Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,469)

Search Parameters:
Keywords = linear combinations observation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1539 KiB  
Article
A Data-Driven Observer for Wind Farm Power Gain Potential: A Sparse Koopman Operator Approach
by Yue Chen, Bingchen Wang, Kaiyue Zeng, Lifu Ding, Yingming Lin, Ying Chen and Qiuyu Lu
Energies 2025, 18(14), 3751; https://doi.org/10.3390/en18143751 - 15 Jul 2025
Viewed by 61
Abstract
Maximizing the power output of wind farms is critical for improving the economic viability and grid integration of renewable energy. Active wake control (AWC) strategies, such as yaw-based wake steering, offer significant potential for power generation increase but require predictive models that are [...] Read more.
Maximizing the power output of wind farms is critical for improving the economic viability and grid integration of renewable energy. Active wake control (AWC) strategies, such as yaw-based wake steering, offer significant potential for power generation increase but require predictive models that are both accurate and computationally efficient for real-time implementation. This paper proposes a data-driven observer to rapidly estimate the potential power gain achievable through AWC as a function of the ambient wind direction. The approach is rooted in Koopman operator theory, which allows a linear representation of nonlinear dynamics. Specifically, a model is developed using an Input–Output Extended Dynamic Mode Decomposition framework combined with Sparse Identification (IOEDMDSINDy). This method lifts the low-dimensional wind direction input into a high-dimensional space of observable functions and then employs iterative sparse regression to identify a minimal, interpretable linear model in this lifted space. By training on offline simulation data, the resulting observer serves as an ultra-fast surrogate model, capable of providing instantaneous predictions to inform online control decisions. The methodology is demonstrated and its performance is validated using two case studies: a 9-turbine and a 20-turbine wind farm. The results show that the observer accurately captures the complex, nonlinear relationship between wind direction and power gain, significantly outperforming simpler models. This work provides a key enabling technology for advanced, real-time wind farm control systems. Full article
(This article belongs to the Special Issue Modeling, Control and Optimization of Wind Power Systems)
Show Figures

Figure 1

20 pages, 7661 KiB  
Article
Bioinspired Kirigami Structure for Efficient Anchoring of Soft Robots via Optimization Analysis
by Muhammad Niaz Khan, Ye Huo, Zhufeng Shao, Ming Yao and Umair Javaid
Appl. Sci. 2025, 15(14), 7897; https://doi.org/10.3390/app15147897 - 15 Jul 2025
Viewed by 48
Abstract
Kirigami-inspired geometries offer a lightweight, bioinspired strategy for friction enhancement and anchoring in soft robotics. This study presents a bioinspired kirigami structure designed to enhance the anchoring performance of soft robotic systems through systematic geometric and actuation parameter optimization. Drawing inspiration from the [...] Read more.
Kirigami-inspired geometries offer a lightweight, bioinspired strategy for friction enhancement and anchoring in soft robotics. This study presents a bioinspired kirigami structure designed to enhance the anchoring performance of soft robotic systems through systematic geometric and actuation parameter optimization. Drawing inspiration from the anisotropic friction mechanisms observed in reptilian scales, we integrated linear, triangular, trapezoidal, and hybrid kirigami cuts onto flexible plastic sheets. A compact 12 V linear actuator enabled cyclic actuation via a custom firmware loop, generating controlled buckling and directional friction for effective locomotion. Through experimental trials, we quantified anchoring efficiency using crawling distance and stride metrics across multiple cut densities and actuation conditions. Among the tested configurations, the triangular kirigami with a 4 × 20 unit density on 100 µm PET exhibited the most effective performance, achieving a stride efficiency of approximately 63% and an average crawling speed of ~47 cm/min under optimized autonomous operation. A theoretical framework combining buckling mechanics and directional friction validated the observed trends. This study establishes a compact, tunable anchoring mechanism for soft robotics, offering strong potential for autonomous exploration in constrained environments. Full article
(This article belongs to the Special Issue Advances in Robotics and Autonomous Systems)
Show Figures

Figure 1

14 pages, 679 KiB  
Article
Enhancing Patient Outcomes in Head and Neck Cancer Radiotherapy: Integration of Electronic Patient-Reported Outcomes and Artificial Intelligence-Driven Oncology Care Using Large Language Models
by ChihYing Liao, ChinNan Chu, TingChun Lin, TzuYao Chou and MengHsiun Tsai
Cancers 2025, 17(14), 2345; https://doi.org/10.3390/cancers17142345 - 15 Jul 2025
Viewed by 99
Abstract
Background: Electronic patient-reported outcomes (ePROs) enable real-time symptom monitoring and early intervention in oncology. Large language models (LLMs), when combined with retrieval-augmented generation (RAG), offer scalable Artificial Intelligence (AI)-driven education tailored to individual patient needs. However, few studies have examined the feasibility and [...] Read more.
Background: Electronic patient-reported outcomes (ePROs) enable real-time symptom monitoring and early intervention in oncology. Large language models (LLMs), when combined with retrieval-augmented generation (RAG), offer scalable Artificial Intelligence (AI)-driven education tailored to individual patient needs. However, few studies have examined the feasibility and clinical impact of integrating ePRO with LLM-RAG feedback during radiotherapy in high-toxicity settings such as head and neck cancer. Methods: This prospective observational study enrolled 42 patients with head and neck cancer undergoing radiotherapy from January to December 2024. Patients completed ePRO entries twice weekly using a web-based platform. Following each entry, an LLM-RAG system (Gemini 1.5-based) generated real-time educational feedback using National Comprehensive Cancer Network (NCCN) guidelines and institutional resources. Primary outcomes included percentage weight loss and treatment interruption days. Statistical analyses included t-tests, linear regression, and receiver operating characteristic (ROC) analysis. A threshold of ≥6 ePRO entries was used for subgroup analysis. Results: Patients had a mean age of 53.6 years and submitted an average of 8.0 ePRO entries. Frequent ePRO users (≥6 entries) had significantly less weight loss (4.45% vs. 7.57%, p = 0.021) and fewer treatment interruptions (0.67 vs. 2.50 days, p = 0.002). Chemotherapy, moderate-to-severe pain, and lower ePRO submission frequency were associated with greater weight loss. ePRO submission frequency was negatively correlated with both weight loss and treatment interruption days. The most commonly reported symptoms were appetite loss, fatigue, and nausea. Conclusions: Integrating LLM-RAG feedback with ePRO systems is feasible and may enhance symptom control, treatment continuity, and patient engagement in head and neck cancer radiotherapy. Further studies are warranted to validate the clinical benefits of AI-supported ePRO platforms in routine care. Full article
(This article belongs to the Special Issue Personalized Radiotherapy in Cancer Care (2nd Edition))
Show Figures

Graphical abstract

16 pages, 982 KiB  
Article
Prognostic Role of TSH Within Euthyroid T2DM Patients with Retinopathy: A 3-Year Cohort Study
by Nilgun Tan Tabakoglu and Mehmet Celik
Diseases 2025, 13(7), 217; https://doi.org/10.3390/diseases13070217 - 12 Jul 2025
Viewed by 107
Abstract
Background/Objectives: We aimed to determine how baseline TSH levels relate to clinical outcomes over a three-year follow-up in euthyroid patients with T2DR. Methods: This single-center retrospective cohort study included 363 euthyroid T2DR patients who were followed for three years after baseline TSH measurement. [...] Read more.
Background/Objectives: We aimed to determine how baseline TSH levels relate to clinical outcomes over a three-year follow-up in euthyroid patients with T2DR. Methods: This single-center retrospective cohort study included 363 euthyroid T2DR patients who were followed for three years after baseline TSH measurement. Patients were stratified into tertiles based on TSH values belonging to the standard clinical limits (0.35–4.50 mIU/L). Binary and multivariate logistic regression analyses, along with non-linear modeling, were used to evaluate the prognostic impact of TSH and its interaction with age on mortality. The study adhered to the STROBE guidelines. Results: In the first year of follow-up, Group 1 (TSH 0.35–1.24 mIU/L) had significantly higher rates of mortality and combined outcomes compared to Group 2 (TSH 1.24–1.94 mIU/L; p = 0.025 and p = 0.041, respectively). Group 2 had a lower risk (OR for mortality = 0.349, p = 0.004; OR for combined outcome = 0.358, p = 0.007). Between TSH and TSH tertiles, a non-linear, inverted U-shaped relationship was observed, with the lowest mortality risk near 2.0 mIU/L. A significant interaction between TSH and age was found for third-year mortality (p = 0.016). Conclusions: TSH values showed a non-linear association with outcomes in euthyroid T2DR patients. Group 2 was linked to the lowest risk. Given the significantly higher mortality and combined complications identified within Group 1, closer monitoring and individualized follow-up strategies may be warranted for these patients. Additionally, TSH’s impact on long-term mortality increased with age, supporting its use alongside age for risk stratification in T2DR. Full article
Show Figures

Figure 1

18 pages, 7559 KiB  
Article
An Electrochemical Sensor for the Simultaneous Detection of Pb2+ and Cd2+ in Contaminated Seawater Based on Intelligent Mobile Detection Devices
by Zizi Zhao, Wei Qu, Chengjun Qiu, Yuan Zhuang, Kaixuan Chen, Yi Qu, Huili Hao, Wenhao Wang, Haozheng Liu and Jiahua Su
Chemosensors 2025, 13(7), 251; https://doi.org/10.3390/chemosensors13070251 - 11 Jul 2025
Viewed by 202
Abstract
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely [...] Read more.
Excessive levels of Pb2+ and Cd2+ in seawater pose significant combined toxicity to marine organisms, resulting in harmful effects and further threatening human health through biomagnification in the food chain. Traditional methods for detecting marine Pb2+ and Cd2+ rely on laboratory analyses, which are hindered by limitations such as sample degradation during transport and complex operational procedures. In this study, we present an electrochemical sensor based on intelligent mobile detection devices. By combining G-COOH-MWCNTs/ZnO with differential pulse voltammetry, the sensor enables the efficient, simultaneous detection of Pb2+ and Cd2+ in seawater. The G-COOH-MWCNTs/ZnO composite film is prepared via drop-coating and is applied to a glassy carbon electrode. The film is characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, while Pb2+ and Cd2+ are quantified using differential pulse voltammetry. Using a 0.1 mol/L sodium acetate buffer (pH 5.5), a deposition potential of −1.1 V, and an accumulation time of 300 s, a strong linear correlation was observed between the peak response currents of Pb2+ and Cd2+ and their concentrations in the range of 25–450 µg/L. The detection limits were 0.535 µg/L for Pb2+ and 0.354 µg/L for Cd2+. The sensor was applied for the analysis of seawater samples from Maowei Sea, achieving recovery rates for Pb2+ ranging from 97.7% to 103%, and for Cd2+ from 97% to 106.1%. These results demonstrate that the sensor exhibits high sensitivity and stability, offering a reliable solution for the on-site monitoring of heavy metal contamination in marine environments. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

18 pages, 2276 KiB  
Article
Surface Water Runoff Estimation of a Continuously Flooded Rice Field Using a Daily Water Balance Approach—An Irrigation Assessment
by Diego Rivero, Guillermina Cantou, Raquel Hayashi, Jimena Alonso, Matías Oxley, Agustín Menta, Pablo González-Barrios and Álvaro Roel
Water 2025, 17(14), 2069; https://doi.org/10.3390/w17142069 - 10 Jul 2025
Viewed by 273
Abstract
The high water demand of rice cultivation is mainly due to flood irrigation, which requires large volumes not only to meet evapotranspiration needs, but also due to losses from percolation, lateral seepage, and surface runoff. In addition to lowering water use efficiency, surface [...] Read more.
The high water demand of rice cultivation is mainly due to flood irrigation, which requires large volumes not only to meet evapotranspiration needs, but also due to losses from percolation, lateral seepage, and surface runoff. In addition to lowering water use efficiency, surface runoff may transport nutrients. This study aimed to calibrate and validate a daily water balance model to estimate surface runoff losses across three rice-growing seasons. During the first two seasons, different model components were calibrated by comparing simulated and observed water depths. In the final season, the calibrated model was validated using direct runoff measurements obtained from weirs and flowmeters. Results showed strong agreement between model estimates and direct measurements of water depth and surface runoff. Linear regression models showed good fit, with coefficients of determination (R2) above 0.80 for water depth and 0.79 for runoff. A validated daily water balance model, combined with periodic monitoring of water depth, proved to be a reliable tool for estimating surface runoff during the rice-growing season. Total runoff—from irrigation, rainfall, and final drainage—represented between 7.5% and 18% of the total water input. This approach offers a practical tool for improving irrigation water management and understanding runoff-driven nutrient transport. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

16 pages, 2086 KiB  
Article
High-Coverage Profiling of Hydroxyl and Amino Compounds in Sauce-Flavor Baijiu Using Bromine Isotope Labeling and Ultra-High Performance Liquid Chromatography–High-Resolution Mass Spectrometry
by Zixuan Wang, Youlan Sun, Tiantian Chen, Lili Jiang, Yuhao Shang, Xiaolong You, Feng Hu, Di Yu, Xinyu Liu, Bo Wan, Chunxiu Hu and Guowang Xu
Metabolites 2025, 15(7), 464; https://doi.org/10.3390/metabo15070464 - 9 Jul 2025
Viewed by 241
Abstract
Background: Hydroxyl and amino compounds play a significant role in defining the flavor and quality of sauce-flavor Baijiu, yet their comprehensive analysis remains challenging due to limitations in detection sensitivity. In this study, we developed a novel bromine isotope labeling approach combined [...] Read more.
Background: Hydroxyl and amino compounds play a significant role in defining the flavor and quality of sauce-flavor Baijiu, yet their comprehensive analysis remains challenging due to limitations in detection sensitivity. In this study, we developed a novel bromine isotope labeling approach combined with ultra-high performance liquid chromatography–high-resolution mass spectrometry (UHPLC-HRMS) to achieve high-coverage profiling of these compounds in sauce-flavor Baijiu. Methods: The method employs 5-bromonicotinoyl chloride (BrNC) for rapid (30 s) and mild (room temperature) labeling of hydroxyl and amino functional groups, utilizing bromine’s natural isotopic pattern (Δm/z = 1.998 Da) for efficient screening. Annotation was performed hierarchically at five confidence levels by integrating retention time, accurate mass, and MS/MS spectra. Results: A total of 309 hydroxyl and amino compounds, including flavor substances (e.g., tyrosol and phenethyl alcohol) and bioactive compounds (e.g., 3-phenyllactic acid), were identified in sauce-flavor Baijiu. The method exhibited excellent analytical performance, with wide linearity (1–4 orders of magnitude), precision (RSD < 18.3%), and stability (RSD < 15% over 48 h). When applied to sauce-flavor Baijiu samples of different grades, distinct compositional patterns were observed: premium-grade products showed greater metabolite diversity and higher contents of bioactive compounds, whereas lower-grade samples exhibited elevated concentrations of acidic flavor compounds. Conclusions: These results demonstrate that the established method is efficient for the comprehensive analysis of hydroxyl and amino compounds in complex food matrices. The findings provide valuable insights for quality control and flavor modulation in sauce-flavor Baijiu production. Full article
Show Figures

Figure 1

18 pages, 12442 KiB  
Article
Properties of Diamond-like Coatings in Tribological Systems Lubricated with Ionic Liquid
by Krystyna Radoń-Kobus and Monika Madej
Coatings 2025, 15(7), 799; https://doi.org/10.3390/coatings15070799 - 8 Jul 2025
Viewed by 277
Abstract
The paper shows the effect of using a lubricant in the form of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), on the tribological properties of a hydrogenated diamond-like coating (DLC) doped with tungsten a-C:H:W. The coatings were deposited on 100Cr6 steel by [...] Read more.
The paper shows the effect of using a lubricant in the form of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), on the tribological properties of a hydrogenated diamond-like coating (DLC) doped with tungsten a-C:H:W. The coatings were deposited on 100Cr6 steel by plasma-enhanced chemical vapor deposition PECVD. Tribological tests were carried out on a TRB3 tribometer in a rotary motion in a ball–disc combination. 100Cr6 steel balls were used as a counter-sample. Friction and wear tests were carried out for discs made of 100Cr6 steel and 100Cr6 steel discs with a DLC coating. They were performed under friction conditions with and without lubrication under 10 N and 15 N loads. The ionic liquid BMIM-PF6 was used as a lubricant. Coating thickness was observed on a scanning microscope, and the linear analysis of chemical composition on the cross-section was analyzed using the EDS analyzer. The confocal microscope with an interferometric mode was used for analysis of the geometric structure of the surface before and after the tribological tests. The contact angle of the samples for distilled water, diiodomethane and ionic liquid was tested on an optical tensiometer. The test results showed good cooperation of the DLC coating with the lubricant. It lowered the coefficient of friction in comparison to steel about 20%. This indicates the synergistic nature of the interaction: DLC coating–BMIM-PF6 lubricant–100Cr6 steel. Full article
(This article belongs to the Special Issue Tribological and Mechanical Properties of Coatings)
Show Figures

Figure 1

44 pages, 1067 KiB  
Review
Toward Adaptive and Immune-Inspired Viable Supply Chains: A PRISMA Systematic Review of Mathematical Modeling Trends
by Andrés Polo, Daniel Morillo-Torres and John Willmer Escobar
Mathematics 2025, 13(14), 2225; https://doi.org/10.3390/math13142225 - 8 Jul 2025
Viewed by 411
Abstract
This study presents a systematic literature review on the mathematical modeling of resilient and viable supply chains, grounded in the PRISMA methodology and applied to a curated corpus of 235 peer-reviewed scientific articles published between 2011 and 2025. The search strategy was implemented [...] Read more.
This study presents a systematic literature review on the mathematical modeling of resilient and viable supply chains, grounded in the PRISMA methodology and applied to a curated corpus of 235 peer-reviewed scientific articles published between 2011 and 2025. The search strategy was implemented across four major academic databases (Scopus and Web of Science) using Boolean operators to capture intersections among the core concepts of supply chains, resilience, viability, and advanced optimization techniques. The screening process involved a double manual assessment of titles, abstracts, and full texts, based on inclusion criteria centered on the presence of formal mathematical models, computational approaches, and thematic relevance. As a result of the selection process, six thematic categories were identified, clustering the literature according to their analytical objectives and methodological approaches: viability-oriented modeling, resilient supply chain optimization, agile and digitally enabled supply chains, logistics optimization and network configuration, uncertainty modeling, and immune system-inspired approaches. These categories were validated through a bibliometric analysis and a thematic map that visually represents the density and centrality of core research topics. Descriptive analysis revealed a significant increase in scientific output starting in 2020, driven by post-pandemic concerns and the accelerated digitalization of logistics operations. At the methodological level, a high degree of diversity in modeling techniques was observed, with an emphasis on mixed-integer linear programming (MILP), robust optimization, multi-objective modeling, and the increasing use of bio-inspired algorithms, artificial intelligence, and simulation frameworks. The results confirm a paradigm shift toward integrative frameworks that combine robustness, adaptability, and Industry 4.0 technologies, as well as a growing interest in biological metaphors applied to resilient system design. Finally, the review identifies research gaps related to the formal integration of viability under disruptive scenarios, the operationalization of immune-inspired models in logistics environments, and the need for hybrid approaches that jointly address resilience, agility, and sustainability. Full article
(This article belongs to the Section D2: Operations Research and Fuzzy Decision Making)
Show Figures

Figure 1

26 pages, 9032 KiB  
Article
Relative Humidity and Air Temperature Characteristics and Their Drivers in Africa Tropics
by Isaac Kwesi Nooni, Faustin Katchele Ogou, Abdoul Aziz Saidou Chaibou, Samuel Koranteng Fianko, Thomas Atta-Darkwa and Nana Agyemang Prempeh
Atmosphere 2025, 16(7), 828; https://doi.org/10.3390/atmos16070828 - 8 Jul 2025
Viewed by 345
Abstract
In a warming climate, rising temperature are expected to influence atmospheric humidity. This study examined the spatio-temporal dynamics of temperature (TEMP) and relative humidity (RH) across Equatorial Africa from 1980 to 2020. The analysis used RH data from European Centre of Medium-range Weather [...] Read more.
In a warming climate, rising temperature are expected to influence atmospheric humidity. This study examined the spatio-temporal dynamics of temperature (TEMP) and relative humidity (RH) across Equatorial Africa from 1980 to 2020. The analysis used RH data from European Centre of Medium-range Weather Forecasts Reanalysis v.5 (ERA5) reanalysis, TEMP and precipitation (PRE) from Climate Research Unit (CRU), and soil moisture (SM) and evapotranspiration (ET) from the Global Land Evaporation Amsterdam Model (GLEAM). In addition, four teleconnection indices were considered: El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO). This study used the Mann–Kendall test and Sen’s slope estimator to analyze trends, alongside multiple linear regression to investigate the relationships between TEMP, RH, and key climatic variables—namely evapotranspiration (ET), soil moisture (SM), and precipitation (PRE)—as well as large-scale teleconnection indices (e.g., IOD, ENSO, PDO, and NAO) on annual and seasonal scales. The key findings are as follows: (1) mean annual TEMP exceeding 30 °C and RH less than 30% were concentrated in arid regions of the Sahelian–Sudano belt in West Africa (WAF), Central Africa (CAF) and North East Africa (NEAF). Semi-arid regions in the Sahelian–Guinean belt recorded moderate TEMP (25–30 °C) and RH (30–60%), while the Guinean coastal belt and Congo Basin experienced cooler, more humid conditions (TEMP < 20 °C, RH (60–90%). (2) Trend analysis using Mann–Kendal and Sen slope estimator analysis revealed spatial heterogeneity, with increasing TEMP and deceasing RH trends varying by region and season. (3) The warming rate was higher in arid and semi-arid areas, with seasonal rates exceeding annual averages (0.18 °C decade−1). Winter (0.27 °C decade−1) and spring (0.20 °C decade−1) exhibited the strongest warming, followed by autumn (0.18 °C decade−1) and summer (0.10 °C decade−1). (4) RH trends showed stronger seasonal decline compared to annual changes, with reduction ranging from 5 to 10% per decade in certain seasons, and about 2% per decade annually. (5) Pearson correlation analysis demonstrated a strong negative relationship between TEMP and RH with a correlation coefficient of r = − 0.60. (6) Significant associations were also observed between TEMP/RH and both climatic variables (ET, SM, PRE) and large scale-teleconnection indices (ENSO, IOD, PDO, NAO), indicating that surface conditions may reflect a combination of local response and remote climate influences. However, further analysis is needed to distinguish the extent to which local variability is independently driven versus being a response to large-scale forcing. Overall, this research highlights the physical mechanism linking TEMP and RH trends and their climatic drivers, offering insights into how these changes may impact different ecological and socio-economic sectors. Full article
(This article belongs to the Special Issue Precipitation in Africa (2nd Edition))
Show Figures

Figure 1

12 pages, 3788 KiB  
Article
The Combination of Direct Aging and Cryogenic Treatment Effectively Enhances the Mechanical Properties of 18Ni300 by Selective Laser Melting
by Yaling Zhang, Xia Chen, Bo Qu, Yao Tao, Wei Zeng and Bin Chen
Metals 2025, 15(7), 766; https://doi.org/10.3390/met15070766 - 8 Jul 2025
Viewed by 223
Abstract
This study systematically explores the synergistic effects of direct aging treatment (480 °C for 6 h) combined with cryogenic treatment (−196 °C for 8 h) on the mechanical properties and microstructural evolution of 18Ni300 maraging steel fabricated via selective laser melting (SLM). Three [...] Read more.
This study systematically explores the synergistic effects of direct aging treatment (480 °C for 6 h) combined with cryogenic treatment (−196 °C for 8 h) on the mechanical properties and microstructural evolution of 18Ni300 maraging steel fabricated via selective laser melting (SLM). Three conditions were investigated: as-built, direct aging (AT6), and direct aging plus cryogenic treatment (AT6C8). Microstructural characterization was performed using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), while the mechanical properties were evaluated via microhardness and tensile testing. The results show that the AT6C8 sample achieved the highest microhardness (635 HV0.5) and tensile strength (2180 MPa), significantly exceeding the as-built (311 HV0.5, 1182 MPa) and AT6 (580 HV0.5, 2012 MPa) samples. Cryogenic treatment induced a notable phase transformation from retained austenite (γ phase) to martensite (α phase), with the peak relative intensity ratio ranging from 1.42 (AT6) to 1.58 (AT6C8) in the XRD results. TEM observations revealed that cryogenic treatment refined lath martensite from 0.75 μm (AT6) to 0.24 μm (AT6C8) and transformed reversed austenite into thin linear structures at the martensite boundaries. The combination of direct aging and cryogenic treatment effectively enhances the mechanical properties of SLM-fabricated 18Ni300 maraging steel through martensite transformation, microstructural refinement, and increased dislocation density. This approach addresses the challenge of balancing strength improvement and residual stress relaxation. Full article
(This article belongs to the Special Issue Metal Forming and Additive Manufacturing)
Show Figures

Figure 1

47 pages, 13613 KiB  
Article
Colorless Polyimides with Low Linear Coefficients of Thermal Expansion and Their Controlled Soft Adhesion/Easy Removability on Glass Substrates: Role of Modified One-Pot Polymerization Method
by Masatoshi Hasegawa, Takehiro Shinoda, Kanata Nakadai, Junichi Ishii, Tetsuo Okuyama, Kaya Tokuda, Hiroyuki Wakui, Naoki Watanabe and Kota Kitamura
Polymers 2025, 17(13), 1887; https://doi.org/10.3390/polym17131887 - 7 Jul 2025
Viewed by 408
Abstract
This study presents colorless polyimides (PIs) suitable for use as plastic substrates in flexible displays, designed to be compatible with controlled soft adhesion and easy delamination (temporary adhesion) processes. For this purpose, we focused on a PI system derived from norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride (CpODA) [...] Read more.
This study presents colorless polyimides (PIs) suitable for use as plastic substrates in flexible displays, designed to be compatible with controlled soft adhesion and easy delamination (temporary adhesion) processes. For this purpose, we focused on a PI system derived from norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride (CpODA) and 2,2′-bis(trifluoromethyl)benzidine (TFMB). This system was selected with the aim of exhibiting excellent optical transparency and low linear coefficient of thermal expansion (CTE) properties. However, fabricating this PI film via the conventional two-step process was challenging because of crack formation. In contrast, modified one-pot polymerization at 200 °C using a combined catalyst resulted in a homogeneous solution of PI with an exceptionally high molecular weight, yielding a flexible cast film. The solubility of PI plays a crucial role in its success. This study delves into the mechanism behind the significant catalytic effect on enhancing molecular weight. The CpODA/TFMB PI cast film simultaneously achieved very high optical transparency, an extremely high glass transition temperature (Tg = 411 °C), a significantly low linear coefficient of thermal expansion (CTE = 16.7 ppm/K), and sufficient film toughness, despite the trade-off between low CTE and high film toughness. The CpODA/TFMB system was modified by copolymerization with minor contents of another cycloaliphatic tetracarboxylic dianhydride, 5,5′-(1,4-phenylene)-exo-bis(hexahydro-4,7-methanoisobenzofuran-cis-exo-1,3-dione) (BzDAxx). This approach was effective in improving the film toughness without sacrificing the low CTE and other target properties. The peel strengths (σpeel) of laminates comprising surface-modified glass substrates and various colorless PI films were measured to evaluate the compatibility with the temporary adhesion process. Most colorless PI films studied were found to be incompatible. Additionally, no correlation between σpeel and PI structure was observed, making it challenging to identify the structural factors influencing σpeel control. Surprisingly, a strong correlation was observed between σpeel and CTE of the PI films, suggesting that the observed solid–solid lamination is closely linked to the unexpectedly high surface mobility of the PI films. The laminate using CpODA(90);BzDAxx(10)/TFMB copolymer exhibited suitable adhesion strength for the temporary adhesion process, while meeting other target properties. The modified one-pot polymerization method significantly contributed to the development of colorless PIs suitable for plastic substrates. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

24 pages, 2093 KiB  
Article
Composite Perturbation-Rejection Trajectory-Tracking Control for a Quadrotor–Slung Load System
by Jiao Xu, Defu Lin, Jianchuan Ye and Tao Jiang
Actuators 2025, 14(7), 335; https://doi.org/10.3390/act14070335 - 3 Jul 2025
Viewed by 259
Abstract
Tracking control of a quadrotor–slung load system is extremely challenging due to its under-actuation property, couple effects, and various uncertainties. This work proposes a composite backstepping control framework combining command filter control and a multivariable finite-time disturbance observer to ensure robust position and [...] Read more.
Tracking control of a quadrotor–slung load system is extremely challenging due to its under-actuation property, couple effects, and various uncertainties. This work proposes a composite backstepping control framework combining command filter control and a multivariable finite-time disturbance observer to ensure robust position and orientation control for aerial payload transportation with high precision. Firstly, the kinematic and dynamic model under perturbations is derived based on Newton’s second law. The thrust control force consists of two orthogonal parts, each dedicated to regulating the position and orientation of the slung load independently. Then, hierarchical backstepping control generates the two parts in the load-translation and the load-orientation subsystems. Command filters are introduced into nonlinear backstepping to smoothen the control signals and overcome the problem of explosion of complexity. Additionally, to counteract the adverse effect of perturbations emerging in the linear velocity and angular velocity loops, multivariable finite-time observers are developed to ensure the estimation errors converge within a finite time horizon. Finally, comparative numerical simulation results validate the efficacy of the developed quadrotor–slung load tracking controller. Simulation results show that the proposed controller achieves smaller position tracking and orientation errors compared to traditional methods, demonstrating robust disturbance rejection and high-precision control. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

28 pages, 2543 KiB  
Article
Assessing Plant Water Status and Physiological Behaviour Using Multispectral Images from UAV in Merlot Vineyards in Central Spain
by Luz K. Atencia Payares, Juan C. Nowack, Ana M. Tarquis and Maria Gomez-del-Campo
Remote Sens. 2025, 17(13), 2273; https://doi.org/10.3390/rs17132273 - 2 Jul 2025
Viewed by 191
Abstract
Water status is a key determinant of physiological performance and vineyard productivity. However, its assessment through field measurements is time-consuming and labour-intensive. Remote sensing offers a fast and reliable alternative to traditional in situ methods for the monitoring of the water status in [...] Read more.
Water status is a key determinant of physiological performance and vineyard productivity. However, its assessment through field measurements is time-consuming and labour-intensive. Remote sensing offers a fast and reliable alternative to traditional in situ methods for the monitoring of the water status in vineyards. This study aimed to assess the potential of high-resolution multispectral imagery acquired by UAVs to estimate the vine water status. The research was conducted over two growing seasons (2021 and 2022) in a commercial Merlot vineyard in Yepes (Toledo, Central Spain), under five irrigation regimes designed to generate a range of water statuses. UAV flights were performed at two times of day (09:00 and 12:00 solar time), coinciding with in-field measurements of physiological parameters. Stem water potential (SWP), chlorophyll content, and photosynthesis data were collected. The SWP consistently showed the strongest and most stable associations with vegetation indices (VIs) and the red spectral band at 12:00. A simple linear regression model using the NDVI explained up to 58% of the SWP variability regardless of the time of day or year. Multiple linear regression models incorporating the red and NIR bands yielded even higher predictive power (R2 = 0.62). Stronger correlations were observed at 12:00, especially when combining data from both years, highlighting the importance of midday measurements in capturing water stress effects. These findings demonstrate the potential of UAV-based multispectral imagery as a non-destructive and scalable tool for the monitoring of the vine water status under field conditions. Full article
Show Figures

Figure 1

16 pages, 1648 KiB  
Article
Robust Control and Energy Management in Wind Energy Systems Using LMI-Based Fuzzy H∞ Design and Neural Network Delay Compensation
by Kaoutar Lahmadi, Oumaima Lahmadi, Soufiane Jounaidi and Ismail Boumhidi
Processes 2025, 13(7), 2097; https://doi.org/10.3390/pr13072097 - 2 Jul 2025
Viewed by 255
Abstract
This study presents advanced control and energy management strategies for uncertain wind energy systems using a Takagi–Sugeno (T-S) fuzzy modeling framework. To address key challenges, such as system uncertainties, external disturbances, and input delays, the study integrates a fuzzy H∞ robust control approach [...] Read more.
This study presents advanced control and energy management strategies for uncertain wind energy systems using a Takagi–Sugeno (T-S) fuzzy modeling framework. To address key challenges, such as system uncertainties, external disturbances, and input delays, the study integrates a fuzzy H∞ robust control approach with a neural network-based delay compensation mechanism. A fuzzy observer-based H∞ tracking controller is developed to enhance robustness and minimize the impact of disturbances. The stability conditions are rigorously derived using a quadratic Lyapunov function, H∞ performance criteria, and Young’s inequality and are expressed as Linear Matrix Inequalities (LMIs) for computational efficiency. In parallel, a neural network-based controller is employed to compensate for the input delays introduced by online learning processes. Furthermore, an energy management layer is incorporated to regulate the power flow and optimize energy utilization under varying operating conditions. The proposed framework effectively combines control and energy coordination to improve the systems’ performance. The simulation results confirm the effectiveness of the proposed strategies, demonstrating enhanced stability, robustness, delay tolerance, and energy efficiency in wind energy systems. Full article
Show Figures

Figure 1

Back to TopTop