Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (208)

Search Parameters:
Keywords = linear attenuation coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4683 KB  
Article
Contrast Between Automated and Manual Measurements of Atmospheric PM2.5: Influences of Environmental Factors and the Improving Correction Method
by Dongjue Dai, Jingang Li, Kuang Xiao and Li Li
Atmosphere 2025, 16(9), 1112; https://doi.org/10.3390/atmos16091112 - 22 Sep 2025
Viewed by 197
Abstract
In this work, we tested the performance of automated atmospheric PM2.5 monitoring instruments and contrasted the data from automated measurements with those from filter-based reference measurements. The tested instruments include four brands of beta attenuation instruments (two were made in China, D1 [...] Read more.
In this work, we tested the performance of automated atmospheric PM2.5 monitoring instruments and contrasted the data from automated measurements with those from filter-based reference measurements. The tested instruments include four brands of beta attenuation instruments (two were made in China, D1 and D2; the other two were imported from other countries, I1 and I2) and one brand of a light scattering instrument (also imported from another country, I3). The automated monitoring data were corrected based on the reference tests. The total testing period lasted 18 months. The objective of this work is to evaluate the influences of environmental factors on the performance of different automated instruments, and to improve the accuracy of the automated instruments by using a correction method. The results showed that contrasted with the reference tests, the absolute errors (MAE, mean absolute error; SD, standard deviation; and RMSE, root mean square error) of the automated monitoring instruments werehigher for temperature (T ≤ 10 °C), humidity (60% ≤ RH < 80%), and PM2.5 concentrations (PM2.5 ≥ 75 μg/m3). Meanwhile, the relative errors (CV, coefficient of variation; and NRMSE, normalized root mean square error) of the automated monitoring instruments were higher for humidity (RH > 80%) and PM2.5 concentrations (PM2.5 < 15 μg/m3). For winter data, it proved challenging to pass the reference test, which was based on a linear regression between 24-h average automated monitoring data and the integrated filter-based PM2.5 data (aka the KBR test). Before corrections, the pass rates of D1, D2, I1, I2, and I3 in the rolling KBR tests are 57.7%, 51.3%, 41.1%, 21%, and 90.2%, respectively. After corrections, the rates increase to 79.6%, 86.6%, 81.8%, 58.9%, and 91.8%, respectively. The coefficient corrections (corrections of system errors) have made the most prominent contribution to improving the pass rates of the winter samples. The quarterly correction method can significantly improve the data accuracy of automated monitoring instruments. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Graphical abstract

14 pages, 3484 KB  
Article
Multiparametric Quantitative Ultrasound as a Potential Imaging Biomarker for Noninvasive Detection of Nonalcoholic Steatohepatitis: A Clinical Feasibility Study
by Trina Chattopadhyay, Hsien-Jung Chan, Duy Chi Le, Chiao-Yin Wang, Dar-In Tai, Zhuhuang Zhou and Po-Hsiang Tsui
Diagnostics 2025, 15(17), 2214; https://doi.org/10.3390/diagnostics15172214 - 1 Sep 2025
Viewed by 560
Abstract
Objectives: The FibroScan–aspartate transaminase (AST) score (FAST score) is a hybrid biomarker combining ultrasound and blood test data for identifying nonalcoholic steatohepatitis (NASH). This study aimed to assess the feasibility of using quantitative ultrasound (QUS) biomarkers related to hepatic steatosis for NASH [...] Read more.
Objectives: The FibroScan–aspartate transaminase (AST) score (FAST score) is a hybrid biomarker combining ultrasound and blood test data for identifying nonalcoholic steatohepatitis (NASH). This study aimed to assess the feasibility of using quantitative ultrasound (QUS) biomarkers related to hepatic steatosis for NASH detection and to compare their diagnostic performance with the FAST score. Methods: A total of 137 participants, comprising 71 individuals with NASH and 66 with non-NASH (including 49 normal controls), underwent FibroScan and ultrasound exams. QUS imaging features (Nakagami parameter m, homodyned-K parameter μ, entropy H, and attenuation coefficient α) were extracted from backscattered radiofrequency data. A weighted QUS parameter based on m, μ, H, and α was derived via linear discriminant analysis. NASH was diagnosed based on liver biopsy findings using the nonalcoholic fatty liver disease activity score (NAS). Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUROC) and compared with the FAST score using the DeLong test. Separation metrics, including the complement of overlap coefficient, Bhattacharyya distance, Kullback–Leibler divergence, and silhouette score, were used to assess inter-group separability. Results: All QUS parameters were significantly elevated in NASH patients (p < 0.05). AUROC values for individual QUS features ranged from 0.82 to 0.91, with the weighted QUS parameter achieving 0.91. The FAST score had the highest AUROC (0.96), though differences with the weighted QUS and homodyned-K parameters were not statistically significant (p > 0.05). Separation metrics ranked the FAST score highest, closely followed by the weighted QUS parameter. Conclusions: QUS biomarkers can be repurposed for NASH detection, with the weighted QUS parameter offering diagnostic accuracy comparable to the FAST score and serving as a promising, blood-free alternative. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

14 pages, 2276 KB  
Article
X-Ray Interaction and the Electronic, Atomic Cross-Sections and Compton Mass-Attenuation Coefficients of Human Blood, Breasts, Eye Lens, Ovaries, and Testis
by Daniel Banks, Elise Kapshtica, Jia Ali, Sami Raja, Madhesh Raja, Mishka Ali and Muhammad Maqbool
Radiation 2025, 5(3), 24; https://doi.org/10.3390/radiation5030024 - 31 Aug 2025
Viewed by 460
Abstract
The Klein–Nishina formula is used to calculate and investigate the electronic cross-section, atomic cross-section, and Compton mass attenuation coefficients for the human blood, breasts, eye lens, ovaries, and testis, using X-rays in the 0.1–20 MeV energy range. The effects of radiation energy, tissue [...] Read more.
The Klein–Nishina formula is used to calculate and investigate the electronic cross-section, atomic cross-section, and Compton mass attenuation coefficients for the human blood, breasts, eye lens, ovaries, and testis, using X-rays in the 0.1–20 MeV energy range. The effects of radiation energy, tissue effective charge number, tissue density, and tissue electronic density on these parameters were studied. The results show that the electronic cross-section and atomic cross-section decrease with increasing radiation energy. These parameters are found to be linearly increasing when the density and electron density of a tissue increase. This increase is more rapid with a bigger slope when the electron density increases as compared to the density of each tissue. A complex relationship between these coefficients and the effective charge number Zeff of tissues is observed because Zeff changes with the energy and linear attenuation coefficient of a tissue. The Compton mass attenuation coefficient is found to be dependent on the effective charge number to mass number ratio Zeff/Aeff instead of just the effective charge number. This increase in the Compton mass attenuation coefficient with increasing Zeff/Aeff is rapid for the lower values of Zeff/Aeff. However, for a higher Zeff/Aeff ratio, the increase is very slow and becomes almost constant for X-ray energies above 10 MeV. The calculated parameters are useful in determining radiation dose for the investigated tissues and their response to low and high-energy X-rays. The results and outcomes are also very useful in shielding and protecting tissues from the hazards of radiation. These parameters are also helpful in determining the scattered and optimum doses to improve image quality and treatment options in radiology and radiation therapy to offer the best care. Full article
Show Figures

Figure 1

19 pages, 12156 KB  
Article
Dual-Port Butterfly Slot Antenna for Biosensing Applications
by Marija Milijic, Branka Jokanovic, Miodrag Tasic, Sinisa Jovanovic, Olga Boric-Lubecke and Victor Lubecke
Sensors 2025, 25(16), 4980; https://doi.org/10.3390/s25164980 - 12 Aug 2025
Viewed by 377
Abstract
This paper presents the novel design of a printed, low-cost, dual-port, and dual-polarized slot antenna for microwave biomedical radars. The butterfly shape of the radiating element, with orthogonally positioned arms, enables simultaneous radiation of both vertically and horizontally polarized waves. The antenna is [...] Read more.
This paper presents the novel design of a printed, low-cost, dual-port, and dual-polarized slot antenna for microwave biomedical radars. The butterfly shape of the radiating element, with orthogonally positioned arms, enables simultaneous radiation of both vertically and horizontally polarized waves. The antenna is intended for full-duplex in-band applications using two mutually isolated antenna ports, with the CPW port on the same side of the substrate as the slot antenna and the microstrip port positioned orthogonally on the other side of the substrate. Those two ports can be used as transmit and receive ports in a radar transceiver, with a port isolation of 25 dB. Thanks to the bow-tie shape of the slots and an additional coupling region between the butterfly arms, there is more flexibility in simultaneous optimization of the resonant frequency and input impedance at both ports, avoiding the need for a complicated matching network that introduces the attenuation and increases antenna dimensions. The advantage of this design is demonstrated through the modeling of an eight-element dual-port linear array with an extremely simple feed network for high-gain biosensing applications. To validate the simulation results, prototypes of the proposed antenna were fabricated and tested. The measured operating band of the antennas spans from 2.35 GHz to 2.55 GHz, with reflection coefficients of less than—10 dB, a maximum gain of 8.5 dBi, and a front-to-back gain ratio that is greater than 15 dB, which is comparable with other published single dual-port slot antennas. This is the simplest proposed dual-port, dual-polarization antenna that enables straightforward scaling to other frequency bands. Full article
(This article belongs to the Special Issue Design and Application of Millimeter-Wave/Microwave Antenna Array)
Show Figures

Figure 1

18 pages, 2416 KB  
Article
Analysis of Asphalt Pavement Response to Long Longitudinal Slope Considering the Influence of Temperature Fields
by Xu Li, Jie Chen, Shuxing Mao and Chaochao Liu
Materials 2025, 18(15), 3670; https://doi.org/10.3390/ma18153670 - 5 Aug 2025
Viewed by 447
Abstract
With the rapid increase in traffic volume and the number of heavy-duty vehicles, the load on asphalt pavements has increased significantly. Especially on sections with long longitudinal slopes, the internal stress conditions of asphalt pavement have become even more complex. This study aims [...] Read more.
With the rapid increase in traffic volume and the number of heavy-duty vehicles, the load on asphalt pavements has increased significantly. Especially on sections with long longitudinal slopes, the internal stress conditions of asphalt pavement have become even more complex. This study aims to investigate the thermal–mechanical coupling behavior of asphalt pavement structures on long longitudinal slopes under the combined influence of temperature fields and moving loads. A pavement temperature field model was developed based on the climatic conditions of Nanning (AAT: 21.8 °C; Tmax: 37 °C; Tmin: 3 °C; AAP: 1453.4 mm). In addition, a three-dimensional finite element model of asphalt pavement structures on long longitudinal slopes was established using finite element software. Variations in pavement mechanical responses were compared under different vehicle axle loads (100–200 kN), slope gradients (0–5%), braking coefficients (0–0.7), and asphalt mixture layer thicknesses (2–8 cm). The results indicate that the pavement structure exhibits a strong capacity for pressure attenuation, with the middle and lower surface layers showing more pronounced stress reduction—up to 40%—significantly greater than the 6.5% observed in the upper surface layer. As the axle load increases from 100 kN to 200 kN, the internal mechanical responses of the pavement show a linear relationship with load magnitude, with an average increase of approximately 29%. In addition, the internal shearing stress of the pavement is more sensitive to changes in slope and braking coefficient; when the slope increases from 0% to 5% and the braking coefficient increases from 0 to 0.7, the shear stress at the bottom of the upper surface layer increases by 12% and 268%, respectively. This study provides guidance for the design of asphalt pavements on long longitudinal slopes. In future designs, special attention should be given to enhancing the shear strength of the surface layer and improving the interlayer bonding performance. In particular, under conditions of steep slopes and frequent heavy vehicle traffic, the thickness and modulus of the upper surface asphalt mixture may be appropriately increased. Full article
Show Figures

Figure 1

19 pages, 2913 KB  
Article
Radiation Mapping: A Gaussian Multi-Kernel Weighting Method for Source Investigation in Disaster Scenarios
by Songbai Zhang, Qi Liu, Jie Chen, Yujin Cao and Guoqing Wang
Sensors 2025, 25(15), 4736; https://doi.org/10.3390/s25154736 - 31 Jul 2025
Viewed by 461
Abstract
Structural collapses caused by accidents or disasters could create unexpected radiation shielding, resulting in sharp gradients within the radiation field. Traditional radiation mapping methods often fail to accurately capture these complex variations, making the rapid and precise localization of radiation sources a significant [...] Read more.
Structural collapses caused by accidents or disasters could create unexpected radiation shielding, resulting in sharp gradients within the radiation field. Traditional radiation mapping methods often fail to accurately capture these complex variations, making the rapid and precise localization of radiation sources a significant challenge in emergency response scenarios. To address this issue, based on standard Gaussian process regression (GPR) models that primarily utilize a single Gaussian kernel to reflect the inverse-square law in free space, a novel multi-kernel Gaussian process regression (MK-GPR) model is proposed for high-fidelity radiation mapping in environments with physical obstructions. MK-GPR integrates two additional kernel functions with adaptive weighting: one models the attenuation characteristics of intervening materials, and the other captures the energy-dependent penetration behavior of radiation. To validate the model, gamma-ray distributions in complex, shielded environments were simulated using GEometry ANd Tracking 4 (Geant4). Compared with conventional methods, including linear interpolation, nearest-neighbor interpolation, and standard GPR, MK-GPR demonstrated substantial improvements in key evaluation metrics, such as MSE, RMSE, and MAE. Notably, the coefficient of determination (R2) increased to 0.937. For practical deployment, the optimized MK-GPR model was deployed to an RK-3588 edge computing platform and integrated into a mobile robot equipped with a NaI(Tl) detector. Field experiments confirmed the system’s ability to accurately map radiation fields and localize gamma sources. When combined with SLAM, the system achieved localization errors of 10 cm for single sources and 15 cm for dual sources. These results highlight the potential of the proposed approach as an effective and deployable solution for radiation source investigation in post-disaster environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

15 pages, 1647 KB  
Article
A Modified Nonlinear Mohr–Coulomb Failure Criterion for Rocks Under High-Temperature and High-Pressure Conditions
by Zhuzheng Li, Hongxi Li, Qiangui Zhang, Jiahui Wang, Cheng Meng, Xiangyu Fan and Pengfei Zhao
Appl. Sci. 2025, 15(14), 8048; https://doi.org/10.3390/app15148048 - 19 Jul 2025
Viewed by 514
Abstract
In deep, geologically complex environments characterized by high in situ stress and elevated formation temperatures, the mechanical behavior of rocks often transitions from brittle to ductile, differing significantly from that of shallow formations. Traditional rock failure criteria frequently fail to accurately assess the [...] Read more.
In deep, geologically complex environments characterized by high in situ stress and elevated formation temperatures, the mechanical behavior of rocks often transitions from brittle to ductile, differing significantly from that of shallow formations. Traditional rock failure criteria frequently fail to accurately assess the strength of rocks under such deep conditions. To address this, a novel failure criterion suitable for high-temperature and high-pressure conditions has been developed by modifying the Mohr–Coulomb criterion. This criterion incorporates a quadratic function of confining pressure to account for the attenuation rate of strength increase under high confining pressure and a linear function of temperature to reflect the linear degradation of strength at elevated temperatures. This criterion has been used to predict the strength of granite, shale, and carbonate rocks, yielding results that align well with the experimental data. The average coefficient of determination (R2) reached 97.1%, and the mean relative error (MRE) was 5.25%. Compared with the Hoek–Brown and Bieniawski criteria, the criterion proposed in this study more accurately captures the strength characteristics of rocks under high-temperature and high-pressure conditions, with a prediction accuracy improvement of 1.70–4.09%, showing the best performance in the case of carbonate rock. A sensitivity analysis of the criterion parameters n and B revealed notable differences in how various rock types respond to these parameters. Among the three rock types studied, granite exhibited the lowest sensitivity to both parameters, indicating the highest stability in the prediction results. Additionally, the predictive outcomes were generally more sensitive to changes in parameter B than in n. These findings contribute to a deeper understanding of rock mechanical behavior under extreme conditions and offer valuable theoretical support for drilling, completion, and stimulation operations in deep hydrocarbon reservoirs. Full article
Show Figures

Figure 1

18 pages, 4312 KB  
Article
Influence of Rare Earth Elements on the Radiation-Shielding Behavior of Serpentinite-Based Materials
by Ayşe Didem Kılıç and Demet Yılmaz
Appl. Sci. 2025, 15(14), 7837; https://doi.org/10.3390/app15147837 - 13 Jul 2025
Viewed by 618
Abstract
In this study, the neutron and gamma radiation-shielding properties of serpentinites from the Guleman ophiolite complex were investigated, and results were evaluated in comparison with rare earth element (REE) content. The linear and mass attenuation coefficients (LAC and MAC), half-value layer (HVL), mean [...] Read more.
In this study, the neutron and gamma radiation-shielding properties of serpentinites from the Guleman ophiolite complex were investigated, and results were evaluated in comparison with rare earth element (REE) content. The linear and mass attenuation coefficients (LAC and MAC), half-value layer (HVL), mean free path (MFP), and effective atomic numbers (Zeff) of serpentinite samples were experimentally measured in the energy range of 80.99–383.85 keV. Theoretical MAC values were calculated. Additionally, fast neutron removal cross-sections, as well as thermal and fast neutron macroscopic cross-sections, were theoretically determined. The absorbed equivalent dose rates of serpentinite samples were also measured. The radiation protection efficiency (RPE) for gamma rays and neutrons were determined. It was observed that the presence of rare earth elements within serpentinite structure has a significant impact on thermal neutron cross-sections, while crystalline water content (LOI) plays an influential role in fast neutron cross-sections. Moreover, it has been observed that the concentration of gadolinium exerts a more substantial influence on the macroscopic cross-sections of thermal neutrons than on those of fast neutrons. The research results reveal the mineralogical, geochemical, morphological and radiation-shielding properties of serpentinite rocks contribute significantly to new visions for the use of this naturally occurring rock as a geological repository for nuclear waste or as a wall-covering material in radiotherapy centers and nuclear facilities instead of concrete. Full article
(This article belongs to the Special Issue Advanced Functional Materials and Their Applications)
Show Figures

Figure 1

22 pages, 2719 KB  
Article
Itararé Group Sandstone as a Sustainable Alternative Material for Photon Radiation Shielding
by Gabrielli W. Pietralla, Isonel S. Meneguzzo and Luiz F. Pires
Appl. Sci. 2025, 15(13), 7559; https://doi.org/10.3390/app15137559 - 5 Jul 2025
Viewed by 428
Abstract
The materials typically used for radiation shielding include lead, concrete, and polymers. However, some of these materials can be toxic or very expensive to produce. This raises interest in using more readily available natural materials, such as rocks, as an alternative. In this [...] Read more.
The materials typically used for radiation shielding include lead, concrete, and polymers. However, some of these materials can be toxic or very expensive to produce. This raises interest in using more readily available natural materials, such as rocks, as an alternative. In this study, we analyzed the radiation shielding efficiency of sandstones. We evaluated different layers of rock and obtained shielding parameters based on the composition of various oxides. The analysis revealed that these layers showed a predominance of silicon and aluminum oxides. Notably, the lowest photon energies (0.015 MeV and 0.1 MeV) displayed significant differences in photon attenuation, as indicated by linear and mass attenuation coefficients. This suggests that the chemical composition of the samples had a considerable impact on their shielding performance. Samples containing higher amounts of heavier elements proved to be more effective at attenuating radiation, efficiently reducing 50% (half-value layer) and 90% (tenth-value layer) of the photons. Additionally, the presence of these heavier elements decreased the production of secondary photons (buildup factor), further enhancing the samples’ efficiency in shielding against radiation. Our results indicate that sandstones hold potential for radiation shielding, particularly when they contain higher quantities of heavier elements. Full article
(This article belongs to the Special Issue Electromagnetic Radiation and Human Environment)
Show Figures

Figure 1

12 pages, 3008 KB  
Article
Structural, Thermophysical, and Radiation Shielding Properties of Lead–Bismuth Eutectic (LBE) Synthesized by Induction Melting
by Radu Cristian Gavrea, Emanoil Surducan, Răzvan Hirian, Mioara Zagrai and Vasile Rednic
Crystals 2025, 15(6), 581; https://doi.org/10.3390/cryst15060581 - 19 Jun 2025
Viewed by 576
Abstract
Lead–bismuth eutectic alloy (LBE, Pb44.5Bi55.5) has emerged as a promising candidate for use in advanced nuclear and solar energy systems due to its favorable thermophysical characteristics and radiation shielding capabilities. The aim of this research is to assess the [...] Read more.
Lead–bismuth eutectic alloy (LBE, Pb44.5Bi55.5) has emerged as a promising candidate for use in advanced nuclear and solar energy systems due to its favorable thermophysical characteristics and radiation shielding capabilities. The aim of this research is to assess the applicability of the induction melting technique to synthesize LBE. This paper presents a comprehensive evaluation of the structural, thermophysical, and radiation shielding properties of the obtained LBE sample. Various techniques were employed to investigate the solid-to-liquid eutectic transformation, phase composition, morphology, and homogeneity of the obtained material. Experimental and theoretical determinations on density, void, molar volume, thermal conductivity, heat capacity, thermal diffusivity, and electrical conductivity were performed. Radiation shielding performance over photon energies ranging from 0.015 to 15 MeV was simulated using the Phy-X/PSD program. The results revealed the eutectic structure comprising Pb7Bi3 and Bi phases with near-ideal stoichiometry and a melting point of 127.6 °C. The alloy demonstrated a small void that corresponds to a high degree of sample compaction, high specific heat capacity, moderate thermal conductivity, low thermal diffusivity, and effective radiation shielding. These findings confirm that LBE obtained by the induction melting technique possesses the necessary structural stability and functional properties for integration into nuclear reactor and solar thermal technologies. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
Show Figures

Figure 1

14 pages, 1314 KB  
Article
Analytical and Clinical Validation of a Plasma Fibroblast Growth Factor 21 ELISA Kit Using an Automated Platform in Steatotic Liver Disease
by Makito Tanaka, Shingo Tanaka, Ryo Kobayashi, Ryosei Murai and Satoshi Takahashi
Biomolecules 2025, 15(6), 877; https://doi.org/10.3390/biom15060877 - 16 Jun 2025
Viewed by 533
Abstract
Steatotic liver disease is a global health challenge that requires reliable and noninvasive diagnostic biomarkers. This research aimed to validate the analytical and clinical performance of a fibroblast growth factor 21 (FGF21) enzyme-linked immunosorbent assay (ELISA) kit using an automated immunoassay analyzer. Plasma [...] Read more.
Steatotic liver disease is a global health challenge that requires reliable and noninvasive diagnostic biomarkers. This research aimed to validate the analytical and clinical performance of a fibroblast growth factor 21 (FGF21) enzyme-linked immunosorbent assay (ELISA) kit using an automated immunoassay analyzer. Plasma FGF21 levels were measured using a commercial ELISA kit on an automated immunoassay analyzer. Validation included intra- and inter-assay precision, dilution linearity, spike recovery, lower limit of quantification (LLOQ), interference testing, and sample stability analysis. Clinical evaluation involved 97 patients who underwent abdominal ultrasound-based attenuation imaging for the diagnosis of hepatic steatosis. The assay demonstrated high analytical precision, with intra- and inter-assay coefficients of variation <15% and an LLOQ of 3.260 pg/mL. Dilution linearity, spike recovery, and interference tests confirmed the reliability of the assay, whereas stability tests highlighted the minimal effect of freeze-thaw cycles and storage conditions. Clinically, FGF21 levels correlated with attenuation coefficient (r = 0.44). Diagnostic performance indicated 84% sensitivity and 81% specificity at defined FGF21 thresholds for the diagnosis of hepatic steatosis. This research confirmed the reliable analytical and clinical performance of the FGF21 ELISA kit, reinforcing its potential as a diagnostic biomarker of hepatic steatosis. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

20 pages, 3363 KB  
Article
Effect of Elevated Temperature on Mechanical Properties and Shielding Performance of Magnetite–Serpentine Radiation-Proof Concrete
by Dan Wu, Zehua Liu, Zhenfu Chen, Qiongfang Wu and Qiuwang Tao
Materials 2025, 18(12), 2686; https://doi.org/10.3390/ma18122686 - 6 Jun 2025
Viewed by 763
Abstract
High temperatures can induce a range of physical and chemical alterations in radiation-protective concrete, potentially compromising its strength and significantly diminishing its radiation shielding capabilities. Therefore, it is very important to study the high temperature performance of radiation-proof concrete to ensure its safety [...] Read more.
High temperatures can induce a range of physical and chemical alterations in radiation-protective concrete, potentially compromising its strength and significantly diminishing its radiation shielding capabilities. Therefore, it is very important to study the high temperature performance of radiation-proof concrete to ensure its safety and stability in extreme environment. In this study, the magnetite–serpentine radiation-proof concrete is designed with magnetite as coarse aggregate, serpentine as fine aggregate, and Portland cement and granulated blast furnace slag as mixture. The apparent characteristics, mass loss, ultrasonic pulse velocity, mechanical properties, shielding performance, and correlation of this concrete were analyzed through experiments. The results show that the damage degree and relative wave velocity have a good correlation in evaluating the relative mass loss, linear attenuation coefficient, compressive strength, and tensile strength after high temperatures. The compressive strength at 800 °C is 12.2 MPa and the splitting tensile strength is 0.48 MPa; the linear attenuation coefficient of specimen at 800 °C is reduced to 80.9% of that at normal temperature. Meanwhile, penetrating cracks appeared at 600 °C and spalling phenomenon appeared at 800 °C, and better thermal stability and favorable mechanical properties and shielding performance also occurred; thus, suitable radioactive and high temperature environment was determined. The results could provide scientific guidance for nondestructive testing and performance evaluation of shielding structure materials. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

33 pages, 11005 KB  
Article
Temporal and Spatial Distribution of 2022–2023 River Murray Major Flood Sediment Plume
by Evan Corbett, Sami W. Rifai, Graziela Miot da Silva and Patrick A. Hesp
Remote Sens. 2025, 17(10), 1711; https://doi.org/10.3390/rs17101711 - 14 May 2025
Viewed by 1747
Abstract
This study examined a sediment plume from Australia’s largest river, The River Murray, which was produced during a major flood event in 2022–2023. This flood resulted from successive La Niña events, causing high rainfall across the Murray–Darling Basin and ultimately leading to a [...] Read more.
This study examined a sediment plume from Australia’s largest river, The River Murray, which was produced during a major flood event in 2022–2023. This flood resulted from successive La Niña events, causing high rainfall across the Murray–Darling Basin and ultimately leading to a significant riverine flow through South Australia. The flood was characterised by a significant increase in riverine discharge rates, reaching a peak of 1305 m³/s through the Lower Lakes barrage system from November 2022 to February 2023. The water quality anomaly within the coastal region (<~150 km offshore) was effectively quantified and mapped utilising the diffuse attenuation coefficient at 490 nm (Kd490) from products derived from MODIS Aqua Ocean Color satellite imagery. The sediment plume expanded and intensified alongside the increased riverine discharge rates, which reached a maximum spatial extent of 13,681 km2. The plume typically pooled near the river’s mouth within the northern corner of Long Bay, before migrating persistently westward around the Fleurieu Peninsula through Backstairs Passage into Gulf St Vincent, occasionally exhibiting brief eastward migration periods. The plume gradually subsided by late March 2023, several weeks after riverine discharge rates returned to pre-flood levels, indicating a lag in attenuation. The assessment of the relationship and accuracy between the Kd490 product and the surface-most in situ turbidity, measured using conductivity, temperature, and depth (CTD) casts, revealed a robust positive linear correlation (R2 = 0.85) during a period of high riverine discharge, despite temporal and spatial discrepancies between the two datasets. The riverine discharge emerged as an important factor controlling the spatial extent and intensities of the surface sediment plume, while surface winds also exerted an influence, particularly during higher wind velocity events, as part of a broader interplay with other drivers. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

32 pages, 11164 KB  
Article
Evaluation of Environmental Factors Influencing Photovoltaic System Efficiency Under Real-World Conditions
by Krzysztof Pytel, Wiktor Hudy, Roman Filipek, Malgorzata Piaskowska-Silarska, Jana Depešová, Robert Sito, Ewa Janiszewska, Izabela Sieradzka and Krzysztof Sulkowski
Energies 2025, 18(8), 2113; https://doi.org/10.3390/en18082113 - 19 Apr 2025
Viewed by 735
Abstract
The study addresses the impact of selected environmental factors on the energy production of photovoltaic systems under real outdoor conditions, with particular emphasis on the application of evolutionary computation techniques. The experiment was carried out on a dedicated test stand, where measurements were [...] Read more.
The study addresses the impact of selected environmental factors on the energy production of photovoltaic systems under real outdoor conditions, with particular emphasis on the application of evolutionary computation techniques. The experiment was carried out on a dedicated test stand, where measurements were made under natural environmental conditions. Parameters such as solar irradiance, wind speed, temperature, air pollution, and obtained PV power were continuously recorded. Initial correlation analysis using Pearson and Spearman coefficients confirmed associations between environmental factors and power output, especially solar irradiance. In order to advance the analysis beyond conventional methods, a linear regression model was developed in which the model weights were optimized using evolutionary algorithms, allowing for a more robust assessment of the contribution of each parameter. The results showed that solar irradiance accounted for 97.79% of the variance in photovoltaic power, while temperature (0.95%), air pollution (0.72%), and wind speed (0.54%) had significantly lower impacts. The implementation of evolutionary algorithms represents a novel approach in this context and has proven to be effective in quantifying environmental influence under complex real-world conditions. Furthermore, the findings highlight the indirect role of air pollution in attenuating irradiance and reducing system efficiency. These insights provide a foundation for the development of adaptive control strategies and predictive models to optimize the performance of the photovoltaic system in dynamic environmental settings. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
Show Figures

Figure 1

14 pages, 4302 KB  
Article
Speckle-Based Transmission and Dark-Field Imaging for Material Analysis with a Laboratory X-Ray Source
by Diego Rosich, Margarita Chevalier and Tatiana Alieva
Sensors 2025, 25(8), 2581; https://doi.org/10.3390/s25082581 - 19 Apr 2025
Viewed by 635
Abstract
Multimodal imaging is valuable because it can provide additional information beyond that obtained from a conventional bright-field (BF) image and can be implemented with a widely available device. In this paper, we investigate the implementation of speckle-based transmission (T) and dark-field (DF) imaging [...] Read more.
Multimodal imaging is valuable because it can provide additional information beyond that obtained from a conventional bright-field (BF) image and can be implemented with a widely available device. In this paper, we investigate the implementation of speckle-based transmission (T) and dark-field (DF) imaging in a laboratory X-ray setup to confirm its usefulness for material analysis. Three methods for recovering T and DF images were applied to a sample composed of six materials: plastic, nylon, cardboard, cork, expanded polystyrene and foam with different absorption and scattering properties. Contrast-to-noise ratio (CNR) and linear attenuation, absorption and diffusion coefficients obtained from BF, T and DF images are studied for two object-to-detector distances (ODDs). Two analysis windows are evaluated to determine the impact of noise on the image contrast of T and DF images and the ability to retrieve material characteristics. The unified modulated pattern analysis method proves to be the most reliable among the three studied speckle-based methods. The results showed that the CNR of T and DF images increases with larger analysis windows, while linear absorption and diffusion coefficients remain constant. The CNR of T images decreases with increasing ODD due to noise, whereas the CNR of DF images exhibits more complex behaviour, due to the material-dependent reduction in DF signal with increasing ODD. The experimental results on the ODD dependence of T and DF signals are consistent with recently reported numerical simulation results of these signals. The absorption coefficients derived from T images are largely independent of the ODD and the speckle-based method used, making them a universal parameter for material discrimination. In contrast, the linear diffusion coefficients vary with the ODD, limiting their applicability to specific experimental configurations despite their notable advantages in distinguishing materials. These findings highlight that T and DF images obtained from a laboratory X-ray setup offer complementary insights, enhancing their value for material analysis. Full article
(This article belongs to the Special Issue Recent Advances in X-Ray Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop