation presents the field measurement and prediction of tunneling-induced surface ground settlement in Tianjin Metro Line 7, China. The cross-section of a metro tunnel exhibits circular symmetry, thereby making it suitable for tunneling with a circular shield machine. The ground surface may deform during the tunneling stage. In the early stage of tunneling, few measurement data can be collected. To obtain a better usable prediction model, two kinds of neural networks according to the model-agnostic meta-learning (MAML) scheme are presented. One kind of deep learning strategy is a combination of the Back-Propagation Neural Network (BPNN) and the MAML model, named MAML-BPNN. The other prediction model is a mixture of the MAML model and the Long Short-Term Memory (LSTM) model, named MAML-LSTM. Founded on several measurement datasets, the prediction models of the MAML-BPNN and MAML-LSTM are successfully trained. The results show the present models possess good prediction ability for tunneling-induced surface ground settlement. Based on the coefficient of determination, the prediction result using MAML-LSTM is superior to that of MAML-BPNN by 0.1. Full article
Show Figures

Figure 1

18 pages, 3741 KiB  
Article
The Mechanical Behavior of a Shield Tunnel Reinforced with Steel Plates Under Complex Strata
by Yang Yu, Yazhen Sun and Jinchang Wang
Buildings 2025, 15(15), 2722; https://doi.org/10.3390/buildings15152722 - 1 Aug 2025
Viewed by 75
Abstract
The stability of shield tunnel segmental linings is highly sensitive to the lateral pressure coefficient, especially under weak, heterogeneous, and variable geological conditions. However, the mechanical behavior of steel plate-reinforced linings under such conditions remains insufficiently characterized. This study aims to investigate the [...] Read more.
The stability of shield tunnel segmental linings is highly sensitive to the lateral pressure coefficient, especially under weak, heterogeneous, and variable geological conditions. However, the mechanical behavior of steel plate-reinforced linings under such conditions remains insufficiently characterized. This study aims to investigate the effects of varying lateral pressures on the structural performance of reinforced tunnel linings. To achieve this, a custom-designed full-circumference loading and unloading self-balancing apparatus was developed for scaled-model testing of shield tunnels. The experimental methodology allowed for precise control of loading paths, enabling the simulation of realistic ground stress states and the assessment of internal force distribution, joint response, and load transfer mechanisms during the elastic stage of the structure. Results reveal that increased lateral pressure enhances the stiffness and bearing capacity of the reinforced lining. The presence and orientation of segment joints, as well as the bonding performance between epoxy resin and expansion bolts at the reinforcement interface, significantly influence stress redistribution in steel plate-reinforced zones. These findings not only deepen the understanding of tunnel behavior in complex geological environments but also offer practical guidance for optimizing reinforcement design and improving the durability and safety of shield tunnels. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 3817 KiB  
Article
The Distribution Characteristics of Frost Heaving Forces on Tunnels in Cold Regions Based on Thermo-Mechanical Coupling
by Yujia Sun, Lei Peng and Qionglin Li
Appl. Sci. 2025, 15(15), 8537; https://doi.org/10.3390/app15158537 (registering DOI) - 31 Jul 2025
Viewed by 114
Abstract
To address the freezing damage to tunnel lining caused by frost heaving of the surrounding rock in water-rich tunnels in cold regions, a numerical thermo-mechanical coupling model for tunnel-surrounding rock that considers the anisotropy of frost heave deformation was established by examining overall [...] Read more.
To address the freezing damage to tunnel lining caused by frost heaving of the surrounding rock in water-rich tunnels in cold regions, a numerical thermo-mechanical coupling model for tunnel-surrounding rock that considers the anisotropy of frost heave deformation was established by examining overall frost heaves in a freeze–thaw cycle. Using a COMSOL Multiphysics 6.0 platform and the sequential coupling method, the temperature field evolution of tunnel-surrounding rock, freezing cycle development, and distribution characteristics of the frost heaving force of a tunnel lining under different minimum temperatures, numbers of negative temperature days, frost heave ratios, and anisotropy coefficients of frost heave deformation were systematically simulated. The results revealed that the response of the temperature field of tunnel-surrounding rock to the external temperature varies spatially with time lags, the shallow surface temperatures and the area around the lining fluctuate with the climate, and the temperature of the deep surrounding rock is dominated by the geothermal gradient. The extent of the freezing cycle and the frost heaving force increase significantly when lowering the minimum temperature. The maximum frost heaving force usually occurs in the region of the side wall and the spring line, and tensile stress is prone to be generated at the spring line; the influence of slight fluctuations in the minimum temperature or the short shift in the coldest day on the frost heaving force is limited. A substantial increase in frost heaving force is observed with higher frost heave ratios; for example, an increase from 0.25% to 2.0% results in a 116% rise at the sidewall. Although the increase in the anisotropy coefficient of frost heave deformation does not change the overall distribution pattern of frost heaving force, it can exacerbate the directional concentration of frost heave strain, which can increase the frost heaving force at the periphery of the top arch of the lining. This study revealed the distribution pattern and key influencing factors of the freezing cycle and frost heaving force for tunnels, providing a theoretical basis and data reference for the frost resistance design of tunnels in cold regions. Full article
Show Figures

Figure 1

21 pages, 8015 KiB  
Article
Differential Mechanism of 3D Motions of Falling Debris in Tunnels Under Extreme Wind Environments Induced by a Single Train and by Trains Crossing
by Wei-Chao Yang, Hong He, Yi-Kang Liu and Lun Zhao
Appl. Sci. 2025, 15(15), 8523; https://doi.org/10.3390/app15158523 (registering DOI) - 31 Jul 2025
Viewed by 90
Abstract
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that [...] Read more.
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that alter debris trajectories from free fall. To systematically investigate the aerodynamic differences and underlying mechanisms governing falling debris behavior under these two distinct conditions, a three-dimensional computational fluid dynamics (CFD) model (debris–air–tunnel–train) was developed using an improved delayed detached eddy simulation (IDDES) turbulence model. Comparative analyses focused on the translational and rotational motions as well as the aerodynamic load coefficients of the debris in both single-train and trains-crossing scenarios. The mechanisms driving the changes in debris aerodynamic behavior are elucidated. Findings reveal that under single-train operation, falling debris travels a greater distance compared with trains-crossing conditions. Specifically, at train speeds ranging from 250–350 km/h, the average flight distances of falling debris in the X and Z directions under single-train conditions surpass those under trains crossing conditions by 10.3 and 5.5 times, respectively. At a train speed of 300 km/h, the impulse of CFx and CFz under single-train conditions is 8.6 and 4.5 times greater than under trains-crossing conditions, consequently leading to the observed reduction in flight distance. Under the conditions of trains crossing, the falling debris is situated between the two trains, and although the wind speed is low, the flow field exhibits instability. This is the primary factor contributing to the reduced flight distance of the falling debris. However, it also leads to more pronounced trajectory deviations and increased speed fluctuations under intersection conditions. The relative velocity (CRV) on the falling debris surface is diminished, resulting in smaller-scale vortex structures that are more numerous. Consequently, the aerodynamic load coefficient is reduced, while the fluctuation range experiences an increase. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

18 pages, 2664 KiB  
Article
Analysis of Heat Exchange Efficiency and Influencing Factors of Energy Tunnels: A Case Study of the Torino Metro in Italy
by Mei Yin, Pengcheng Liu and Zhenhuang Wu
Buildings 2025, 15(15), 2704; https://doi.org/10.3390/buildings15152704 - 31 Jul 2025
Viewed by 148
Abstract
Both ground source heat pumps (GSHPs) and energy underground structures are engineered systems that utilize shallow geothermal energy. However, due to the construction complexity and associated costs of energy tunnels, their heat exchange efficiency relative to GSHPs remains a topic worthy of in-depth [...] Read more.
Both ground source heat pumps (GSHPs) and energy underground structures are engineered systems that utilize shallow geothermal energy. However, due to the construction complexity and associated costs of energy tunnels, their heat exchange efficiency relative to GSHPs remains a topic worthy of in-depth investigation. In this study, a thermal–hydraulic (TH) coupled finite element model was developed based on a section of the Torino Metro Line in Italy to analyze the differences in and influencing factors of heat transfer performance between energy tunnels and GSHPs. The model was validated by comparing the outlet temperature curves under both winter and summer loading conditions. Based on this validated model, a parametric analysis was conducted to examine the effects of the tunnel air velocity, heat carrier fluid velocity, and fluid type. The results indicate that, under identical environmental conditions, energy tunnels exhibit higher heat exchange efficiency than conventional GSHP systems and are less sensitive to external factors such as fluid velocity. Furthermore, a comparison of different heat carrier fluids, including alcohol-based fluids, refrigerants, and water, revealed that the fluid type significantly affects thermal performance, with the refrigerant R-134a outperforming ethylene glycol and water in both heating and cooling efficiency. Full article
Show Figures

Figure 1

23 pages, 9610 KiB  
Article
Research on the Design and Application of a Novel Curved-Mesh Circumferential Drainage Blind Pipe for Tunnels in Water-Rich Areas
by Wenti Deng, Xiabing Liu, Shaohui He and Jianfei Ma
Infrastructures 2025, 10(8), 199; https://doi.org/10.3390/infrastructures10080199 - 28 Jul 2025
Viewed by 280
Abstract
To address the issues of low permeability, clogging susceptibility, and insufficient circumferential bearing capacity of traditional drainage blind pipes behind tunnel linings in water-rich areas, this study proposes a novel curved-mesh circumferential drainage blind pipe specifically designed for such environments. First, through engineering [...] Read more.
To address the issues of low permeability, clogging susceptibility, and insufficient circumferential bearing capacity of traditional drainage blind pipes behind tunnel linings in water-rich areas, this study proposes a novel curved-mesh circumferential drainage blind pipe specifically designed for such environments. First, through engineering surveys and comparative analysis, the limitations and application demands of conventional circumferential annular drainage blind pipes in highway tunnels were identified. Based on this, the key parameters of the new blind pipe—including material, wall thickness, and aperture size—were determined. Laboratory tests were then conducted to evaluate the performance of the newly developed pipe. Subsequently, the pipe was applied in a real-world tunnel project, where a construction process and an in-service blockage inspection method for circumferential drainage pipes were proposed. Field application results indicate that, compared to commonly used FH50 soft permeable pipes and F100 semi-split spring pipes, the novel curved-mesh drainage blind pipe exhibits superior circumferential load-bearing capacity, anti-clogging performance, and deformation resistance. The proposed structure provides a total permeable area exceeding 17,500 mm2, three to four times larger than that of conventional drainage pipes, effectively meeting the drainage requirements behind tunnel linings in high-water-content zones. The use of four-way connectors enhanced integration with other drainage systems, and inspection of the internal conditions confirmed that the pipe remained free of clogging and deformation. Furthermore, the curved-mesh design offers better conformity with the primary support and demonstrates stronger adaptability to complex installation conditions. Full article
Show Figures

Figure 1

32 pages, 5087 KiB  
Article
Study on the Deformation Characteristics of the Surrounding Rock and Concrete Support Parameter Design for Deep Tunnel Groups
by Zhiyun Deng, Jianqi Yin, Peng Lin, Haodong Huang, Yong Xia, Li Shi, Zhongmin Tang and Haijun Ouyang
Appl. Sci. 2025, 15(15), 8295; https://doi.org/10.3390/app15158295 - 25 Jul 2025
Viewed by 124
Abstract
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide [...] Read more.
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide structural support design. Field tests and numerical simulations were performed to analyze the distribution of ground stress and the ground reaction curve under varying conditions, including rock type, tunnel spacing, and burial depth. A solid unit–structural unit coupled simulation approach was adopted to derive the two-liner support characteristic curve and to examine the propagation behavior of concrete cracks. The influences of surrounding rock strength, reinforcement ratio, and secondary lining thickness on the bearing capacity of the secondary lining were systematically evaluated. The following findings were obtained: (1) The tunnel group effect was found to be negligible when the spacing (D) was ≥65 m and the burial depth was 1600 m. (2) Both P0.3 and Pmax of the secondary lining increased linearly with reinforcement ratio and thickness. (3) For surrounding rock of grade III (IV), 95% ulim and 90% ulim were found to be optimal support timings, with secondary lining forces remaining well below the cracking stress during construction. (4) For surrounding rock of grade V in tunnels with a burial depth of 200 m, 90% ulim is recommended as the initial support timing. Support timings for tunnels with burial depths between 400 m and 800 m are 40 cm, 50 cm, and 60 cm, respectively. Design parameters should be adjusted based on grouting effects and monitoring data. Additional reinforcement is recommended for tunnels with burial depths between 1000 m and 2000 m to improve bearing capacity, with measures to enhance impermeability and reduce external water pressure. These findings contribute to the safe and reliable design of support structures for deep-buried diversion tunnels, providing technical support for design optimization and long-term operation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 3791 KiB  
Article
Loading Response of Segment Lining with Pea-Gravel Grouting Defects for TBM Tunnel in Transition Zones of Surrounding Rocks
by Qixing Che, Changyong Li, Xiangfeng Wang, Zhixiao Zhang, Yintao He and Shunbo Zhao
Eng 2025, 6(7), 166; https://doi.org/10.3390/eng6070166 - 21 Jul 2025
Viewed by 249
Abstract
Pea-gravel grouting, which fills the gap between the lining of tunnels and the surrounding rock, is crucial for the structural stability and waterproofing of water delivery TBM tunnels. However, it is prone to defects due to complex construction conditions and geological factors. To [...] Read more.
Pea-gravel grouting, which fills the gap between the lining of tunnels and the surrounding rock, is crucial for the structural stability and waterproofing of water delivery TBM tunnels. However, it is prone to defects due to complex construction conditions and geological factors. To provide practical insights for engineers to evaluate grouting quality and take appropriate remedial action during TBM tunnel construction, this paper assesses four types of pea-gravel grouting defects, including local cavities, less density, rich rock powder and rich cement slurry. Detailed numerical simulation models comprising segment lining, pea-gravel grouting and surrounding rock were built using the 3D finite element method to analyze the displacement and stress of the segments at the transition zone between different classes of surrounding rocks, labeled V–IV, V–III and IV–III. The results indicate that a local cavity defect has the greatest impact on the loading response of segment lining, followed by less density, rich rock powder and rich cement slurry defects. Their impact will weaken with better self-support of the surrounding rocks in the order of V–IV, V–III and IV–III. The tensile stress of segment lining is within the limit of concrete cracking for combinations of all four defects when the surrounding rock is of the class IV–III, and it is within this limit for two-defect combinations when the surrounding rock is of classes V–III and V–IV. When three defects or all four defects are present in the pea-gravel grouting, the possibility of segment concrete cracking increases from the transition zone of class V–III surrounding rock to the transition zone of class V–IV surrounding rock. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

25 pages, 8466 KiB  
Article
Influence on Existing Underlying Metro Tunnel Deformation from Small Clear-Distance Rectangular Box Jacking: Monitoring and Simulation
by Chong Ma, Hao Zhou and Baosong Ma
Buildings 2025, 15(14), 2547; https://doi.org/10.3390/buildings15142547 - 19 Jul 2025
Viewed by 275
Abstract
Rectangular box jacking is widely used in densely developed urban areas. However, when conducted with limited clear distance near existing metro tunnels, it introduces considerable structural safety risks. This study investigates a large-section rectangular box jacking project in Suzhou that crosses a double-line [...] Read more.
Rectangular box jacking is widely used in densely developed urban areas. However, when conducted with limited clear distance near existing metro tunnels, it introduces considerable structural safety risks. This study investigates a large-section rectangular box jacking project in Suzhou that crosses a double-line metro tunnel with minimal vertical clear distance. Integrated field monitoring and finite element simulations were conducted to analyze the tunnel’s deformation behavior during various jacking phases. The results show that the upline tunnel experienced greater uplift than the downline tunnel, with maximum vertical displacement occurring directly beneath the jacking axis. The affected zone extended approximately 20 m beyond the pipe gallery boundaries. Both the tunnel vault and ballast bed exhibited vertical uplift, while the hance displaced laterally toward the launching shaft. These deformations showed clear stage-dependent patterns strongly influenced by the relative position of the jacking machine. Numerical simulations demonstrated that doubling the pipe–tunnel clearance reduced the vault displacement by 58.87% (upline) and 51.95% (downline). Increasing the pipe–slurry friction coefficient from 0.1 to 0.3 caused the hance displacement difference to rise from 0.12 mm to 0.36 mm. Further sensitivity analysis reveals that when the jacking machine is positioned directly above the tunnel, grouting pressure is the greatest influence on the structural response and must be carefully controlled. The proposed methodology and findings offer valuable insights for future applications in similar tunnelling projects. Full article
Show Figures

Figure 1

20 pages, 5236 KiB  
Article
Leakage Detection in Subway Tunnels Using 3D Point Cloud Data: Integrating Intensity and Geometric Features with XGBoost Classifier
by Anyin Zhang, Junjun Huang, Zexin Sun, Juju Duan, Yuanai Zhang and Yueqian Shen
Sensors 2025, 25(14), 4475; https://doi.org/10.3390/s25144475 - 18 Jul 2025
Viewed by 350
Abstract
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics [...] Read more.
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics of leakage patterns. To address these limitations, this study proposes a classification method based on XGBoost classifier, integrating both intensity and geometric features. The proposed methodology comprises the following steps: First, a RANSAC algorithm is employed to filter out noise from tunnel objects, such as facilities, tracks, and bolt holes, which exhibit intensity values similar to leakage. Next, intensity features are extracted to facilitate the initial separation of leakage regions from the tunnel lining. Subsequently, geometric features derived from the k neighborhood are incorporated to complement the intensity features, enabling more effective segmentation of leakage from the lining structures. The optimal neighborhood scale is determined by selecting the scale that yields the highest F1-score for leakage across various multiple evaluated scales. Finally, the XGBoost classifier is applied to the binary classification to distinguish leakage from tunnel lining. Experimental results demonstrate that the integration of geometric features significantly enhances leakage detection accuracy, achieving an F1-score of 91.18% and 97.84% on two evaluated datasets, respectively. The consistent performance across four heterogeneous datasets indicates the robust generalization capability of the proposed methodology. Comparative analysis further shows that XGBoost outperforms other classifiers, such as Random Forest, AdaBoost, LightGBM, and CatBoost, in terms of balance of accuracy and computational efficiency. Moreover, compared to deep learning models, including PointNet, PointNet++, and DGCNN, the proposed method demonstrates superior performance in both detection accuracy and computational efficiency. Full article
(This article belongs to the Special Issue Application of LiDAR Remote Sensing and Mapping)
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Experimental Study on Mechanical Differences Between Prefabricated and Cast-In Situ Tunnel Linings Based on a Load-Structure Model
by Li-Ming Wu, Hong-Kun Li, Feng Gao, Zi-Jian Wang, Bin Zhang, Wen-Jie Luo and Jun-Jie Li
Buildings 2025, 15(14), 2522; https://doi.org/10.3390/buildings15142522 - 18 Jul 2025
Viewed by 260
Abstract
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This [...] Read more.
With the accelerated development of urban underground spaces, prefabricated tunnel linings have become a research focus due to their advantages in construction efficiency and cost effectiveness. However, issues such as stress concentration at joints and insufficient overall stability hinder their broader application. This study investigates a cut-and-cover prefabricated tunnel project in the Chongqing High-Tech Zone through scale model tests and numerical simulations to systematically compare the mechanical behaviors of cast-in situ linings and three-segment prefabricated linings under surrounding rock loads. The experimental results show that the ultimate bearing capacity of the prefabricated lining is 15.3% lower than that of the cast-in situ lining, with asymmetric failure modes and cracks concentrated near joint regions. Numerical simulations further reveal the influence of joint stiffness on structural performance: when the joint stiffness is 30 MN·m/rad, the bending moment of the segmented lining decreases by 37.7% compared to the cast-in situ lining, while displacement increments remain controllable. By optimising joint pre-tightening forces and stiffness parameters, prefabricated linings can achieve stability comparable to cast-in situ structures while retaining construction efficiency. This research provides theoretical and technical references for the design and construction of open-cut prefabricated tunnel linings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 5486 KiB  
Article
SE-TransUNet-Based Semantic Segmentation for Water Leakage Detection in Tunnel Secondary Linings Amid Complex Visual Backgrounds
by Renjie Song, Yimin Wu, Li Wan, Shuai Shao and Haiping Wu
Appl. Sci. 2025, 15(14), 7872; https://doi.org/10.3390/app15147872 - 14 Jul 2025
Viewed by 255
Abstract
Traditional manual inspection methods for tunnel lining leakage are subjective and inefficient, while existing models lack sufficient recognition accuracy in complex scenarios. An intelligent leakage identification model adaptable to complex backgrounds is therefore needed. To address these issues, a Vision Transformer (ViT) was [...] Read more.
Traditional manual inspection methods for tunnel lining leakage are subjective and inefficient, while existing models lack sufficient recognition accuracy in complex scenarios. An intelligent leakage identification model adaptable to complex backgrounds is therefore needed. To address these issues, a Vision Transformer (ViT) was integrated into the UNet architecture, forming an SE-TransUNet model by incorporating SE-Block modules at skip connections between the encoder-decoder and the ViT output. Using a hybrid leakage dataset partitioned by k-fold cross-validation, the roles of SE-Block and ViT modules were examined through ablation experiments, and the model’s attention mechanism for leakage features was analyzed via Score-CAM heatmaps. Results indicate: (1) SE-TransUNet achieved mean values of 0.8318 (IoU), 0.8304 (Dice), 0.9394 (Recall), 0.8480 (Precision), 0.9733 (AUC), 0.8562 (MCC), 0.9218 (F1-score), and 6.53 (FPS) on the hybrid dataset, demonstrating robust generalization in scenarios with dent shadows, stain interference, and faint leakage traces. (2) Ablation experiments confirmed both modules’ necessity: The baseline model’s IoU exceeded the variant without the SE module by 4.50% and the variant without both the SE and ViT modules by 7.04%. (3) Score-CAM heatmaps showed the SE module broadened the model’s attention coverage of leakage areas, enhanced feature continuity, and improved anti-interference capability in complex environments. This research may provide a reference for related fields. Full article
Show Figures

Figure 1

22 pages, 7152 KiB  
Article
Comprehensive Substantiation of the Impact of Pre-Support Technology on a 50-Year-Old Subway Station During the Construction of Undercrossing Tunnel Lines
by Bin Zhang, Shaohui He, Jianfei Ma, Jiaxin He, Yiming Li and Jinlei Zheng
Infrastructures 2025, 10(7), 183; https://doi.org/10.3390/infrastructures10070183 - 11 Jul 2025
Viewed by 195
Abstract
Due to the long operation period of Beijing Metro Line 2 and the complex surrounding building environment, this paper comprehensively studied the mechanical properties of new tunnels using close-fitting undercrossing based on pre-support technology. To control structural deformation caused by the expansion project, [...] Read more.
Due to the long operation period of Beijing Metro Line 2 and the complex surrounding building environment, this paper comprehensively studied the mechanical properties of new tunnels using close-fitting undercrossing based on pre-support technology. To control structural deformation caused by the expansion project, methods such as laboratory tests, numerical simulation, and field tests were adopted to systematically analyze the tunnel mechanics during the undercrossing of existing metro lines. First, field tests were carried out on the existing Line 2 and Line 3 tunnels during the construction period. It was found that the close-fitting construction based on pre-support technology caused small deformation displacement in the subway tunnels, with little impact on the smoothness of the existing subway rail surface. The fluctuation range was −1 to 1 mm, ensuring the safety of existing subway operations. Then, a refined finite difference model for the close-fitting undercrossing construction process based on pre-support technology was established, and a series of field and laboratory tests were conducted to obtain calculation parameters. The reliability of the numerical model was verified by comparing the monitored deformation of existing structures with the simulated structural forces and deformations. The influence of construction methods on the settlement changes of existing line tracks, structures, and deformation joints was discussed. The research results show that this construction method effectively controls the settlement deformation of existing lines. The settlement deformation of existing lines is controlled within 1~3 cm. The deformation stress of the existing lines is within the concrete strength range of the existing structure, and the tensile stress is less than 3 MPa. The maximum settlement and maximum tensile stress of the station in the pre-support jacking scheme are −5.27 mm and 2.29 MPa. The construction scheme with pre-support can more significantly control structural deformation, reduce stress variations in existing line structures, and minimize damage to concrete structures. Based on the monitoring data and simulation results, some optimization measures were proposed. Full article
(This article belongs to the Special Issue Recent Advances in Railway Engineering)
Show Figures

Figure 1

Back to TopTop