Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = linear energy transfer value (LET)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 1520 KiB  
Article
Comparative Analysis of Machine and Deep Learning Algorithms for Bragg Peak Estimation in Polymeric Materials for Tissue-Sparing Radiotherapy
by Koray Acici
Polymers 2025, 17(15), 2068; https://doi.org/10.3390/polym17152068 - 29 Jul 2025
Viewed by 228
Abstract
Proton therapy has emerged as a highly precise and tissue-sparing radiotherapy technique, capitalizing on the unique energy deposition pattern of protons characterized by the Bragg peak. Ensuring treatment accuracy relies on calibration phantoms, often composed of tissue-equivalent polymeric materials. This study investigates the [...] Read more.
Proton therapy has emerged as a highly precise and tissue-sparing radiotherapy technique, capitalizing on the unique energy deposition pattern of protons characterized by the Bragg peak. Ensuring treatment accuracy relies on calibration phantoms, often composed of tissue-equivalent polymeric materials. This study investigates the dosimetric behavior of four commonly used polymers—Parylene, Epoxy, Lexan, and Mylar—by analyzing their linear energy transfer (LET) values and Bragg curve characteristics across various proton energies. Experimental LET data were collected and used to train and evaluate the predictive power for Bragg peak of multiple artificial intelligence models, including kNN, SVR, MLP, RF, LWRF, XGBoost, 1D-CNN, LSTM, and BiLSTM. These algorithms were optimized using 10-fold cross-validation and assessed through statistical error and performance metrics including MAE, RAE, RMSE, RRSE, CC, and R2. Results demonstrate that certain AI models, particularly RF and LWRF, accurately (in terms of all evaluation metrics) predict Bragg peaks in Epoxy polymers, reducing the reliance on costly and time-consuming simulations. In terms of CC and R2 metrics, the LWRF model demonstrated superior performance, achieving scores of 0.9969 and 0.9938, respectively. However, when evaluated against MAE, RMSE, RAE, and RRSE metrics, the RF model emerged as the top performer, yielding values of 12.3161, 15.8223, 10.3536, and 11.4389, in the same order. Additionally, the SVR model achieved the highest number of statistically significant differences when compared pairwise with the other eight models, showing significance against six of them. The findings support the use of AI as a robust tool for designing reliable calibration phantoms and optimizing proton therapy planning. This integrative approach enhances the synergy between materials science, medical physics, and data-driven modeling in advanced radiotherapy systems. Full article
Show Figures

Figure 1

8 pages, 543 KiB  
Communication
Assessment of Tumor Relative Biological Effectiveness in Low-LET Proton Irradiation
by Ying-Chun Lin, Jiamin Mo and Yuan-Hao Lee
Biomedicines 2025, 13(8), 1823; https://doi.org/10.3390/biomedicines13081823 - 25 Jul 2025
Viewed by 239
Abstract
Background/Objectives: Within the range of spread-out Bragg peak (SOBP), LET (linear energy transfer) gradually increases from proton beam entrance point toward the beam exit direction. While it is expected that the change in LET would lead to correspondent change in RBE (relative [...] Read more.
Background/Objectives: Within the range of spread-out Bragg peak (SOBP), LET (linear energy transfer) gradually increases from proton beam entrance point toward the beam exit direction. While it is expected that the change in LET would lead to correspondent change in RBE (relative biological effectiveness) on many human cell lines, the incomplete cell killing due to low LET can result in tumor recurrence. Hence, this study aimed to assess the RBE on different cancer cell lines along low-LET proton SOBP. Methods: The clonogenicity of A549 and Panc-1 cells after irradiation was evaluated for investigating cell radiosensitivity in response to different types of radiation. The isoeffect doses of 6-MV photon and low-LET proton beams that resulted in equivalent cell surviving fractions at proton dose of 2 or 4 Gy were compared. Results: Ratios of α/β of A549 and Panc-1 cells from photon irradiation are 51.69 and −0.7747, respectively; RBE (2 Gy proton SOBP) on A549 and Panc-1 cells are 0.7403 ± 0.3324 and 1.0986 ± 0.3984, respectively. In addition, the change in RBE with proton LET was in a cell-specific and dose-dependent manner (LET-RBE linear correlations: A549 cells [r = 0.4673, p = 0.2430] vs. Panc-1 cells at 4 Gy [r = 0.7085, p = 0.0492]; Panc-1 cells at 2 Gy [r = −0.4123, p = 0.3100] vs. 4 Gy [r = 0.7085, p = 0.0492]). Conclusions: Compared with A549 cells, Panc-1 cells present greater resistance to low-LET proton beams. In addition, currently employed generic RBE value at 1.1 for proton therapy neglected the variation in cell-/tumor-specific radiobiological responses toward different dose levels of proton beams. Full article
(This article belongs to the Special Issue New Insights in Radiotherapy: Bridging Radiobiology and Oncology)
Show Figures

Figure 1

11 pages, 756 KiB  
Article
GEANT4 Simulation of Proton Beam Properties from a Cyclotron Accelerator at King Chulalongkorn Memorial Hospital
by Piyanud Thongjerm, Ekkachai Kongmon, Khwanjira Tangpong, Phalakorn Khwansungnoen, Sarinrat Wonglee, Weerawat Pornroongruengchok and Nantanat Chailanggar
Appl. Sci. 2025, 15(14), 7670; https://doi.org/10.3390/app15147670 - 9 Jul 2025
Viewed by 352
Abstract
The main objective of proton beam therapy is to precisely irradiate diseased tissue while minimizing damage to healthy cells. For effective treatment, the linear energy transfer (LET) is a key parameter in ensuring the destruction of diseased cells, and both the dose and [...] Read more.
The main objective of proton beam therapy is to precisely irradiate diseased tissue while minimizing damage to healthy cells. For effective treatment, the linear energy transfer (LET) is a key parameter in ensuring the destruction of diseased cells, and both the dose and LET are typically represented as functions of depth. The distribution of dose and LET in the target depends on the beam properties, including beam energy, energy spread, beam size, and beam emittance. The aim of this work is to present the method used to characterize the proton beam properties obtained from the machine employed in the simulation and to determine the dose and dose-averaged LET (LETd) values, including their peak positions in depth. These results are used to predict the dose and LETd at different depth positions under experimental conditions. We utilized GEANT4, a Monte Carlo (MC) simulation-based software, to examine the integral depth-dose position and the peak position of the LETd. The proton source was obtained from a cyclotron accelerator, specifically the Varian ProBeam Compact spot scanning system at King Chulalongkorn Memorial Hospital in Bangkok, Thailand. The system provides proton energies ranging from 70 MeV to 220 MeV. In this study, four proton energies—70 MeV, 100 MeV, 150 MeV, and 220 MeV—were chosen to characterize the beam properties. The 80%–20% distal fall-off obtained from the simulation was used to determine the energy spread for each selected energy by matching the depth-dose peak with the measurement data. The optimal energy spreads were found to be 1.5%, 1.25%, 1%, and 0.5% for proton energies of 70 MeV, 100 MeV, 150 MeV, and 220 MeV, respectively. These energy spreads ensure that the difference in the depth-dose profile is below 1% when comparing the simulated and measured depth-dose profiles. Furthermore, the peak LETd was found to be approximately 1 mm away from the R80 position, a depth that corresponds to 80% of maximum dose, for each energy. This information can be used to guide the desired LETd position by utilizing the R80 depth position. Full article
Show Figures

Figure 1

10 pages, 7781 KiB  
Article
The Impact of Single-Event Radiation on Latch-Up Effect in High-Temperature CMOS Devices and Its Mechanism
by Bin Wang, Jianguo Cui, Ling Lv and Longsheng Wu
Micromachines 2025, 16(7), 783; https://doi.org/10.3390/mi16070783 - 30 Jun 2025
Viewed by 359
Abstract
This paper investigates the latch-up effect in CMOS devices based on a 28 nm CMOS process within the temperature range of 200 K to 450 K using Sentaurus Technology Computer-Aided Design (TCAD) simulation, with a particular focus on the single-event latch-up (SEL) effect [...] Read more.
This paper investigates the latch-up effect in CMOS devices based on a 28 nm CMOS process within the temperature range of 200 K to 450 K using Sentaurus Technology Computer-Aided Design (TCAD) simulation, with a particular focus on the single-event latch-up (SEL) effect in the high-temperature range of 300 K to 450 K. The physical mechanism underlying the triggering of SEL in CMOS devices at high temperatures is revealed. The results show that when the linear energy transfer (LET) value is 75 MeV cm2/mg, the CMOS devices do not exhibit SEL effects at 300 K and 350 K. However, when the temperature rises to 400 K, a significant latch-up effect occurs, which becomes more pronounced with increasing temperature. Additionally, at a supply voltage of 1.2 V and a temperature of 450 K, the LET threshold for triggering SEL in CMOS devices decreases by 91.4% compared to 75 MeV cm2/mg at 300 K, dropping to 6 MeV cm2/mg. As the temperature increases, the latch-up trigger current of the CMOS devices decreases from 1.18 × 10−4 A/μm at 300 K to 4.65 × 10−5 A/μm at 450 K, and the hold voltage decreases from 1.48 V at 300 K to 1.07 V at 450 K. Full article
Show Figures

Figure 1

14 pages, 1097 KiB  
Article
Modeling the Impact of Viscosity on Fricke Gel Dosimeter Radiolysis: A Radiation Chemical Simulation Approach
by Sumaiya Akhter Ria, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Gels 2025, 11(7), 489; https://doi.org/10.3390/gels11070489 - 24 Jun 2025
Viewed by 403
Abstract
The Fricke gel dosimeter, a hydrogel-based chemical dosimeter containing dissolved ferrous sulfate, measures 3D radiation dose distributions by oxidizing Fe2+ to Fe3+ upon irradiation. This study investigates the variation in Fricke yield, G(Fe3+), from a radiation–chemical perspective in [...] Read more.
The Fricke gel dosimeter, a hydrogel-based chemical dosimeter containing dissolved ferrous sulfate, measures 3D radiation dose distributions by oxidizing Fe2+ to Fe3+ upon irradiation. This study investigates the variation in Fricke yield, G(Fe3+), from a radiation–chemical perspective in both standard and gel-like Fricke systems of varying viscosities, under low- and high-linear energy transfer (LET) conditions. We employed our Monte Carlo track chemistry code IONLYS-IRT, using protons of 300 MeV (LET~0.3 keV/µm) and 1 MeV (LET~25 keV/µm) as radiation sources. To assess the impact of viscosity on G(Fe3+), we systematically varied the diffusion coefficients of all radiolytic species in the Fricke gel, including Fe2+ and Fe3+ ions. Increasing gel viscosity reduces Fe3+ diffusion and stabilizes spatial dose distributions but also lowers G(Fe3+), compromising measurement accuracy and sensitivity—especially under high-LET irradiation. Our results show that an optimal Fricke gel dosimeter must balance these competing factors. Simulations with lower sulfuric acid concentrations (e.g., 0.05 M vs. 0.4 M) further revealed that G(Fe3+) values at ~100 s are nearly identical for both low- and high-LET conditions. This study underscores the utility of Monte Carlo simulations in modeling viscosity effects on Fricke gel radiolysis, guiding dosimeter optimization to maximize sensitivity and accuracy while preserving spatial dose distribution integrity. Full article
(This article belongs to the Special Issue Application of Gel Dosimetry)
Show Figures

Figure 1

17 pages, 1481 KiB  
Article
Radiolysis of Sub- and Supercritical Water Induced by 10B(n,α)7Li Recoil Nuclei at 300–500 °C and 25 MPa
by Md Shakhawat Hossen Bhuiyan, Jintana Meesungnoen and Jean-Paul Jay-Gerin
J. Nucl. Eng. 2025, 6(2), 17; https://doi.org/10.3390/jne6020017 - 9 Jun 2025
Viewed by 488
Abstract
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, [...] Read more.
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, and enhance safety. Boron, widely used as a neutron absorber, plays a significant role in reactor performance and safety. This study focuses on the yields of radiolytic species in subcritical and supercritical water exposed to 4He and 7Li recoil ions from the 10B(n,α)7Li fission reaction in SCWR/SCW-SMR environments. (2) Methods: We use Monte Carlo track chemistry simulations to calculate yields (G values) of primary radicals (eaq, H, and OH) and molecular species (H2 and H2O2) from water radiolysis by α-particles and Li3⁺ recoils across 1 picosecond to 0.1 millisecond timescales. (3) Results: Simulations show substantially lower radical yields, notably eaq and OH, alongside higher molecular product yields compared to low linear energy transfer (LET) radiation, underscoring the high-LET nature of 10B(n,α)7Li recoil nuclei. Key changes include elevated G(OH) and G(H2), and a decrease in G(H), primarily driven during the homogeneous chemical stage of radiolysis by the reaction H + H2O → OH + H2. This reaction significantly contributes to H2 production, potentially reducing the need for added hydrogen in coolant water to mitigate oxidizing species. In supercritical conditions, low G(H₂O₂) suggests that H2O2 is unlikely to be a major contributor to material oxidation. (4) Conclusions: The 10B(n,α)7Li reaction’s yield estimates could significantly impact coolant chemistry strategies in SCWRs and SCW-SMRs. Understanding radiolytic behavior in these conditions aids in refining reactor models and coolant chemistry to minimize corrosion and radiolytic damage. Future experiments are needed to validate these predictions. Full article
Show Figures

Figure 1

13 pages, 6281 KiB  
Article
Heavy Ions Induced Single-Event Transient in SiGe-on-SOI HBT by TCAD Simulation
by Yuedecai Long, Abuduwayiti Aierken, Xuefei Liu, Mingqiang Liu, Changsong Gao, Gang Wang, Degui Wang, Sandip Majumdar, Yundong Xuan, Mengxin Liu and Jinshun Bi
Micromachines 2025, 16(5), 532; https://doi.org/10.3390/mi16050532 - 29 Apr 2025
Viewed by 449
Abstract
In this work, the effects of heavy ion strike position, incident angle, linear energy transfer (LET) value, ambient temperature, bias conditions, and the synergistic effects of total dose irradiation on the single-event transient (SET) in silicon-germanium heterojunction bipolar transistors on silicon-on-insulator (SiGe-on-SOI HBTs) [...] Read more.
In this work, the effects of heavy ion strike position, incident angle, linear energy transfer (LET) value, ambient temperature, bias conditions, and the synergistic effects of total dose irradiation on the single-event transient (SET) in silicon-germanium heterojunction bipolar transistors on silicon-on-insulator (SiGe-on-SOI HBTs) were investigated using TCAD simulations. It was demonstrated that, compared to the bulk SiGe HBT, the SiGe-on-SOI HBT exhibits lower transient current and less charge collection, indicating better resistance to SET. The SET response is more pronounced when heavy ions strike vertically from the emitter and base regions. Transient current and collected charge escalate with increasing incident angle, demonstrating a strong linear correlation with LET values. As the temperature decreases, the peak transient current increases, while the pulse duration decreases and the total collected charge diminishes. After total dose irradiation, the peak transient current in the SiGe-on-SOI HBT decreases, whereas the damage was more severe in the absence of irradiation. Under collector positive bias and positive bias, significant SET responses were observed, while cutoff bias and substrate bias exhibited better resistance to SET damage. These findings provide critical insights into radiation-hardened design strategies for the SiGe-on-SOI HBT. Full article
Show Figures

Figure 1

14 pages, 7293 KiB  
Article
Study on Single-Event Transient Hardness of Semi-Enclosed Gate NMOS
by Zhuoxiang Wang, Gang Li and Minghua Tang
Appl. Sci. 2025, 15(7), 4023; https://doi.org/10.3390/app15074023 - 5 Apr 2025
Viewed by 396
Abstract
Based on the simulation software, single-event transient (SET) simulations were conducted on semi-enclosed gate NMOS devices. The simulation involved bombarding the semi-enclosed gate NMOS devices with heavy ions under specific conditions. A comparative analysis was conducted to evaluate the single-event transient tolerance of [...] Read more.
Based on the simulation software, single-event transient (SET) simulations were conducted on semi-enclosed gate NMOS devices. The simulation involved bombarding the semi-enclosed gate NMOS devices with heavy ions under specific conditions. A comparative analysis was conducted to evaluate the single-event transient tolerance of traditional NMOS and semi-enclosed gate NMOS. Simulation curves from transient to steady-state states under different Linear Energy Transfer (LET) values, as well as potential distribution and current density distribution maps following heavy ion bombardment, were analyzed. Furthermore, single-event transient simulations were carried out on inverters composed of both NMOS types, with subsequent analysis. The results ultimately demonstrate that the semi-enclosed gate NMOS exhibits superior single-event transient tolerance compared to conventional NMOS. Full article
Show Figures

Figure 1

16 pages, 1506 KiB  
Article
Estimation of Maximum Obtainable RBE ‘Turnover-Points’ (LETU) for Accelerated Ions Based on a Nuclear Charge Radius Hypothesis to Obtain Iso-Effective LET and RBE Values
by Bleddyn Jones
Biophysica 2025, 5(1), 6; https://doi.org/10.3390/biophysica5010006 - 25 Feb 2025
Viewed by 913
Abstract
Purpose: The purpose of this study is to analyze the relationship between nuclear charge (Z), atomic mass (A), LET (linear energy transfer for maximal relative biological effectiveness (RBE)) for accelerated ions based on the hypothesis that for each ion, LETU is related [...] Read more.
Purpose: The purpose of this study is to analyze the relationship between nuclear charge (Z), atomic mass (A), LET (linear energy transfer for maximal relative biological effectiveness (RBE)) for accelerated ions based on the hypothesis that for each ion, LETU is related to their nuclear radius. Methods: Published LETU data for proton, helium, carbon, neon, silicon, argon, and iron ions and their Z and A numbers are fitted by a power law function (PLF) and compared with PLF based on atomic cross-sections and nuclear dimensions for spherical or spheroidal atomic nuclei. The PLF allows for isoeffective RBE estimations for different ions at any value of LET based on the LETU estimations. For any two ions, A and B, and a specified bioeffect obtained at LETA, the equivalent isoeffective LETB, is estimated using LETB=LETA.LETU[B]LETU[A]. Results: The data-fitting program provided the following results: LETU=78.1.A0.26, and LETU=86.6.Z0.29, where 78.1 and 86.6 keV.μm−1 are the proton LETU values (i.e., without proton cellular range limit considerations). Goodness-of-fit tests are similar for each model, but the proton estimations differ. These exponents are lower than 0.66 and 0.33 (those for nuclear cross-sections and spherical nuclear radii, respectively), but suggest prolate nuclear shapes in most of the ions studied. Worked examples of estimating isoeffective LET values for two different ions are provided. Conclusions: The fitted power law relationships between LETU and Z or A are broadly equivalent and compatible with prolate nuclear shapes. These models may offer a more rational basis for future ion-beam radiobiology research. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

22 pages, 8420 KiB  
Article
Relative Biological Effectiveness (RBE) of Monoenergetic Protons: Comparison of Empirical and Biophysical Models
by Dimitris Dalalas, Alexis Papadopoulos, Ioanna Kyriakou, Robert D. Stewart, Pantelis Karaiskos and Dimitris Emfietzoglou
Appl. Sci. 2024, 14(24), 11981; https://doi.org/10.3390/app142411981 - 20 Dec 2024
Viewed by 1343
Abstract
A constant proton relative biological effectiveness (RBE) of 1.1 for tumor control is currently used in proton therapy treatment planning. However, in vitro, in vivo and clinical experiences indicate that proton RBE varies with kinetic energy and, therefore, tissue depth within proton Bragg [...] Read more.
A constant proton relative biological effectiveness (RBE) of 1.1 for tumor control is currently used in proton therapy treatment planning. However, in vitro, in vivo and clinical experiences indicate that proton RBE varies with kinetic energy and, therefore, tissue depth within proton Bragg peaks. A number of published RBE models capture variations in proton RBE with depth. The published models can be sub-divided into empirical (or phenomenological) and biophysical (or mechanistic-inspired) RBE models. Empirical RBE models usually characterize the beam quality through the dose-averaged linear energy transfer (LETD), while most biophysical RBE models relate RBE to the dose-averaged lineal energy (yD). In this work, an analytic microdosimetry model and the Monte Carlo damage simulation code (MCDS) were utilized for the evaluation of the LETD and yD of monoenergetic proton beams in the clinically relevant energy range of 1–250 MeV. The calculated LETD and yD values were then used for the estimation of the RBE for five different cell types at three dose levels (2 Gy, 5 Gy and 7 Gy). Comparisons are made between nine empirical RBE models and two biophysical models, namely, the theory of dual radiation action (TDRA) and the microdosimetric kinetic model (MKM). The results show that, at conventional dose fractions (~2 Gy) and for proton energies which correspond to the proximal and central regions of the spread-out Bragg peak (SOBP), RBE varies from 1.0 to 1.2. At lower proton energies related to the distal SOBP, we find significant deviations from a constant RBE of 1.1, especially for late-responding tissues (low (α/β)R of ~1.5–3.5 Gy) where proton RBE may reach 1.3 to 1.5. For hypofractionated dose fractions (5–7 Gy), deviations from a constant RBE of 1.1 are smaller, but may still be sizeable, yielding RBE values between 1.15 and 1.3. However, large discrepancies among the different models were observed that make the selection of a variable RBE across the SOBP uncertain. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

23 pages, 2031 KiB  
Article
Comparative Analysis of Cystamine and Cysteamine as Radioprotectors and Antioxidants: Insights from Monte Carlo Chemical Modeling under High Linear Energy Transfer Radiation and High Dose Rates
by Samafou Penabeï, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Int. J. Mol. Sci. 2024, 25(19), 10490; https://doi.org/10.3390/ijms251910490 - 29 Sep 2024
Viewed by 1324
Abstract
This study conducts a comparative analysis of cystamine (RSSR), a disulfide, and cysteamine (RSH), its thiol monomer, to evaluate their efficacy as radioprotectors and antioxidants under high linear energy transfer (LET) and high-dose-rate irradiation conditions. It examines their interactions with reactive primary species [...] Read more.
This study conducts a comparative analysis of cystamine (RSSR), a disulfide, and cysteamine (RSH), its thiol monomer, to evaluate their efficacy as radioprotectors and antioxidants under high linear energy transfer (LET) and high-dose-rate irradiation conditions. It examines their interactions with reactive primary species produced during the radiolysis of the aqueous ferrous sulfate (Fricke) dosimeter, offering insights into the mechanisms of radioprotection and highlighting their potential to enhance the therapeutic index of radiation therapy, particularly in advanced techniques like FLASH radiotherapy. Using Monte Carlo multi-track chemical modeling to simulate the radiolytic oxidation of ferrous to ferric ions in Fricke-cystamine and Fricke-cysteamine solutions, this study assesses the radioprotective and antioxidant properties of these compounds across a variety of irradiation conditions. Concentrations were varied in both aerated (oxygen-rich) and deaerated (hypoxic) environments, simulating conditions akin to healthy tissue and tumors. Both cystamine and cysteamine demonstrate radioprotective and strong antioxidant properties. However, their effectiveness varies significantly depending on the concentration employed, the conditions of irradiation, and whether or not environmental oxygen is present. Specifically, excluding potential in vivo toxicity, cysteamine substantially reduces the adverse effects of ionizing radiation under aerated, low-LET conditions at concentrations above ~1 mM. However, its efficacy is minimal in hypoxic environments, irrespective of the concentration used. Conversely, cystamine consistently offers robust protective effects in both oxygen-rich and oxygen-poor conditions. The distinct protective capacities of cysteamine and cystamine underscore cysteamine’s enhanced potential in radiotherapeutic settings aimed at safeguarding healthy tissues from radiation-induced damage while effectively targeting tumor tissues. This differential effectiveness emphasizes the need for personalized radioprotective strategies, tailored to the specific environmental conditions of the tissue involved. Implementing such approaches is crucial for optimizing therapeutic outcomes and minimizing collateral damage in cancer treatment. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

15 pages, 1277 KiB  
Article
Fast-Neutron Radiolysis of Sub- and Supercritical Water at 300–600 °C and 25 MPa: A Monte Carlo Track Chemistry Simulation Study
by Md Shakhawat Hossen Bhuiyan, Jintana Meesungnoen, Abida Sultana and Jean-Paul Jay-Gerin
Appl. Sci. 2024, 14(16), 7024; https://doi.org/10.3390/app14167024 - 10 Aug 2024
Cited by 1 | Viewed by 1351
Abstract
(1) Background: Supercritical water-cooled reactors (SCWRs) and their smaller modular variants (SMRs) are part of the ‘Generation IV International Forum’ (GIF) on advanced nuclear energy systems. These reactors operate beyond the critical point of water (tc = 373.95 °C and P [...] Read more.
(1) Background: Supercritical water-cooled reactors (SCWRs) and their smaller modular variants (SMRs) are part of the ‘Generation IV International Forum’ (GIF) on advanced nuclear energy systems. These reactors operate beyond the critical point of water (tc = 373.95 °C and Pc = 22.06 MPa), which introduces specific technical challenges that need to be addressed. The primary concerns involve the effects of intense radiation fields—including fast neutrons, recoil protons/oxygen ions, and γ rays—on the chemistry of the coolant fluid and the integrity of construction materials. (2) Methods: This study employs Monte Carlo simulations of radiation track chemistry to investigate the yields of radiolytic species in SCWRs/SMRs exposed to 2 MeV neutrons. In our calculations, only the contributions from the first three recoil protons with initial energies of 1.264, 0.465, and 0.171 MeV were considered. Our analysis was conducted at both subcritical (300 and 350 °C) and supercritical temperatures (400–600 °C), maintaining a constant pressure of 25 MPa. (3) Results: Our simulations provide insights into the radiolytic formation of chemical species such as eaq, H, H2, OH, and H2O2 from ~1 ps to 1 ms. Compared to data from radiation with low linear energy transfer (LET), the G(eaq) and G(OH) values obtained for fast neutrons show a similar temporal dependence but with smaller amplitude—a result demonstrating the high LET nature of fast neutrons. A notable outcome of our simulations is the marked increase in G(OH) and G(H2), coupled with a corresponding reduction in G(H), observed during the homogeneous chemical stage of radiolysis. This evolution is attributed to the oxidation of water by the H atom according to the reaction H + H2O → OH + H2. This reaction acts as a significant source of H2, potentially reducing the need to add extra hydrogen to the reactor’s coolant water to suppress the net radiolytic production of oxidizing species. Unlike in subcritical water, our simulations also indicate that G(H2O2) remains very low in low-density SCW throughout the interval from ~1 ps to 1 ms, suggesting that H2O2 is less likely to contribute to oxidative stress under these conditions. (4) Conclusions: The results of this study could significantly impact water-chemistry management in the proposed SCWRs and SCW-SMRs, which is crucial for assessing and mitigating the corrosion risks to reactor materials, especially for long-term operation. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

24 pages, 5154 KiB  
Article
Simulation of Radiation-Induced DNA Damage and Protection by Histones Using the Code RITRACKS
by Ianik Plante, Devany W. West, Jason Weeks and Viviana I. Risca
BioTech 2024, 13(2), 17; https://doi.org/10.3390/biotech13020017 - 5 Jun 2024
Cited by 3 | Viewed by 2378
Abstract
(1) Background: DNA damage is of great importance in the understanding of the effects of ionizing radiation. Various types of DNA damage can result from exposure to ionizing radiation, with clustered types considered the most important for radiobiological effects. (2) Methods: The code [...] Read more.
(1) Background: DNA damage is of great importance in the understanding of the effects of ionizing radiation. Various types of DNA damage can result from exposure to ionizing radiation, with clustered types considered the most important for radiobiological effects. (2) Methods: The code RITRACKS (Relativistic Ion Tracks), a program that simulates stochastic radiation track structures, was used to simulate DNA damage by photons and ions spanning a broad range of linear energy transfer (LET) values. To perform these simulations, the transport code was modified to include cross sections for the interactions of ions or electrons with DNA and amino acids for ionizations, dissociative electron attachment, and elastic collisions. The radiochemistry simulations were performed using a step-by-step algorithm that follows the evolution of all particles in time, including reactions between radicals and DNA structures and amino acids. Furthermore, detailed DNA damage events, such as base pair positions, DNA fragment lengths, and fragment yields, were recorded. (3) Results: We report simulation results using photons and the ions 1H+, 4He2+, 12C6+, 16O8+, and 56Fe26+ at various energies, covering LET values from 0.3 to 164 keV/µm, and performed a comparison with other codes and experimental results. The results show evidence of DNA protection from damage at its points of contacts with histone proteins. (4) Conclusions: RITRACKS can provide a framework for studying DNA damage from a variety of ionizing radiation sources with detailed representations of DNA at the atomic scale, DNA-associated proteins, and resulting DNA damage events and statistics, enabling a broader range of future comparisons with experiments such as those based on DNA sequencing. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

19 pages, 1766 KiB  
Article
RadPhysBio: A Radiobiological Database for the Prediction of Cell Survival upon Exposure to Ionizing Radiation
by Vassiliki Zanni, Dimitris Papakonstantinou, Spyridon A. Kalospyros, Dimitris Karaoulanis, Gökay Mehmet Biz, Lorenzo Manti, Adam Adamopoulos, Athanasia Pavlopoulou and Alexandros G. Georgakilas
Int. J. Mol. Sci. 2024, 25(9), 4729; https://doi.org/10.3390/ijms25094729 - 26 Apr 2024
Cited by 1 | Viewed by 2442
Abstract
Based on the need for radiobiological databases, in this work, we mined experimental ionizing radiation data of human cells treated with X-rays, γ-rays, carbon ions, protons and α-particles, by manually searching the relevant literature in PubMed from 1980 until 2024. In order to [...] Read more.
Based on the need for radiobiological databases, in this work, we mined experimental ionizing radiation data of human cells treated with X-rays, γ-rays, carbon ions, protons and α-particles, by manually searching the relevant literature in PubMed from 1980 until 2024. In order to calculate normal and tumor cell survival α and β coefficients of the linear quadratic (LQ) established model, as well as the initial values of the double-strand breaks (DSBs) in DNA, we used WebPlotDigitizer and Python programming language. We also produced complex DNA damage results through the fast Monte Carlo code MCDS in order to complete any missing data. The calculated α/β values are in good agreement with those valued reported in the literature, where α shows a relatively good association with linear energy transfer (LET), but not β. In general, a positive correlation between DSBs and LET was observed as far as the experimental values are concerned. Furthermore, we developed a biophysical prediction model by using machine learning, which showed a good performance for α, while it underscored LET as the most important feature for its prediction. In this study, we designed and developed the novel radiobiological ‘RadPhysBio’ database for the prediction of irradiated cell survival (α and β coefficients of the LQ model). The incorporation of machine learning and repair models increases the applicability of our results and the spectrum of potential users. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

17 pages, 756 KiB  
Article
A New Type of Si-Based MOSFET for Radiation Reinforcement
by Weifeng Liu, Zhirou Zhou, Dong Zhang and Jianjun Song
Micromachines 2024, 15(2), 229; https://doi.org/10.3390/mi15020229 - 31 Jan 2024
Cited by 2 | Viewed by 1509
Abstract
This paper thoroughly analyses the role of drift in the sensitive region in the single-event effect (SEE), with the aim of enhancing the single-particle radiation resistance of N-type metal-oxide semiconductor field-effect transistors (MOSFETs). It proposes a design for a Si-based device structure that [...] Read more.
This paper thoroughly analyses the role of drift in the sensitive region in the single-event effect (SEE), with the aim of enhancing the single-particle radiation resistance of N-type metal-oxide semiconductor field-effect transistors (MOSFETs). It proposes a design for a Si-based device structure that extends the lightly doped source–drain region of the N-channel metal-oxide semiconductor (NMOS), thereby moderating the electric field of the sensitive region. This design leads to a 15.69% decrease in the charge collected at the leaky end of the device under the standard irradiation conditions. On this basis, a device structure is further proposed to form a composite metal-oxide semiconductor (MOS) by connecting a pn junction at the lightly doped source–drain end. By adding two charge paths, the leakage collection charge is further reduced by 13.85% under standard irradiation conditions. Moreover, the deterioration of the drive current in the purely growing lightly doped source–drain region can be further improved. Simulations of single-event effects under different irradiation conditions show that the device has good resistance to single-event irradiation, and the composite MOS structure smoothly converges to a 14.65% reduction in drain collection charge between 0.2 pC/μm and 1 pC/μm Linear Energy Transfer (LET) values. The incidence position at the source-to-channel interface collects the highest charge reduction rate of 28.23%. The collecting charge reduction rate is maximum, at 17.12%, when the incidence is at a 45-degree angle towards the source. Full article
Show Figures

Figure 1

Back to TopTop